Assessing Soil Acidification of Croplands in the Poyang Lake Basin of China from 2012 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics of Soil pH
3.2. Temporal Dynamics of Soil pH
3.3. Spatial Distribution Patterns of Soil pH and Identification of Areas with Clearly Changed pH
3.4. Soil pH Change Among Different Terrain Conditions, Land use Types, Soil Types, and Water Densities
3.5. Relationships of Soil pH Change with N-Fertilizer Inputs and Acidic Precipitation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falkengren-Grerup, U.; Brink, D.T.; Brunet, J.; Lund, U.; Department, O.B.; Lunds, U.; Biologiska, I. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For. Ecol. Manag. 2006, 225, 74–81. [Google Scholar] [CrossRef]
- Bhandari, K.B.; West, C.P.; Acosta-Martinez, V. Assessing the role of interseeding alfalfa into grass on improving pasture soil health in semi-arid Texas High Plains. Appl. Soil Ecol. 2020, 147, 103399. [Google Scholar] [CrossRef]
- Bi, J.; Blanco, J.A.; Seely, B.; Kimmins, J.P.; Ding, Y.; Welham, C. Yield decline in Chinese-fir plantations: A simulation investigation with implications for model complexity. Can. J. For. Res. 2007, 37, 1615–1630. [Google Scholar] [CrossRef]
- Darilek, J.L.; Huang, B.; Wang, Z.; Qi, Y.; Zhao, Y.; Sun, W.; Gu, Z.; Shi, X. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agric. Ecosyst. Environ. 2009, 129, 286–292. [Google Scholar] [CrossRef]
- Bhandari, K.B.; West, C.P.; Acosta-Martinez, V.; Cotton, J.; Cano, A. Soil health indicators as affected by diverse forage species and mixtures in semi-arid pastures. Appl. Soil Ecol. 2018, 132, 179–186. [Google Scholar] [CrossRef]
- Russenes, A.L.; Korsaeth, A.; Bakken, L.R.; Dörsch, P. Spatial variation in soil pH controls off-season N2O emission in an agricultural soil. Soil Biol. Biochem. 2016, 99, 36–46. [Google Scholar] [CrossRef]
- Hansen, M.; Bang-Andreasen, T.; Sørensen, H.; Ingerslev, M. Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. For. Ecol. Manag. 2017, 406, 274–280. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, X.W.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Liu, X.; Hao, T.; Zeng, M.; Shen, J.; Zhang, F.; De Vries, W. Modeling soil acidification in typical Chinese cropping systems. Sci. Total Environ. 2018, 613, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Lu, X.; Zhou, K.; Chen, H.; Zhu, X.; Mori, T.; Mo, J. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. Geoderma 2017, 285, 57–63. [Google Scholar] [CrossRef]
- Zou, X.; Xiao, X.; Zhou, H.; Chen, F.; Zeng, J.; Wang, W.; Feng, G.; Huang, X. Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism. J. Hazard. Mater. 2018, 359, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Piao, S.; Chen, A.; Liu, Y.; Liu, L.; Peng, S.; Sardans, J.; Sun, Y.; Peñuelas, J.; Zeng, H. Afforestation neutralizes soil pH. Nat. Commun. 2018, 9, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minasny, B.; Hong, S.Y.; Hartemink, A.E.; Kim, Y.H.; Kang, S.S. Soil pH increase under paddy in South Korea between 2000 and 2012. Agric. Ecosyst. Environ. 2016, 221, 205–213. [Google Scholar] [CrossRef]
- Russell, A.E.; Laird, D.A.; Parkin, T.B.; Mallarino, A.P. Impact of nitrogen fertilization and cropping system on carbon sequestration in midwestern Mollisols. Soil Sci. Soc. Am. J. 2005, 69, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soil Sediment. 2014, 14, 415–422. [Google Scholar] [CrossRef]
- Ou, Y.; Rousseau, A.N.; Wang, L.; Yan, B. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the Black Soil Region of Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 22–31. [Google Scholar] [CrossRef]
- Filippi, P.; Cattle, S.R.; Bishop, T.F.A.; Odeh, I.O.A.; Pringle, M.J. Digital soil monitoring of top- and sub-soil pH with bivariate linear mixed models. Geoderma 2018, 322, 149–162. [Google Scholar] [CrossRef]
- Ji, C.; Yang, Y.H.; Han, W.X.; He, Y.F.; Smith, J.; Smith, P. Climatic and edaphic controls on soil pH in alpine grasslands on the Tibetan Plateau, China: A quantitative analysis. Pedosphere 2014, 24, 39–44. [Google Scholar] [CrossRef]
- Tsiknia, M.; Paranychianakis, N.V.; Varouchakis, E.A.; Nikolaidis, N.P. Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiol. Ecol. 2015, 91. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.J.; Chang, Q.R.; Li, L.H.; Wei, X.R. Impacts of landform, land use and soil type on soil chemical properties and enzymatic activities in a Loessial Gully watershed. Soil Res. 2014, 52, 453–462. [Google Scholar] [CrossRef]
- Xie, E.; Zhao, Y.; Li, H.; Shi, X.; Lu, F.; Zhang, X.; Peng, Y. Spatio-temporal changes of cropland soil pH in a rapidly industrializing region in the Yangtze River Delta of China, 1980–2015. Agric. Ecosyst. Environ. 2019, 272, 95–104. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, C.; Ma, W.; Wang, S.; Wang, S.; Han, W.; Mohammat, A.; Robinson, D.; Smith, P. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Glob. Chang. Biol. 2012, 18, 2292–2300. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhu, H.; Chen, C.; Xu, C.; Huang, D. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ. Pollut. 2016, 219, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hammer, R.D.; Blanchar, R.W. Microscale pH spatial distribution in the Ap horizon of Mexico silt loam. Soil Sci. 1995, 160, 371–375. [Google Scholar] [CrossRef]
- Nielsen, D.R.; Bouma, J. Soil Spatial Variability: Proceedings of a Workshop of the ISSS and the SSSA, Las Vegas, USA/Pdc296; Center Agricultural Pub and Document: Pudoc Wageningen, The Netherlands, 1985. [Google Scholar]
- Li, Q.; Li, B.; Li, Y.; Li, S.; Xiao, Y.; Zhao, B.; Wang, C.; Wang, Y.; Gao, X.; Bai, G.; et al. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. Catena 2019, 175, 278–285. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Z.; Webster, R.; Zhang, G.; Zhou, Y.; Teng, H.; Hu, B.; Arrouays, D.; Shi, Z. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Sci. Total Environ. 2019, 655, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Helyar, K.R.; Hochman, Z.; Brennan, J.P. The problem of acidity in temperate area soils and its management. In National Soils Conference; Australian Society of Soil Science: Nedlands, Australia, 1988. [Google Scholar]
- Li, W.F.; Ye, Y.C.; Zhu, A.F.; Rao, L.; Sun, K.; Yuan, J.; Guo, X. Spatio-temporal Variation of pH in Cropland of Jiangxi Province in the Past 30 Years and Its Relationship with Acid Rain and Fertilizer Application. J. Nat. Resour. 2017, 32, 1942–1953. [Google Scholar]
- Wen, B.Y.; Yang, Z.F.; Hou, Q.Y.; Yang, X.Y.; Yin, G.S.; Zhong, C.D. The Relationship between Soil Acidification and Nitrogen Inputs in the Poyang Lake Area, Jiangxi Province, China. Geoscience 2011, 25, 562–568. [Google Scholar]
- Zhu, Q.; De Vries, W.; Liu, X.; Zeng, M.; Hao, T.; Du, E.; Zhang, F.; Shen, J. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980. Atmos. Environ. 2016, 146, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A.F.; Shao, H.; Zhang, L.H. Current Situation and Improvement Measures of Cultivated Land Soil Acidification in Jiangxi Province. Acta Agric. Jiangxi 2014, 26, 43–45. [Google Scholar]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Gan, P.; Chen, A. Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environ. Res. 2019, 172, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yang, Z.; Yu, T.; Hou, Q.; Mutelo, A.M. Detecting changes of soil environmental parameters by statistics and GIS: A case from the lower Changjiang plain, China. J. Geochem. Explor. 2017, 181, 116–128. [Google Scholar] [CrossRef]
- Simon, A.; Dhendup, K.; Rai, P.B.; Gratzer, G. Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Reg. 2018, 12, 28–38. [Google Scholar] [CrossRef]
- Fang, Q.; Hong, H.; Algeo, T.J.; Huang, X.; Sun, A.; Churchman, G.J.; Chorover, J.; Chen, S.; Liu, Y. Microtopography-mediated hydrologic environment controls elemental migration and mineral weathering in subalpine surface soils of subtropical monsoonal China. Geoderma 2019, 344, 82–98. [Google Scholar] [CrossRef]
- Tu, C.; He, T.; Lu, X.; Luo, Y.; Smith, P. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. Catena 2018, 163, 204–209. [Google Scholar] [CrossRef]
- Fabian, C.; Fabian, K.; Reimann, C.; Birke, M.; Baritz, R.; Haslinger, E. GEMAS: Spatial distribution of the pH of European agricultural and grazing land soil. Appl. Geochem. 2014, 48, 207–216. [Google Scholar] [CrossRef]
- Lardner, T.; George, S.; Tibbett, M. Interacting controls on innate sources of CO2 efflux from a calcareous arid zone soil under experimental acidification and wetting. J. Arid Environ. 2015, 122, 117–123. [Google Scholar] [CrossRef]
- Goulding, K.W.T.; Varennes, A. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Halada, U.; Hreško, J.; Cleveland, C.C.; Bowman, W.D.; Baron, J.S. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 2008, 1, 767–770. [Google Scholar]
- Lu, X.; Mao, Q.; Mo, J.; Gilliam, F.S.; Zhou, G.; Luo, Y.; Zhang, W.; Huang, J. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history. Environ. Sci. Technol. 2015, 49, 4072–4080. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 24019. [Google Scholar] [CrossRef]
- Arnold, G.; Van Beusichem, M.L.; Van Diest, A. Nitrogen mineralization and H+ transfers in a Scots Pine (Pinus-Sylvestris L.) forest soil as affected by liming. Plant. Soil 1994, 161, 209–218. [Google Scholar] [CrossRef]
- Cai, J.; Luo, W.; Liu, H.; Feng, X.; Zhang, Y.; Zhang, Y.; Wang, R.; Xu, Z.; Jiang, Y. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmos. Environ. 2017, 170, 312–318. [Google Scholar] [CrossRef]
- Damgaard, C.; Strandberg, M.; Kristiansen, S.M.; Nielsen, K.E.; Bak, J.L. Is Erica tetralix abundance on wet heathlands controlled by nitrogen deposition or soil acidification? Environ. Pollut. 2014, 184, 1–8. [Google Scholar] [CrossRef]
- Yang, X.; Ni, K.; Shi, Y.; Yi, X.; Zhang, Q.; Fang, L.; Ma, L.; Ruan, J. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Razavi, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]
- White, C.; Dawod, A.; Cruickshank, K.; Gammack, S.; Cresser, M. Evidence for acidification of sensitive Scottish soils by atmospheric deposition. Water Air Soil Pollut. 1995, 85, 1203–1208. [Google Scholar] [CrossRef]
- White, C.C.; Cresser, M.S. Sensitivity of Scottish upland moorland podzols derived from sandstones and quartzites to acidification: The potential importance of the mobile anion effect. Water Air Soil Pollut. 1998, 103, 229–244. [Google Scholar] [CrossRef]
- Xu, H.; Demetriades, A.; Reimann, C.; Jiménez, J.J.; Filser, J.; Zhang, C.; GEMAS, P.T. Identification of the co-existence of low total organic carbon contents and low pH values in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project data. Sci. Total Environ. 2019, 678, 94–104. [Google Scholar] [CrossRef]
- Ministry of Ecological Environment of the People’s Republic of China. China Environmental Status Bulletin; Ministry of Ecological Environment of the People’s Republic of China: Beijing, China, 2019; p. 20.
Year | N | Range | Average Value | SD | Kurtosis | Skewness | CV (%) |
---|---|---|---|---|---|---|---|
2012 | 507 | 3.96–7.95 | 5.06 | 0.53 | 6.83 | 2.05 | 10.47 |
2018 | 523 | 3.34–8.19 | 4.96 | 0.56 | 7.40 | 2.10 | 11.29 |
Parameter | pH | Elevation | Cos (Aspect) | Slope |
---|---|---|---|---|
pH | 1 | |||
Elevation | 0.076 | 1 | ||
Cos (Aspect) | 0.106 * | –0.041 | ||
Slope | 0.078 | 0.719 ** | –0.085 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Shi, H.; Bai, Z.; Liu, X.; Yang, B.; Yan, D. Assessing Soil Acidification of Croplands in the Poyang Lake Basin of China from 2012 to 2018. Sustainability 2020, 12, 3072. https://doi.org/10.3390/su12083072
Liu X, Shi H, Bai Z, Liu X, Yang B, Yan D. Assessing Soil Acidification of Croplands in the Poyang Lake Basin of China from 2012 to 2018. Sustainability. 2020; 12(8):3072. https://doi.org/10.3390/su12083072
Chicago/Turabian StyleLiu, Xiaoyang, Huading Shi, Zhongke Bai, Xiaocai Liu, Bing Yang, and Dingxuan Yan. 2020. "Assessing Soil Acidification of Croplands in the Poyang Lake Basin of China from 2012 to 2018" Sustainability 12, no. 8: 3072. https://doi.org/10.3390/su12083072
APA StyleLiu, X., Shi, H., Bai, Z., Liu, X., Yang, B., & Yan, D. (2020). Assessing Soil Acidification of Croplands in the Poyang Lake Basin of China from 2012 to 2018. Sustainability, 12(8), 3072. https://doi.org/10.3390/su12083072