Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = crack arrest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3257 KiB  
Article
Experimental Study on the Effects of Loading Rates on the Fracture Mechanical Characteristics of Coal Influenced by Long-Term Immersion in Mine Water
by Xiaobin Li, Gan Feng, Mingli Xiao, Guifeng Wang, Jing Bi, Chunyu Gao and Huaizhong Liu
Appl. Sci. 2025, 15(15), 8222; https://doi.org/10.3390/app15158222 - 24 Jul 2025
Viewed by 236
Abstract
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates [...] Read more.
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates and layer direction. Three types of samples were analyzed: Crack-arrester, Crack-splitter, and Crack-divider types. The immersion duration extended up to 120 days. The results indicate that, after immersion in mine water for 120 days, the fracture toughness (KIC), fracture modulus (ES), and absorbed energy (UT) of coal decreased by 60.87%, 53.38%, and 63.21%, respectively, compared to the unsaturated coal samples. An immersion period of 30 days significantly weakens the mechanical properties of coal fractures. The KIC, ES, and UT of coal demonstrate a positive correlation with loading rate, primarily influenced by the duration of coal damage. At the same loading rate, the order of fracture toughness among the three coal types is as follows: Crack-divider > Crack-arrester > Crack-splitter. This hierarchy is determined by the properties of the coal matrix and bedding planes, as well as the mechanical structures composed of them. This study holds significant implications for the safe construction and operational design of underground water reservoirs in coal mines. Full article
Show Figures

Figure 1

28 pages, 17257 KiB  
Article
A Crystal Plasticity Phase-Field Study on the Effects of Grain Boundary Degradation on the Fatigue Behavior of a Nickel-Based Superalloy
by Pengfei Liu, Zhanghua Chen, Xiao Zhao, Jianxin Dong and He Jiang
Materials 2025, 18(14), 3309; https://doi.org/10.3390/ma18143309 - 14 Jul 2025
Viewed by 374
Abstract
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of [...] Read more.
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of the GH4169 alloy under both room and elevated temperatures. Grain boundaries are explicitly modeled, enabling the competition between transgranular and intergranular cracking to be accurately captured. The grain boundary separation energy and surface energy, calculated via molecular dynamics simulations, are employed as failure criteria for grain boundary and intragranular material points, respectively. The simulation results reveal that under oxygen-free conditions, fatigue crack propagation at both room and high temperatures is governed by sustained shear slip, with crack advancement hindered by grains exhibiting low Schmid factors. When grain boundary oxidation is introduced, increasing oxidation levels progressively degrade grain boundary strength and reduce overall fatigue resistance. Specifically, at room temperature, oxidation shortens the duration of crack arrest near grain boundaries. At elevated service temperatures, intensified grain boundary degradation facilitates a transition in crack growth mode from transgranular to intergranular, thereby accelerating crack propagation and exacerbating fatigue damage. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

26 pages, 3697 KiB  
Review
Chloride-Induced Corrosion Effects on the Structural Performance of Concrete with Rebar and Fibres: A Review
by Petar Bajić, Bruno Leporace-Guimil, Carmen Andrade, Nikola Tošić and Albert de la Fuente
Appl. Sci. 2025, 15(12), 6457; https://doi.org/10.3390/app15126457 - 8 Jun 2025
Viewed by 935
Abstract
Chloride-induced corrosion is a major contributor in the degradation of standardised steel-based products (e.g., rebars and fibres) commonly used for reinforcing concrete structures. Since cracked reinforced concrete elements are determined to be more susceptible to corrosion on the one hand, and fibres are [...] Read more.
Chloride-induced corrosion is a major contributor in the degradation of standardised steel-based products (e.g., rebars and fibres) commonly used for reinforcing concrete structures. Since cracked reinforced concrete elements are determined to be more susceptible to corrosion on the one hand, and fibres are effective in arresting crack growth and improving the post-cracking mechanical behaviour on the other hand, the use of fibres emerges as a promising strategy to enhance durability. This review is focused on the degradation of the load-bearing capacity, caused by chloride corrosion, in concrete elements reinforced with fibres and conventional rebar. Based on the recorded values of ultimate loads and the corresponding deflections in the reviewed studies, a lower decrease in the load-bearing capacity and less severe degradation of ductility were observed in elements where fibres (either steel or macro-synthetic) were used in combination with rebar compared with elements where only rebar was used. Furthermore, the recorded values of corrosion potential (Ecorr), corrosion current density (icorr) and gravimetric measurements indicated lower corrosion damage, delayed corrosion initiation and a prolonged propagation phase of corrosion. However, due to many differences in the methodology among the reviewed studies, the optimal fibre type or quantity cannot be identified unless more studies are performed. Full article
(This article belongs to the Special Issue Fiber-Reinforced Concrete: Recent Progress and Future Directions)
Show Figures

Figure 1

30 pages, 3163 KiB  
Review
Dynamic Process of Dry Snow Slab Avalanche Formation: Theory, Experiment and Numerical Simulation
by Peng Yue, Binbin Pei, Jie Zhang and Ning Huang
Geosciences 2025, 15(6), 201; https://doi.org/10.3390/geosciences15060201 - 29 May 2025
Viewed by 430
Abstract
Snow avalanches occur in snow-covered highland mountains and represent one of the most significant natural hazards pertaining to the field of geoscience. Although some insight into the formation of avalanches has been provided, a comprehensive overview or critical review of the latest research [...] Read more.
Snow avalanches occur in snow-covered highland mountains and represent one of the most significant natural hazards pertaining to the field of geoscience. Although some insight into the formation of avalanches has been provided, a comprehensive overview or critical review of the latest research is currently lacking. This paper reviews recent advances on the formation process of dry slab avalanches and provides a guiding framework for further research. The formation of avalanches is the consequence of a series of fracture processes in the snowpack, which is usually induced by the failure of a weak layer underlying a snow slab layer. The parameters at each stage of avalanches’ formation are reviewed from theoretical, experimental and simulation perspectives. In terms of the onset of crack propagation, the understanding of the mechanical process has gone through a transition from shear theory, to the anticrack model and supershear. The critical length shows divergent trends with snowpack parameters and slope angles, and there is a lack of consensus in different models. The specific fracture energy is also an essential component in determining fracture propagation. Within cracks’ dynamic propagation, the crack propagation speed includes both the sub-Rayleigh regime and supershear. The crack speed exceeds the shear wave speed in the supershear mode. When the crack propagation reaches a specific distance, the slab undergoes a tensile fracture and the cracking’s arrest. The numerical simulation allows a complete reproduction of the initial failure, the crack’s dynamic propagation and slab fracture. In the future, a unified model is necessary through refining the formative mechanism and integrating it with the avalanche flow. This work offers a comprehensive understanding of the mechanics of the formation and release of avalanches, useful for both modelers and experimentalists. Full article
Show Figures

Figure 1

30 pages, 11298 KiB  
Article
A Method for Calculating Residual Strength of Crack Arrest Hole on Tungsten-Copper Functionally Graded Materials by Phase-Field Gradient Element Combined with Multi-Fidelity Neural Network
by Bowen Liu, Yisheng Yang, Guishan Wang and Yin Li
Materials 2025, 18(9), 1973; https://doi.org/10.3390/ma18091973 - 26 Apr 2025
Viewed by 337
Abstract
This study develops a computational framework for evaluating the residual strength of tungsten-copper functionally graded materials following crack-arrest hole drilling. The proposed methodology features two pivotal innovations: First, a phase-field isoparametric gradient elements is established through representing the gradient effect within the finite [...] Read more.
This study develops a computational framework for evaluating the residual strength of tungsten-copper functionally graded materials following crack-arrest hole drilling. The proposed methodology features two pivotal innovations: First, a phase-field isoparametric gradient elements is established through representing the gradient effect within the finite element stiffness matrices, incorporating both Amor and Miehe elastic energy decomposition schemes to address tension-compression asymmetry in crack evolution. Second, a multi-fidelity neural network strategy is integrated with the gradient phase-field element to mitigate characteristic length dependency in residual strength predictions. Comparative analyses demonstrate that the gradient finite element achieves smoother field transitions at element interfaces compared to conventional homogeneous elements, as quantified in both stress and damage fields. The Miehe decomposition scheme outperforms the Amor model in capturing complex crack trajectories. Validation against the average strain energy criterion indicates the present approach enhances residual strength prediction accuracy by 39.07% to 44.05%, establishing a robust numerical tool for damage tolerance assessment in graded materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 73322 KiB  
Article
A Study on the Mechanical Properties of Unbolted and Bolted Composite Rock Masses Under the Influence of Different Grain Sizes
by Chao Yuan, Xuanqi Huang, Weijun Wan and Yueyang Xu
Fractal Fract. 2025, 9(4), 232; https://doi.org/10.3390/fractalfract9040232 - 7 Apr 2025
Viewed by 386
Abstract
In order to explore the influence of grain size on the mechanical properties of unbolted and bolted composite rock masses, uniaxial compression tests were carried out on unbolted and bolted composite rock masses of different grain sizes. The characteristics of the variation in [...] Read more.
In order to explore the influence of grain size on the mechanical properties of unbolted and bolted composite rock masses, uniaxial compression tests were carried out on unbolted and bolted composite rock masses of different grain sizes. The characteristics of the variation in the strength, elastic modulus, Poisson’s ratio and energy parameters of composite rock masses with grain size were analyzed. The evolution process of crack propagation in the composite rock masses was studied, and the influence mechanism of rock grain size on the mechanical properties of the anchorage bearing structure of the rock surrounding the roadway was revealed. The results show that with an increase in the grain size, the peak strength and elastic modulus of a composite rock mass decrease gradually, and the post-peak residual strength, Poisson’s ratio and total input strain energy increase gradually. The evolution of crack propagation is from tensile cracking to tensile to shear mixed to shear cracking. Prestressed anchor bolts can effectively improve the peak strength and post-peak residual strength of composite rock masses and have inhibitory effects on crack propagation in the anchorage zone, such as weakening, deflection and crack arrest. Compared with an unbolted composite rock mass, the bearing capacity of a bolted composite rock mass is stronger, and its elastic modulus is significantly improved. Full article
(This article belongs to the Special Issue Applications of Fractal Analysis in Underground Engineering)
Show Figures

Figure 1

21 pages, 3134 KiB  
Article
Determination of Constraint-Independent Crack Tip Opening Angle for Stable Crack Growth in High-Strength Ductile Steels
by Xian-Kui Zhu
Materials 2025, 18(5), 1051; https://doi.org/10.3390/ma18051051 - 27 Feb 2025
Cited by 1 | Viewed by 1167
Abstract
The crack tip opening angle (CTOA) is one of fracture toughness parameters that has been used for decades in describing large stable crack growth in thin-walled aerospace structures under the low-constraint conditions. Recently, the pipeline industry has developed a growing interest in using [...] Read more.
The crack tip opening angle (CTOA) is one of fracture toughness parameters that has been used for decades in describing large stable crack growth in thin-walled aerospace structures under the low-constraint conditions. Recently, the pipeline industry has developed a growing interest in using the CTOA parameter to serve as the minimum required fracture toughness to arrest dynamic crack propagation in modern gas transmission pipelines made of high-strength ductile steel. To meet this industrial need, the CTOA test standard ASTM E3039 was therefore developed for measuring the constant critical CTOA. ASTM E3039 recommends a drop weight tearing test (DWTT) specimen with a shallow crack for standard CTOA testing, but its CTOA may depend on the low constraint condition of the DWTT specimen at the crack tip. Verifying the constraint independence of the DWTT-measured CTOA thus becomes indispensable for applying CTOA toughness to the running fracture control in the pipeline design. For this purpose, the present paper evaluates critical CTOA values in a set of fracture toughness tests on single-edge notched bend (SENB) specimens with shallow and deep cracks, based on four CTOA estimation models. Among these, the Ln(P)-LLD linear fit model is similar to that recommended by ASTM E3039 for CTOA calculation. Fracture test data for X80 pipeline steel and HY80 structural steel were considered in the CTOA evaluation. The results showed that the four CTOA models were able to determine a constraint independent CTOA value for stable crack growth in the SENB specimens. As a result, a single, reliable, constant CTOA value could be determined regardless of the specimen geometry or the crack-tip constraint conditions. Therefore, the CTOA measured using ASTM E3039 is constraint-independent and transferable to use in cases of actual cracks propagating in gas transmission pipelines. Full article
Show Figures

Figure 1

18 pages, 6983 KiB  
Article
Toughening of Composite Interfaces for Damage Resistance with Nanoparticle Interleaves
by Nithya Subramanian and Chiara Bisagni
J. Compos. Sci. 2025, 9(3), 109; https://doi.org/10.3390/jcs9030109 - 26 Feb 2025
Viewed by 602
Abstract
Composite interfaces, particularly in joints, play a critical role in the damage resistance and durability of structures for aeronautics applications. This study investigates the use of carbon nanotube (CNT) interleaves for the co-cured joining of composite parts and its effects on fracture toughness [...] Read more.
Composite interfaces, particularly in joints, play a critical role in the damage resistance and durability of structures for aeronautics applications. This study investigates the use of carbon nanotube (CNT) interleaves for the co-cured joining of composite parts and its effects on fracture toughness and damage progression at the co-cured interface. CNT dispersed in a thermoset resin and partially cured into thin film interleaves at three weight concentrations (0.5% wt., 1% wt., and 2% wt.) of two discrete thicknesses (200 µ and 500 µ) were investigated. The fracture toughness of the co-cured interface with CNT interleaves in mode I and mode II loading conditions was determined through double cantilever beam and end-notched flexure tests, respectively. The results reveal that despite the occurrence of a stick–slip damage progression in mode I, the crack arrest mechanisms and forces are surprisingly predictable based on interleaf thickness. At CNT concentrations above 1% wt., there was no significant enhancement of toughening, and interleaf thickness controlled the crack arrest loads. Damage delay also occurred at the interface due to the activation of multiscale toughening mechanisms. Toughening in mode II was dominated by CNT pullout resistance and, therefore, yielded up to six-fold improvement in critical fracture toughness. These insights offer significant potential for designing joints with nanocomposites for aerospace applications, incorporating inherent toughening and damage delay mechanisms. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Graphical abstract

23 pages, 10726 KiB  
Article
Influence of Temperature and Bedding Planes on the Mode I Fracture Toughness and Fracture Energy of Oil Shale Under Real-Time High-Temperature Conditions
by Shaoqiang Yang, Qinglun Zhang and Dong Yang
Energies 2024, 17(21), 5344; https://doi.org/10.3390/en17215344 - 27 Oct 2024
Viewed by 1421
Abstract
The anisotropic fracture characteristics of oil shale are crucial in determining reservoir modification parameters and pyrolysis efficiency during in situ oil shale pyrolysis. Therefore, understanding the mechanisms through which temperature and bedding planes influence the fracture behavior of oil shale is vital for [...] Read more.
The anisotropic fracture characteristics of oil shale are crucial in determining reservoir modification parameters and pyrolysis efficiency during in situ oil shale pyrolysis. Therefore, understanding the mechanisms through which temperature and bedding planes influence the fracture behavior of oil shale is vital for advancing the industrialization of in situ pyrolysis technology. In this study, scanning electron microscopy (SEM), CT scanning, and a real-time high-temperature rock fracture toughness testing system were utilized to investigate the spatiotemporal evolution of pores and fractures in oil shale across a temperature range of 20–600 °C, as well as the corresponding evolution of fracture behavior. The results revealed the following: (1) At ambient temperature, oil shale primarily contains inorganic pores and fractures, with sizes ranging from 50 to 140 nm. In the low-temperature range (20–200 °C), heating primarily causes the inward closure of inorganic pores and the expansion of inorganic fractures along bedding planes. In the medium-temperature range (200–400 °C), organic pores and fractures begin to form at around 300 °C, and after 400 °C, the number of organic fractures increases significantly, predominantly along bedding planes. In the high-temperature range (400–600 °C), the number, size, and connectivity of matrix pores and fractures increase markedly with rising temperature, and clay minerals exhibit adhesion, forming vesicle-like structures. (2) At room temperature, fracture toughness is highest in the Arrester direction (KIC-Arr), followed by the Divider direction (KIC-Div), and lowest in the Short-Transverse direction (KIC-Shor). As the temperature increases from 20 °C to 600 °C, both KIC-Arr and KIC-Div initially decrease before increasing, reaching their minimum values at 400 °C and 500 °C, respectively, while KIC-Shor decreases continuously as the temperature increases. (3) The energy required for prefabricated cracks to propagate to failure in all three directions reaches a minimum at 100 °C. Beyond 100 °C, the absorbed energy for crack propagation along the Divider and Short-Transverse directions continues to increase, whereas for cracks propagating in the Arrester direction, the absorbed energy exhibits a ‘W-shaped’ pattern, with troughs at 100 °C and 400 °C. These findings provide essential data for reservoir modification during in situ oil shale pyrolysis. Full article
(This article belongs to the Special Issue Recent Advances in Oil Shale Conversion Technologies)
Show Figures

Figure 1

15 pages, 9601 KiB  
Article
Comparative Study of Unhatched and Hatched Chicken Egg Shell-Filled Glass Fibre/Polyester Composites
by Suhas Kowshik, Sathyashankara Sharma, Sathish Rao, S. V. Udaya Kumar Shetty, Prateek Jain, Pavan Hiremath, Nithesh Naik and Maitri Manjunath
J. Compos. Sci. 2024, 8(10), 432; https://doi.org/10.3390/jcs8100432 - 17 Oct 2024
Viewed by 1281
Abstract
The incorporation of filler materials to enhance the properties of fibre-reinforced plastics is a prevalent practise in materials science. Calcium carbonate is a commonly used inorganic filler in composite fabrication. Eggshell, a rich source of calcium carbonate, offers an organic alternative to conventional [...] Read more.
The incorporation of filler materials to enhance the properties of fibre-reinforced plastics is a prevalent practise in materials science. Calcium carbonate is a commonly used inorganic filler in composite fabrication. Eggshell, a rich source of calcium carbonate, offers an organic alternative to conventional inorganic fillers. This study investigates the efficacy of different types of eggshells as filler materials. Three variants, viz., unhatched raw eggshell, unhatched boiled eggshell, and post-hatched eggshell, were used to fabricate composite variants, which were then subjected to mechanical characterization and compared with unfilled composites. The results indicated that composites filled with unhatched eggshells outperformed those with post-hatched eggshells. Tensile testing revealed a significant enhancement in the tensile properties of all eggshell-filled composites in comparison to the unfilled ones. The composite variant filled with unhatched raw eggshell filler showcased the utmost tensile modulus and strength, with a notable 36% improvement in comparison with the unfilled variant. Similarly, flexural tests demonstrated a 53% increase in flexural strength for unhatched raw eggshell-filled composites over unfilled composites. SEM imaging confirmed these findings by showing crack arrests, deviations, particle distribution, and strong interfacial bonding in the eggshell-filled composites. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

18 pages, 5125 KiB  
Article
Short Fatigue-Crack Growth from Crack-like Defects under Completely Reversed Loading Predicted Based on Cyclic R-Curve
by Keisuke Tanaka and Yoshiaki Akiniwa
Materials 2024, 17(18), 4484; https://doi.org/10.3390/ma17184484 - 12 Sep 2024
Cited by 2 | Viewed by 1151
Abstract
Understanding short fatigue-crack propagation behavior is inevitable in the defect-tolerant design of structures. Short cracks propagate differently from long cracks, and the amount of crack closure plays a key role in the propagation behavior of short cracks. In the present paper, the buildup [...] Read more.
Understanding short fatigue-crack propagation behavior is inevitable in the defect-tolerant design of structures. Short cracks propagate differently from long cracks, and the amount of crack closure plays a key role in the propagation behavior of short cracks. In the present paper, the buildup of fatigue-crack closure due to plasticity with crack extension from crack-like defects is simulated with a modified strip yield model, which leaves plastic stretch in the wake of the advancing crack. Crack-like defects are assumed to be closure-free and do not close even under compression. The effect of the size of crack-like defects on the growth and arrest of short cracks was systematically investigated and the cyclic R-curve derived. The cyclic R-curve determined under constant amplitude loading of multiple specimens is confirmed to be independent of the initial defect length. Load-shedding and ΔK-constant loading tests are employed to extend the cyclic R-curve beyond the fatigue limit determined under constant amplitude loading. The initiation stage of cracks is taken into account in R-curves when applied to smooth specimens. Full article
Show Figures

Figure 1

18 pages, 6049 KiB  
Article
Research on the Mechanism and Application of High Pre-Tension on the Crack-Arresting Effect of Rockbolt Anchorage
by Bowen Wu, Jucai Chang, Xiangyu Wang, Wenbao Shi, Chuanming Li and Dingchao Chen
Buildings 2024, 14(8), 2584; https://doi.org/10.3390/buildings14082584 - 22 Aug 2024
Viewed by 1056
Abstract
In order to investigate the effect of pre-tension on the anchoring and crack-arresting effect of rockbolts, a theoretical model of stress intensity factor at the crack tip in anchored surrounding rock was established using fracture mechanics theory. An expression for the difference in [...] Read more.
In order to investigate the effect of pre-tension on the anchoring and crack-arresting effect of rockbolts, a theoretical model of stress intensity factor at the crack tip in anchored surrounding rock was established using fracture mechanics theory. An expression for the difference in stress intensity factor due to axial force on the rockbolt was derived, exploring the influence of pre-tension on the stress intensity factor of cracks. A numerical model of anchored crack specimens was developed using UDEC (V6.0) software to simulate and analyze the mechanical performance and damage characteristics of specimens anchored with different pre-tension. The results indicate that the difference in stress intensity factor of cracks is positively correlated with pre-tension. High-pre-tensioned rockbolts can effectively reduce the stress intensity factor of cracks. Prestressed rockbolts can alter the failure mode of rock masses from shear failure along pre-existing cracks to tensile splitting failure. The application of high pre-tension significantly enhances the strength of the rock mass, reducing both the damage degree and the number of internal cracks. After anchoring with high-pre-tensioned rockbolts, the peak strength and elastic modulus of the crack specimens increased by 22.5% and 31.9%, respectively, while damage degree decreased by 17.4%, the number of shear cracks decreased by 22.6%, and the number of tensile cracks decreased by 42.9%. The pre-tensioned rockbolt method proposed in this study was applied to the support of roadway widening. Field monitoring data indicated that the axial force of the rockbolts in the test section generally exceeded 60 kN, effectively controlling the deformation of the roadway surrounding the rock. The convergence of the two sides decreased by 22%, and borehole inspections showed a significant reduction in internal cracks. The research results provide a theoretical basis for controlling the discontinuous deformation of deep broken surrounding rock roadways. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

25 pages, 4903 KiB  
Article
Optimization of Hybrid Fiber-Reinforced Concrete for Controlling Defects in Canal Lining
by Ali Rehman and Majid Ali
Materials 2024, 17(16), 4000; https://doi.org/10.3390/ma17164000 - 12 Aug 2024
Cited by 1 | Viewed by 1568
Abstract
Losses in irrigation canals occur during the process of water transportation. In irrigation conveyance water losses, seepage loss is the main contributor to total water loss. The most problematic factors are cracks and settlement of the lined canal in canal lining structures. Water [...] Read more.
Losses in irrigation canals occur during the process of water transportation. In irrigation conveyance water losses, seepage loss is the main contributor to total water loss. The most problematic factors are cracks and settlement of the lined canal in canal lining structures. Water loss occurs in earth channels, mainly due to erosion and the permeability of the material. The concrete, as it does not present cracks, will have a less impermeable layer. Usually, seepage loss comprises 20–30% of the total water loss, and it can be reduced to 15–20% with canal linings. By enhancing the flexure and split tensile strength of concrete, the rate of cracking in the canal lining can be controlled. Concrete’s split tensile strength is one of the most important factors in crack control. The behavior (compressive, flexural, and split tensile properties, water absorption, linear shrinkage mass loss, etc.) of hybrid polypropylene and jute fiber-reinforced concrete (HPJF-RC) for the application of canal linings was studied. In this experimental work, a total of nine mixes were made with different lengths and contents of hybrid polypropylene and jute fiber-reinforced concrete (HPJF-RC) and a control mix. The SEM analysis was performed to explore the hybrid fiber cracking mechanism and the bonding of fibers with the concrete. The crack arresting mechanism of the HPJF-RC will help to reduce water losses in concrete canal linings. With this modern material, the water losses in canal linings can be minimized. The results of this experimental work would be helpful as a reference for both industry experts and academic researchers interested in the advancement of HPJF-RC composites. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 9477 KiB  
Article
Quasi-Static and Dynamic Crack Propagation by Phase Field Modeling: Comparison with Previous Results and Experimental Validation
by Yosra Kriaa, Yassine Hersi, Amine Ammar and Bassem Zouari
Appl. Sci. 2024, 14(10), 4000; https://doi.org/10.3390/app14104000 - 8 May 2024
Cited by 6 | Viewed by 2176
Abstract
In this paper, experimental tensile tests for pre-cracked high Carbon steel ‘C90’ specimens were performed for quasi-static and dynamic loading. High loading velocity affects the crack patterns by preventing deflection. On the other hand, an efficient numerical tool based on the phase field [...] Read more.
In this paper, experimental tensile tests for pre-cracked high Carbon steel ‘C90’ specimens were performed for quasi-static and dynamic loading. High loading velocity affects the crack patterns by preventing deflection. On the other hand, an efficient numerical tool based on the phase field model was developed and validated to predict brittle fracture trajectories. A staggered numerical scheme was adopted to solve the displacement and damage fields separately. Implementation efficiency in initiating and propagating cracks, even from an undamaged microstructure, was proved. The effect of the critical fracture energy density Gc on the crack path was tested; with smaller Gc, the crack patterns become more complex. In addition, the impact of loading velocities was examined, and earlier and faster crack formation and greater crack branching is observed with higher impact velocity. In this study, bidimensional plane stress cases were treated. The phase field model with hybrid formulation was able to predict crack pattern and especially crack arrest and branching found in the literature. The developed model accurately determined the transition zone of the crack path topology that has been observed experimentally. Full article
Show Figures

Figure 1

21 pages, 5637 KiB  
Review
XFEM for Composites, Biological, and Bioinspired Materials: A Review
by Andre E. Vellwock and Flavia Libonati
Materials 2024, 17(3), 745; https://doi.org/10.3390/ma17030745 - 4 Feb 2024
Cited by 9 | Viewed by 3099
Abstract
The eXtended finite element method (XFEM) is a powerful tool for structural mechanics, assisting engineers and designers in understanding how a material architecture responds to stresses and consequently assisting the creation of mechanically improved structures. The XFEM method has unraveled the extraordinary relationships [...] Read more.
The eXtended finite element method (XFEM) is a powerful tool for structural mechanics, assisting engineers and designers in understanding how a material architecture responds to stresses and consequently assisting the creation of mechanically improved structures. The XFEM method has unraveled the extraordinary relationships between material topology and fracture behavior in biological and engineered materials, enhancing peculiar fracture toughening mechanisms, such as crack deflection and arrest. Despite its extensive use, a detailed revision of case studies involving XFEM with a focus on the applications rather than the method of numerical modeling is in great need. In this review, XFEM is introduced and briefly compared to other computational fracture models such as the contour integral method, virtual crack closing technique, cohesive zone model, and phase-field model, highlighting the pros and cons of the methods (e.g., numerical convergence, commercial software implementation, pre-set of crack parameters, and calculation speed). The use of XFEM in material design is demonstrated and discussed, focusing on presenting the current research on composites and biological and bioinspired materials, but also briefly introducing its application to other fields. This review concludes with a discussion of the XFEM drawbacks and provides an overview of the future perspectives of this method in applied material science research, such as the merging of XFEM and artificial intelligence techniques. Full article
Show Figures

Figure 1

Back to TopTop