Consumption and Emissions Analysis in Domestic Hot Water Hotels. Case Study: Canary Islands
Abstract
:1. Introduction
2. Methodology
- Data collection of hotel establishments in the Canary Islands open during the year 2017.
- Calculation of the standard hotel according to the category of the establishment: places and rooms by category.
- For each standard hotel of each type, calculation of annual DHW needs per month and the total for all the hotels in the archipelago.
- With the DHW needs data, the energy required for water heating by category of each standard hotel and the total number of hotels in the Canary Islands.
- The same surface of the solar thermal system is used to install photovoltaic solar panels and the equivalent electrical generation for self-consumption. This energy is used to feed heat pumps, calculating the energy needs for this system.
- Having in mind the hypothesis that the current technologies are based on fossil fuels of LPG propane and diesel, we calculate the energy needs for this type of boiler and also for biomass boilers with pellet fuel.
- Carbon footprint comparison in different technologies by category, for all the hotels in the Canary Islands.
- Conclusions and future needs to achieve sustainable and efficient buildings in terms of the DHW systems in the Canary Islands.
3. Results: Calculations of DHW’s Needs
3.1. Thermal Panels Calculations
3.2. Calculations Photovoltaic Panels + Heat Pumps
3.3. Fossil Combustible Calculations and Biomass
4. Discussion. The DHW Carbon Footprint
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p, ISBN 978-1-107-66182-0. [Google Scholar]
- Attia, S.; Mlecnik, E.; Van Loon, S. Net zero energy building: A review of current definitions and definition development in Belgium. In Proceedings of the Passive House Symposium 2011, Brussels, Belgium, 7 October 2011. [Google Scholar]
- Crawley, D.; Pless, S.; Torcellini, P. Getting to net zero. ASHRAE J. 2009, 51, 18–25. [Google Scholar]
- ZCB. Zero Carbon Building (ZCB) Hong Kong. Available online: http://zcb.hkcic.org/Eng/index.aspx (accessed on 10 December 2017).
- Cheung, M.; Fan, J. Carbon reduction in a high-density city: A case study of Langham Place Hotel Mongkok Hong Kong. Renew. Energy 2016, 50, 433–440. [Google Scholar] [CrossRef]
- Stadthalle, Hotel. Available online: https://www.hotelstadthalle.at/es/ (accessed on 10 December 2017).
- Tournaki, S.; Frangou, M.; Tsoutsos, T.; Morell, R.; Guerrero, I.; Urosevic, Z.; Derjanecz, A.; Núñez, C.; Rata, C.; Bišćan, M.; et al. Towards Nearly Zero Energy Hotels. Technical Analysis and Recommendations. neZEH. In Proceedings of the 5th International Conference on Renewable Energy Sources and Energy Efficiency, Nicosia, Cyprus, 5–6 May 2016. [Google Scholar]
- Tsoutsos, T.; Tournaki, S.; Frangou, M.; Tsitoura, M. Creating paradigms for nearly zero energy hotels in South Europe. AIMS Energy 2017, 6, 1–18. [Google Scholar] [CrossRef]
- EU. Directive 2010/31/EU of the Parliament of Europe and the Council of May 19, 2010, realizing the energy efficiency of buildings. Off. J. EU 2010, L 153, 13–35. [Google Scholar]
- EU. Energy. Available online: https://europa.eu/european-union/topics/energy_es (accessed on 12 March 2018).
- Kraus, M.; Kubečková, D. Airtightness of Energy Efficient Buildings. GSTF Int. J. Eng. Technol. 2013, 2, 74–80. [Google Scholar] [CrossRef]
- EU. Directive 2012/27/EU of the Parliament of Europe and of the Council of October 25, 2012, relating to energy efficiency, by which the Directives 2009/125/EC and 2010/30/EU are modified, and repealing Directives 2004/8/EC and 2006/32/EC. Off. J. EU 2012, L 315, 1–56. [Google Scholar]
- Bánya, O.; Fodor, L. Energy efficiency obligation schemes in the energy efficiency directive—An environmental assessment. Environ. Eng. Manag. J. 2014, 13, 2749–2755. [Google Scholar] [CrossRef]
- Zīgurs, A.; Sarma, U. Implementation of the Energy Efficiency Directive-Opportunities and Challenges. Latv. J. Phys. Tech. Sci. 2015, 52, 3–12. [Google Scholar] [CrossRef]
- UNWTO. Tourism Highlights, 2017 ed.; UNWTO: Madrid, Spain, 2017. [Google Scholar]
- UNWTO. UNWTO Panorama of International Tourism, 2015 ed.; UNWTO: Madrid, Spain, 2015. [Google Scholar]
- Exeltur. Impactur Canarias 2016; Study of the Economic Impact of Tourism on the Economy and Employment in the Canary Islands; Exeltur: Madrid, Spain, 2017. [Google Scholar]
- UNWTO. Tourism towards 2030. Global Overview; UNWTO: Madrid, Spain, 2011; ISBN 13-978-92-844-1399-7. [Google Scholar]
- Moiá-Pol, A.; Karagiorgas, M.; Coll-Mayor, D.; Martínez-Moll, V.; Riba-Romeva, C. Evaluation of the Energy Consumption in Mediterranean islands Hotels: Case study: The Balearic Islands Hotels. Renew. Energy Power Qual. J. 2005, 1, 106–110. [Google Scholar] [CrossRef]
- HES. Best Practices Guide-Successful Renewable Energy Technologies Integration in SME Hotels; Hotel Energy Solutions Project Publications: Madrid, Spain, 2011; eISBN: 978-92-844-1499-4. [Google Scholar]
- The Carbon Trust. Hospitality, Saving Energy without Compromising Service; The Carbon Trust: London, UK, 2015. [Google Scholar]
- Karagiorgas, M.; Tsoutsos, T.; Moiá-Pol, A. A simulation of the energy consumption monitoring in Mediterranean hotels: Application in Greece. Energy Build. 2007, 39, 416–426. [Google Scholar] [CrossRef]
- Chong, H.; Ricaurte, E.E. Hotel Sustainability Benchmarking Tool 2015: Energy, Water, and Carbon. Cornell Hosp. Rep. 2015, 15, 6–11. [Google Scholar]
- Sanyé-Mengual, E.; Romanos, H.; Molina, C.; Oliver, M.A.; Ruiz, N.; Pérez, M.; Carreras, D.; Boada, M.; Garcia-Orellana, J.; Duch, J.; et al. Environmental and self-sufficiency assessment of the energy metabolism of tourist hubs on Mediterranean Islands: The case of Menorca (Spain). Energy Policy 2014, 65, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Zhuang, Z.; Gu, W. Study on Energy Use Characteristics of Hotel Buildings in Shanghai. Procedia Eng. 2015, 121, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Filimonau, V.; Dickinson, J.; Robbins, D.; Huijbregts, M.A. Reviewing the carbon footprint analysis of hotels: Life Cycle Energy Analysis (LCEA) as a holistic method for carbon impact appraisal of tourist accommodation. J. Clean. Prod. 2011, 19, 1917–1930. [Google Scholar] [CrossRef]
- Pérez, F.J.D.; Chinarro, D.; Mouhaffel, A.G.; Martín, R.D.; Otín, M.R.P. Comparative study of carbon footprint of energy and water in hotels of Canary Islands regarding mainland Spain. Environ. Dev. Sustain. 2018. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Ceron, J.P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Díaz Pérez, F.J.; Chinarro, D.; Otín, M.R.P.; Díaz, R. Reduction of Energy Consumption in Hotels with Aerothermal Energy. Case Study: Canary Islands (Spain). Int. J. Eng. Technol. 2018, 7, 127–131. [Google Scholar] [CrossRef]
- Kyriaki, E.; Giama, E.; Papadopoulou, A.; Drosou, V.; Papadopoulos, A.M. Energy and Environmental Performance of Solar Thermal Systems in Hotel Buildings. Procedia Environ. Sci. 2017, 38, 36–43. [Google Scholar] [CrossRef]
- Delgado, R.; Campbell, H.E. Adaptation and Sizing of Solar Water Heaters in Desert Areas: For Residential and Hotels. Energy Procedia 2014, 57, 2725–2732. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Lund, H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Appl. Energy 2011, 88, 479–487. [Google Scholar] [CrossRef]
- Hang, Y.; Qu, M.; Zhao, F. Economic and environmental life cycle analysis of solar hot water systems in the United States. Energy Build. 2012, 45, 181–188. [Google Scholar] [CrossRef]
- Mondol, J.D.; Smyth, M. Comparative Performance Analysis of Solar Heat Exchangers for Solar Hot Water Systems. In Proceedings of the EuroSun 2012, Rijeka, Croatia, 18–20 September 2012. [Google Scholar]
- Chen, Y.; Treado, S. Development of a simulation platform based on dynamic models for HVAC control analysis. Energy Build. 2014, 68, 376–386. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Fernandes, J.L.M. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab. Sol. Energy 2010, 84, 1985–1996. [Google Scholar] [CrossRef]
- Tsai, H. Design and evaluation of a Photovoltaic/Thermal-assisted heat pump water heating system. Energies 2014, 7, 3319–3338. [Google Scholar] [CrossRef]
- Statistics National Institute (INE). Available online: http://www.ine.es/ (accessed on 10 February 2018).
- Canary Institute of Statistics (ISTAC). Available online: http://www.gobiernodecanarias.org/istac/ (accessed on 10 February 2018).
- Government of the Canary Islands. Environmental Information System of the Canary Islands; The Canarias Reserve Network of the Biosphere; Government of the Canary Islands: Canary Islands, Spain, 2016.
- Teresa García Muñoz. Inbound international tourism to Canary Islands: A dynamic panel data model. Tour. Manag. 2006, 27, 281–291. [Google Scholar] [CrossRef]
- IDAE. Heat Powers. Update 21 July 2014. Available online: http://www.idae.es/uploads/documentos/documentos_PCI_Combustibles_Carburantes_final_valores_Update_2014_0830376a.xlsx (accessed on 18 April 2018).
- Government of Spain. CO2 Emission Factors and Primary Energy Passage Coefficients of Different Final Energy Sources Consumed in the Building Sector in Spain; Ministries of Industry, Energy and Tourism, and Ministry of Development: Madrid, Spain, 2016.
- Klein, S.A.; Beckman, W.A.; Duffie, J.A. A design procedure for solar heating systems. Sol. Energy 1976, 18, 113–127. [Google Scholar] [CrossRef]
- Klein, S.A.; Beckman, W.A. A general design method for closed-loop solar energy systems. Sol. Energy 1979, 22, 269–282. [Google Scholar] [CrossRef]
- Hiller, C.; Johnson, R. Hot-Water Use in Hotels: Part 5-Updated Hotel Hot-Water System Design Techniques. ASHRAE Trans. 2017, 123, 160. [Google Scholar]
- Spanish Association for Standardization, UNE 94002:2005. Thermal Solar Systems for Domestic Hot Water Production. Calculation Method for Heat Demand; AENOR: Madrid, Spain, 2005. [Google Scholar]
- Government of Spain, Ministry of Housing. RD 314/2006, of March 17, which approves the Technical Building Code. BOE 2006, 74, 11816–11831. [Google Scholar]
- Government of Spain, Ministry of Development. Basic document of energy saving HE with indicated modifications of Order FOM/588/2017, of June 15, by which the Basic Document DB-HE “Energy Saving” and the Basic Document DB-HS “Healthiness” are modified, of the Technical Building Code, approved by Royal Decree 314/2006, of March 17. BOE 2017, 149, 51621–51624. [Google Scholar]
- Government of Spain, Ministry of the Presidency. Royal Decree 865/2003, of July 4, establishing the hygienic-sanitary criteria for the prevention and control of legionellosis. BOE 2003, 171, 28955–28969. [Google Scholar]
- Government of Spain, Ministry of the Presidency. Royal Decree 1027/2007, of July 20, which approves the Regulation of Thermal Installations in Buildings. BOE 2007, 207, 35931–35984. [Google Scholar]
- Okafo, I.F.; Akubue, G. F-Chart Method for Designing Solar Thermal Water Heating Systems. Int. J. Sci. Eng. Res. 2012, 3, 1–7. [Google Scholar]
- Alonso-Pérez, S.; Cuevas, E.; Querol, X.; Guerra, J.C.; Pérez, C. African dust source regions for observed dust outbreaks over the Subtropical Eastern North Atlantic region, above 25°N. J. Arid Environ. 2012, 78, 100–109. [Google Scholar] [CrossRef]
- Viana, M.; Querol, X.; Alastuey, A.; Cuevas, E.; Rodrıguez, S. Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos. Environ. 2002, 36, 5861–5875. [Google Scholar] [CrossRef]
- Perez, F.J.D.; Chinarro, D.; Mouhaffel, A.G.; Martin, R.D.; Otin, M.R.P. Assement Solar Database Regarding Production Values in Fuerteventura Photovoltaic Installations. Indian J. Sci. Technol. 2017, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Osterwald, C.R. Translation of device performance measurements to reference conditions. Sol. Cells 1986, 18, 269–279. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 61215/2016. Crystalline Silicium Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2016. [Google Scholar]
- Chomkhamsri, K.; Pelletier, N. Analysis of Existing Environmental Footprint Methodologies for Products and Organizations: Recommendations, Rationale, and Alignment Deliverable; European Commission (EC) Joint Research Centre (JRC) Institute for Environment and Sustainability (IES): Ispra, Italy, 2011. [Google Scholar]
- World Resources Institute (WRI) and World Business Council for Sustainable Development (WBSCSD). The Greenhouse Gas Protocol. A Corporate Accounting and Reporting Standard; WBSCSD: Geneve, Switzerland, 2009; ISBN 1-56973-568-9. Available online: https://ghgprotocol.org/ (accessed on 22 June 2018).
- Red Eléctrica de España. Spanish Electricity Network (REE). The Spanish Electricity System 2017; Red Eléctrica de España (REE): Madrid, Spain, 2016. [Google Scholar]
- Martín, R.D.; Contreras, G.S.; Mouhaffel, A.G. Analysis of Production, Transport and Lifecycle of Pellets. Am. J. Environ. Prot. 2015, 4, 91–94. [Google Scholar] [CrossRef]
Type | 1 Star | 2 Stars | 3 Stars | 4 Stars | 5 Stars | Total | |
---|---|---|---|---|---|---|---|
Hotels | Total | 110 | 76 | 149 | 246 | 47 | 628 |
Beds | Total | 1668 | 3998 | 25,212 | 67,399 | 13,028 | 111,305 |
Standard hotel | 15 | 53 | 169 | 274 | 277 | 177 | |
Rooms | Total | 3548 | 11,135 | 60,879 | 143,172 | 28,332 | 247,066 |
Standard hotel | 32 | 147 | 409 | 582 | 603 | 393 |
Normative | 1 Star | 2 Stars | 3 Stars | 4 Stars | 5 Stars | |
---|---|---|---|---|---|---|
DHW Litters to 60 °C for bed | UNE94002 [46] | 40 | 50 | 60 | 80 | 100 |
CTE 2006 [47] | 35 | 40 | 55 | 70 | 70 | |
CTE 2017 [48] | 28 | 34 | 41 | 55 | 69 |
Photovoltaic | Solar Thermal | |
---|---|---|
Model | Atersa A330PGSE | Kairos XPS2.1-1H |
Surface total m2 | 1.94 | 2.52 |
Surface solar collector m2 | 2.241 | |
Coefficient linear losses Wm2/°K | 3.015 | |
Coefficient secondary losses W2m2/°K | 0.017 | |
Optical performance | 0.812 | |
Maximum power W | 330 | |
Operating temperature | 45 | |
Coefficient variation T° | −0.43% |
Category | N° Collectors | Total Surface Collectors m2 | Accumulation L | F-Solar % | Thermal Energy Generated kWh | Thermal Energy Missing kWh |
---|---|---|---|---|---|---|
5 Stars | 430 | 1479 | 50,000 | 70.4% | 886,335 | 373,359 |
4 Stars | 330 | 1135 | 40,000 | 70.2% | 682,876 | 289,783 |
3 Stars | 170 | 585 | 30,000 | 70.3% | 360,280 | 152,371 |
2 Stars | 50 | 172 | 15,000 | 70.9% | 108,799 | 44,746 |
1 Star | 9 | 31 | 2000 | 71.7% | 19,166 | 7574 |
CATEGORY | 1 Star | 2 Stars | 3 Stars | 4 Stars | 5 Stars | |
---|---|---|---|---|---|---|
N° Collectors | 12 | 65 | 220 | 430 | 560 | |
Used surface m2 | 32 | 172 | 582 | 1138 | 1483 | |
Installed power kW | 3.96 | 21.45 | 72.6 | 141.9 | 184.8 | |
Electricity generation in kWh | JAN. | 404 | 2189 | 7410 | 14,484 | 18,863 |
FEB. | 422 | 2285 | 7734 | 15,116 | 19,686 | |
MAR. | 538 | 2915 | 9,865 | 19,282 | 25,111 | |
APR. | 568 | 3075 | 10,408 | 20,343 | 26,493 | |
MAY | 615 | 3329 | 11,268 | 22,024 | 28,682 | |
JUN. | 597 | 3236 | 10,954 | 21,410 | 27,883 | |
JUL. | 618 | 3347 | 11,328 | 22,141 | 28,835 | |
AUG. | 603 | 3267 | 11,057 | 21,612 | 28,146 | |
SEP. | 544 | 2948 | 9978 | 19,502 | 25,398 | |
OCT. | 498 | 2698 | 9131 | 17,846 | 23,242 | |
NOV. | 417 | 2259 | 7647 | 14,947 | 19,465 | |
DIC. | 385 | 2087 | 7065 | 13,808 | 17,983 | |
TT | 6210 | 33,636 | 113,845 | 222,515 | 289,787 |
Fuels | Conversion Factors |
---|---|
Diesel | 10.28 kWh/L |
LPG Propane | 12.75 kWh/kg |
Pellet in general | 4.57 kWh/kg |
Pellet kg | LPG Propane kg | Diesel L | |
---|---|---|---|
JAN. | 8,627,078 | 3,092,215 | 3,835,189 |
FEB. | 7,792,200 | 2,792,969 | 3,464,042 |
MAR. | 8,435,365 | 3,023,500 | 3,749,963 |
APR. | 8,163,257 | 2,925,967 | 3,628,996 |
MAY | 8,243,653 | 2,954,784 | 3,664,737 |
JUN. | 7,792,200 | 2,792,969 | 3,464,042 |
JUL. | 7,860,227 | 2,817,352 | 3,494,284 |
AUG. | 7,860,227 | 2,817,352 | 3,494,284 |
SEP. | 7,606,671 | 2,726,470 | 3,381,565 |
OCT. | 8,051,940 | 2,886,068 | 3,579,510 |
NOV. | 7,977,728 | 2,859,468 | 3,546,519 |
DIC. | 8,435,365 | 3,023,500 | 3,749,963 |
Year | 96,845,911 | 34,712,613 | 43,053,094 |
Fuel | CO2 Emission Factors |
---|---|
Diesel | 0.311 kg/kWh |
LPG Propane | 0.254 kg/kWh |
Pellet in general | 0.018 kg/kWh |
Electricity in the Canary Islands | 0.827 kg/kWh |
Hotel Category, Type of Fuel and Emissions | Solar Thermal | Pellet | LPG Propane | Gasoil | Photovoltaic | Heat Pump COP 4.4 | Heat Pump + Photovoltaic | ||
---|---|---|---|---|---|---|---|---|---|
+LPG Propane Kg | +Gasoil L | kg | kg | L | kWh | kWh | kWh | ||
1 Star | Hotel Fuel | 675 kg | 837 L | 6649 kg | 2383 kg | 2956 L | 6210 kWh | 6077 kWh | −133 kWh |
Total fuel | 74,255 kg | 92,097 L | 731,394 kg | 262,155 kg | 325,143 L | 683,070 kWh | 668,494 kWh | −14,576 kWh | |
Hotel kg CO2 | 2186 | 2677 | 547 | 7718 | 9450 | −5134 | 5025 | −110 | |
Total kg CO2 | 240,476 | 294,441 | 60,164 | 848,987 | 1,039,508 | −564,762 | 552,711 | −12,052 | |
2 Stars | Hotel Fuel | 3988 kg | 4946 L | 38,180 kg | 13,685 kg | 16,973 L | 33,636 kWh | 34,897 kWh | 1260 kWh |
Total fuel | 303,090 kg | 375,915 L | 2,901,681 kg | 1,040,053 kg | 1,289,950 L | 2,556,339 kWh | 2,652,136 kWh | 95,798 kWh | |
Hotel kg CO2 | 12,915 | 15,814 | 3141 | 44,319 | 54,264 | −27,810 | 28,852 | 1042 | |
Total kg CO2 | 981,558 | 1,201,829 | 238,692 | 3,368,213 | 4,124,072 | −2,113,581 | 2,192,786 | 79,206 | |
3 Stars | Hotel Fuel | 13,580 kg | 16,843 L | 127,474 kg | 45,691 kg | 56,669 L | 113,845 kWh | 116,512 kWh | 2667 kWh |
Total fuel | 2,023,468 kg | 2,509,651 L | 18,993,699 kg | 6,807,937 kg | 8,443,697 L | 16,962,910 kWh | 17,360,241 kWh | 397,330 kWh | |
Hotel kg CO2 | 43,980 | 53,849 | 10,486 | 147,970 | 181,176 | −94,127 | 96,332 | 2205 | |
Total kg CO2 | 6,553,000 | 8,023,555 | 1,562,422 | 22,047,505 | 26,995,174 | −14,024,934 | 14,353,447 | 328,513 | |
4 Stars | Hotel Fuel | 25,827 kg | 32,033 L | 241,859 kg | 86,690 kg | 107,519 L | 222,515 kWh | 221,059 kWh | −1456 kWh |
Total fuel | 6,353,521 kg | 7,880,096 L | 5,949,7236 kg | 21,325,676 kg | 26,449,647 L | 54,738,762 kWh | 54,380,474 kWh | −358,288 kWh | |
Hotel kg CO2 | 83,642 | 102,412 | 19,895 | 280,745 | 343,746 | −183,976 | 182,771 | −1204 | |
Total kg CO2 | 20,575,877 | 25,193,298 | 4,894,243 | 69,063,202 | 84,561,637 | −45,258,009 | 44,961,776 | −296,233 | |
5 Stars | Hotel Fuel | 33,276 kg | 41,272 L | 313,232 kg | 112,272 kg | 139,248 L | 289,787 kWh | 286,294 kWh | −3493 kWh |
Total fuel | 1,563,981 kg | 1,939,762 L | 14,721,901 kg | 5,276,791 kg | 6,544,658 L | 13,620,006 kWh | 13,455,817 kWh | −164,189 kWh | |
Hotel kg CO2 | 107,765 | 131,948 | 25,766 | 363,593 | 445,187 | −239,596 | 236,708 | −2888 | |
Total kg CO2 | 5,064,952 | 6,201,575 | 1,211,024 | 17,088,888 | 20,923,796 | −11,261,021 | 11,125,270 | −135,751 | |
TOTAL | Fuel | 10,318,315 kg | 12,797,521 L | 96,845,911 kg | 34,712,613 kg | 43,053,094 L | 88,561,087 kWh | 88,517,162 kWh | 43,925 kWh |
kg CO2 TT | 33,415,862 | 40,914,698 | 7,966,545 | 112,416,796 | 137,644,187 | −73,222,307 | 73,185,990 | −36,317 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz Pérez, F.J.; Díaz Martín, R.; Pérez Trujillo, F.J.; Díaz, M.; Mouhaffel, A.G. Consumption and Emissions Analysis in Domestic Hot Water Hotels. Case Study: Canary Islands. Sustainability 2019, 11, 599. https://doi.org/10.3390/su11030599
Díaz Pérez FJ, Díaz Martín R, Pérez Trujillo FJ, Díaz M, Mouhaffel AG. Consumption and Emissions Analysis in Domestic Hot Water Hotels. Case Study: Canary Islands. Sustainability. 2019; 11(3):599. https://doi.org/10.3390/su11030599
Chicago/Turabian StyleDíaz Pérez, Francisco Javier, Ricardo Díaz Martín, Francisco Javier Pérez Trujillo, Moises Díaz, and Adib Guardiola Mouhaffel. 2019. "Consumption and Emissions Analysis in Domestic Hot Water Hotels. Case Study: Canary Islands" Sustainability 11, no. 3: 599. https://doi.org/10.3390/su11030599
APA StyleDíaz Pérez, F. J., Díaz Martín, R., Pérez Trujillo, F. J., Díaz, M., & Mouhaffel, A. G. (2019). Consumption and Emissions Analysis in Domestic Hot Water Hotels. Case Study: Canary Islands. Sustainability, 11(3), 599. https://doi.org/10.3390/su11030599