The Variation on Sediment Reworking with Influencing Factors by a Sand Bubbler Crab, Scopimera globosa, in Intertidal Sediments of the Anmyeon Island, Korea
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koo, B.J.; Kwon, K.K.; Hyun, J.H. Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat. J. Sea Res. 2007, 58, 302–312. [Google Scholar] [CrossRef]
- Koo, B.J.; Koh, C.H. Oxygen penetration through invertebrate burrow walls in Korean tidal flat. Ocean Sci. J. 2013, 48, 329–338. [Google Scholar] [CrossRef]
- Vasquez-Cardenas, D.; Quintana, C.O.; Meysman, F.J.R.; Kristensen, E.; Boschker, H.T.S. Species-specific effects of two bioturbation polychaetes on sediment chemoautotrophic bacteria. Mar. Ecol. Prog. Ser. 2016, 549, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, F.; Hulth, S.; Grossi, V.; Poggiale, J.C.; Desrosiers, G.; Rosenberg, R.; Gérino, M.; François-Caracaillet, F.; Michaud, E.; Stora, G. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): Importance of faunal biovolume. J. Exp. Mar. Biol. Ecol. 2007, 348, 133–144. [Google Scholar] [CrossRef]
- Ribeiro, P.D.; Iribarne, O.O. Coupling between microphytobenthic biomass and fiddler crab feeding. J. Exp. Mar. Bio. Ecol. 2011, 407, 147–154. [Google Scholar] [CrossRef]
- Kristensen, E.; Penha-Lopes, G.; Delefosse, M.; Valdemarsen, T.; Quintana, C.O.; Banta, G.T. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 2012, 446, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Koo, B.J. Spring-neap variation on sediment reworking with organic matter contents by a polychaete, Perinereis aibuhitensis, in the intertidal sediments of the Gomso Bay, Korea Mar. Biol. 2019, 166, 124. [Google Scholar] [CrossRef]
- Henriksen, K.; Hansen, J.I.; Blackburn, T.H. The influence of benthic infauna on exchange rates of inorganic nitrogen between sediment and water. Ophelia 1980, 1, 249–256. [Google Scholar]
- Fry, J.C. Interactions between bacteria and benthic invertebrates. In Sediment Microbiology; Nedwell, D.B., Brown, C.M., Eds.; Academic Press: London, UK, 1982; pp. 171–201. [Google Scholar]
- Biles, C.L.; Paterson, D.M.; Ford, R.B.; Solan, M.; Raffaelli, D.G. Bioturbation, ecosystem functioning and community structure. Hydrol. Earth. Syst. Sci. 2002, 6, 999–1005. [Google Scholar] [CrossRef]
- Mermillod-Blondin, F.; François-Caracaillet, F.; Rosenberg, R. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: An experimental study. J. Exp. Mar. Biol. Ecol. 2005, 315, 187–209. [Google Scholar] [CrossRef]
- Maire, O.; Duchêne, J.C.; Grémare, A.; Malyuga, V.S.; Meysman, F.J.R. A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. J. Exp. Mar. Biol. Ecol. 2007, 343, 21–36. [Google Scholar] [CrossRef]
- Koo, B.J.; Seo, J. Sediment reworking by a polychaete, Perinereis aibuhitensis, in the intertidal sediments of the Gomso Bay, Korea. Ocean Sci. J. 2017, 52, 511–518. [Google Scholar] [CrossRef]
- Mugnai, C.; Gerino, M.; Frignani, M.; Sauvage, S.; Bellucci, L.G. Bioturbation experiments in the Venice Lagoon. Hydrobiologia 2003, 464, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Lecroart, P.; Schmidt, S.; Jouanneau, J.M.; Weber, O. Be-7 and Th-234 as tracers of sediment mixing on seasonal time scale at the water-sediment interface of the Thau Lagoon. Radioprotection 2005, 40, 661–667. [Google Scholar] [CrossRef]
- Duport, E.; Stora, G.; Tremblay, P.; Gilbert, F. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776. J. Exp. Mar. Biol. Ecol. 2006, 336, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Rice, D.L.; Bianchi, T.S.; Roper, E.H. Experimental studies of sediment reworking and growth of Scoloplos spp. (Orbiniidae: Polychaeta). Mar. Ecol. Prog. Ser. 1986, 30, 9–19. [Google Scholar] [CrossRef]
- Ryu, J.; Khim, J.S.; Choi, J.W.; Shin, H.C.; An, S.; Park, J.; Kang, D.; Lee, C.H.; Koh, C.H. Environmentally associated spatial changes of a macrozoobenthic community in the Saemangeum tidal flat, Korea. J. Sea Res. 2011, 65, 390–400. [Google Scholar] [CrossRef]
- Wada, K. Movement of burrow location in Scopimera globosa and Ilyoplax pusillus. Physiol. Ecol. Jpn. 1983, 20, 1–21. [Google Scholar]
- Suzuki, H. Studies on the life history of sand bubble crab, Scopimera globosa De Haan, at Tomioka Bay, West Kyushu—I. Seasonal changes of population structure. Mem. Fac. Fish. Kagoshima Univ. 1983, 32, 55–69. [Google Scholar]
- Sassa, S.; Watabe, Y. Threshold, optimum and critical geoenvironmental conditions for burrowing activity of sand bubbler crab, Scopimera globosa. Mar. Ecol. Prog. Ser. 2008, 354, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Kawaida, S.; Kimura, T.; Toyohara, H. Habitat segregation of two dotillid crabs Scopimera globosa and Ilyoplax pusilla in relation to their cellulase activity on a marsh-dominated estuarine tidal flat in central Japan. J. Exp. Mar. Biol. Ecol. 2013, 449, 93–99. [Google Scholar] [CrossRef]
- Koo, B.J. Burrows of Macroinvertebrates in the Korean Tidal Flats; Korea Institute of Ocean Science and Technology (KIOST): Busan, Korea, 2017; ISBN 978-89-444-9060-6. [Google Scholar]
- Botto, F.; Valiela, I.; Iribarne, O.O.; Martinetto, P.M.D.R.; Alberti, J. Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Mar. Ecol. Prog. Ser. 2005, 293, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Kanaya, G.; Takagi, S.; Kikuchi, E. Dietary contribution of the microphytobenthos to infaunal deposit feeders in an estuarine mudflat in Japan. Mar. Biol. 2008, 155, 543–553. [Google Scholar] [CrossRef]
- Koo, B.J.; Kim, S.H.; Hyun, J.H. Feeding behavior of the ocypodid crab Macrophthalmus japonicus and its effects on oxygen-penetration depth and organic-matter removal in intertidal sediments. Estuar. Coast. Shelf Sci. 2019, 228, 106366. [Google Scholar] [CrossRef]
- Robertson, J.R.; Bancroft, K.; Vermeer, G.; Plaisier, K. Experimental studies on the foraging behavior of the sand fiddler crab Uca pugilator (Bose, 1802). J. Exp. Mar. Biol. Ecol. 1980, 44, 67–83. [Google Scholar] [CrossRef]
- Weissburg, M. Functional analysis of fiddler crab foraging: Sex-specific mechanics and constraints in Uca pugnax (Smith). J. Exp. Mar. Biol. Ecol. 1992, 156, 105–124. [Google Scholar] [CrossRef]
- Miller, R.S. Pattern and process in competition. Adv. Ecol. Res. 1967, 4, 1–74. [Google Scholar]
- Virgilio, A.; Ribeiro, P.D. Spatial and temporal patterns in the feeding behavior of a fiddler crab. Mar. Biol. 2013, 160, 1001–1013. [Google Scholar] [CrossRef]
- Nordhaus, I.; Diele, K.; Wolff, M. Activity patterns, feeding and burrowing behavior of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. J. Exp. Mar. Biol. Ecol. 2009, 374, 104–112. [Google Scholar] [CrossRef]
- Miller, D.C. The feeding mechanism of fiddler crabs, with ecological considerations of feeding adaptations. Zoologica 1961, 46, 89–101. [Google Scholar]
- Bortolus, A.; Schwindt, E.; Iribarne, O.O. Positive plant-animal interactions in the high marsh of an Argentinean coastal lagoon. Ecology 2002, 83, 733–742. [Google Scholar]
- Fishelson, L. Population ecology and biology of Dotilla sulcate (Crustacea, Ocypodidae) typical for sandy beaches of the red sea. In Sandy Beaches as Ecosystems; McLachlan, A., Erasmus, T., Eds.; Dr. W. Junk Publishers: The Hague, The Netherlands, 1983; pp. 643–654. [Google Scholar]
- Reinsel, K.A. Impact of fiddler crab foraging and tidal inundation on an intertidal sandflat: Season-dependent effects in one tidal cycle. J. Exp. Mar. Biol. Ecol. 2004, 313, 1–17. [Google Scholar] [CrossRef]
- Bradshaw, C.; Scoffin, T.P. Factors limiting distribution and activity patterns of the soldier crab Dotilla myctiroides in Phuket, South Thailand. Mar. Biol. 1999, 135, 83–87. [Google Scholar] [CrossRef]
- Allen, C.J.; Paterson, G.L.J.; Hawkins, L.E.; Hauton, C.; Clark, P.F.; Aryuthaka, C. Zonation on sandy tropical beaches: A case study using Dotilla intermedia (Brachyura: Ocypodidae). Mar. Ecol. Prog. Ser. 2010, 408, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Penha-Lopes, G.; Bartolini, F.; Limbu, S.; Cannicci, S.; Kritensen, E.; Paula, J. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? Mar. Pollut. Bull. 2009, 58, 1694–1703. [Google Scholar] [CrossRef]
- Bulcao, C.; Hodgson, A.N. Activity and feeding of Dotilla fenestrata (Brachyura: Ocypodidae) in a warm, temperate South African estuary. Afr. J. Aquat. Sci. 2012, 37, 333–338. [Google Scholar] [CrossRef]
- Citadin, M.; Costa, T.M.; Netto, S.A. The response of meiofauna and microphytobenthos to engineering effects of fiddler crabs on a subtropical intertidal sandflat. Austral Ecol. 2016, 41, 572–579. [Google Scholar] [CrossRef]
Inhabitant | Feeding Pellet Length (mm) | Sediment–Water Content (%) | ||||
---|---|---|---|---|---|---|
Density (ind. 0.25 m−2) | Length (mm) | Biomass (g) | Juvenile Proportion (%) | |||
Spring | 7 ± 5 a | 5.71 ± 1.18 a | 0.22 ± 0.15 a | 0 ± 0 a | 2.18 ± 0.43 a | 20.6 ± 1.4 a |
Summer | 114 ± 40 b | 3.81 ± 1.71 b | 0.10 ± 0.14 b | 97 ± 5 b | 1.40 ± 0.60 b | 22.4 ± 0.5 b |
Fall | 26 ± 4 ab | 6.05 ± 1.44 a | 0.20 ± 0.12 a | 10 ± 7 b | 2.46 ± 0.54 ac | 22.3 ± 0.3 b |
Winter | 28 ± 9 ab | 6.24 ± 1.39 a | 0.30 ± 0.20 a | 0 ± 0 a | - | - |
Feeding Pellet Production (FP) | Burrowing Pellet Production (BP) | Daily Individual Production (g ind.−1 d−1) | Daily Total Production (g m−2 d−1) | Individual Sediment Reworking Rate (mm ind.−1 d−1) | Total Sediment Reworking Rate (mm d−1) | |||
---|---|---|---|---|---|---|---|---|
Daytime (g ind.−1 h−1) | Nighttime (g ind.−1 h−1) | Daytime (g ind.−1 h−1) | Nighttime (g ind.−1 h−1) | |||||
Spring | 2.76 ± 3.67 a | NP * | 9.77 ± 14.93 a | 0.72 ± 0.37 a | 25.61 ± 16.68 a | 660 ± 400 a | 0.12 ± 0.03 a | 0.77 ± 0.10 a |
Summer | 0.43 ± 0.35 b | 0.05 ± 0.03 a | 0.30 ± 0.22 b | 0.39 ± 0.07 a | 3.90 ± 1.62 b | 1660 ± 520 b | 0.02 ± 0.01 b | 1.70 ± 0.21 b |
Fall | 2.15 ± 0.47 a | 0.44 ± 0.57 b | 0.34 ± 0.20 b | 2.20 ± 1.49 b | 20.70 ± 7.71 a | 2150 ± 800 b | 0.07 ± 0.01 c | 1.91 ± 0.31 b |
Winter | - | - | - | - | - | - | - | - |
Mean Chlorophyll a Concentration | Daily Mean Chlorophyll a Reduction Ratio (%) | ||||
---|---|---|---|---|---|
Daytime | Nighttime | ||||
Surface Sediments (µg g−1) | Feeding Pellets (µg g−1) | Surface Sediments (µg g−1) | Feeding Pellets (µg g−1) | ||
Spring | 0.21 ± 0.03 | 0.12 ± 0.08 | 0.16 ± 0.01 | NP * | 24.1 ± 22.4 |
Summer | 0.19 ± 0.01 | 0.16 ± 0.02 | 0.22 ± 0.03 | 0.20 ± 0.03 | 11.2 ± 8.6 |
Fall | 0.23 ± 0.02 | 0.20 ± 0.03 | 0.21 ± 0.01 | 0.18 ± 0.03 | 12.3 ± 8.0 |
Winter | 0.15 ± 0.04 | NP | 0.12 ± 0.02 | NP | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Koo, B.J. The Variation on Sediment Reworking with Influencing Factors by a Sand Bubbler Crab, Scopimera globosa, in Intertidal Sediments of the Anmyeon Island, Korea. Sustainability 2021, 13, 5703. https://doi.org/10.3390/su13105703
Seo J, Koo BJ. The Variation on Sediment Reworking with Influencing Factors by a Sand Bubbler Crab, Scopimera globosa, in Intertidal Sediments of the Anmyeon Island, Korea. Sustainability. 2021; 13(10):5703. https://doi.org/10.3390/su13105703
Chicago/Turabian StyleSeo, Jaehwan, and Bon Joo Koo. 2021. "The Variation on Sediment Reworking with Influencing Factors by a Sand Bubbler Crab, Scopimera globosa, in Intertidal Sediments of the Anmyeon Island, Korea" Sustainability 13, no. 10: 5703. https://doi.org/10.3390/su13105703
APA StyleSeo, J., & Koo, B. J. (2021). The Variation on Sediment Reworking with Influencing Factors by a Sand Bubbler Crab, Scopimera globosa, in Intertidal Sediments of the Anmyeon Island, Korea. Sustainability, 13(10), 5703. https://doi.org/10.3390/su13105703