Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland
Abstract
:1. Introduction
2. Case Study Description
3. Results and Discussion
3.1. Analysis of possible Thermal Energy
3.2. Nysa
3.3. Grabin
3.4. Wołczyn
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Podgórni, E. Application of Flokor products in geothermal water treatment in Poland. Innov. Opole-Eff. Coop. Sci. Econ. 2015, 43, 132–142. [Google Scholar]
- Kępińska, B. Geothermal Energy Country Update Report from Poland, 2010–2014. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 25 April 2015; pp. 19–25. [Google Scholar]
- European Council. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC (PDF); European Council: Brussels, Belgium, 2009. [Google Scholar]
- Schof, F.; Hout, M.; Zanten, J.; Hoogstraten, J.W. Master Plan Geothermal Energy in the Netherlands. A Broad Foundation for Sustainable Heat Supply; Stichting Platform Geothermie: Delft, The Netherlands, 2018. [Google Scholar]
- Provoost, M.; Albeda, L.; Godschalk, B.; Werff, B.; Schoof, F. Geothermal Energy Use, Country Update for The Netherlands. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019. [Google Scholar]
- Canka Kilic, F. Geothermal Energy in Turkey. Energy Environ. 2016, 27, 1–17. [Google Scholar]
- Dursun, B.; Gokcol, C.H. The role of geothermal energy in sustainable development of Turkey. Energy Explor. Exploit. 2012, 2, 207–222. [Google Scholar] [CrossRef]
- Shortalla, R.; Davidsdottirb, B.; Axelssonc, G. Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks. Renew. Sustain. Energy Rev. 2015, 44, 391–406. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Palomo-Torrejón, E.; Rosales-Asensio, E.; Borge-Diez, D. Measures to Remove Geothermal Energy Barriers in the European Union. Energies 2018, 11, 3202. [Google Scholar] [CrossRef]
- Kępińska, B. Overview of the state of the use of geothermal energy in poland in the years 2016–2018. Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2018, 1, 11–27. [Google Scholar]
- Kępińska, B. Geothermal Energy Use—Country Update for Poland, 2016–2018. In Proceedings of the European Geothermal Congress, The Hague, The Netherlands, 11–14 June 2019. [Google Scholar]
- Antics, M.; Bertani, R.; Sanner, B. Summary of EGC 2016 Country Update Reports on Geothermal Energy in Europe. In Proceedings of the European Geothermal Congress 2016 (CD), Strasbourg, France, 19–24 September 2016. [Google Scholar]
- Clean Air, Ministry of Entrepreneurship and Technology. Available online: https://www.gov.pl/web/przedsiebiorczosc-technologia (accessed on 25 October 2019).
- Current Measurement Data for Air. Available online: http://powietrze.gios.gov.pl/pjp/current (accessed on 28 October 2019).
- Zimolong, Z.; Barańska, B.; Galińska-Lizoń, D.; Werner, R. Five-Year Assessment of Air Quality in Opolskie Voivodship; Voivodship Report 2014–2018; Main Environment Protection Inspector: Opole, Poland, June 2019. [Google Scholar]
- Marshal’s Office of the Opolskie Voivodeship Department of Agriculture and Rural Development. Work Stage on the Use of Renewable Energy and Biofuels in the Opolskie Voivodeship; Marshal’s Office of the Opolskie Voivodeship Department of Agriculture and Rural Development: Opole, Poland, 2007. [Google Scholar]
- Kalinowski, W. Renewable Energy balance of the Opole Voivodeship—Current state, development prospect. Sci. Works Inst. Glass Ceram. Refract. Constr. Mater. 2008, 2, 119–132. [Google Scholar]
- Kozłowski, S. Mineral Resources of the Opolskie Voivodeship; Geological Publisher Warsaw: Warsaw, Poland, 1979. [Google Scholar]
- Bujakowski, W.; Barbacki, A.; Pająk, L. The possibilities of exploitation and development of geothermal waters in Nysa region. Tech. Poszuk. Geol. Geosynoptyka Geoterm. 2005, 6, 23–34. [Google Scholar]
- Boguniewicz-Zabłocka, J.; Podgórni, E.; Kłosok-Bazan, I. The Impact of nano-silver doses on microorganism-deactivation effectiveness in water circulating in a cooling tower cycle. Pol. J. Environ. Stud. 2015, 24, 2321–2327. [Google Scholar]
- Głodek, E.; Kalinowski, W. Development plan for renewable energy sources (RES) in the Opolskie Voivodeship. Renew. Sustain. Energy Rev. 2009, 14, 1336–1341. [Google Scholar]
- Ciapała, B.; Janowski, M.; Jurasz, J. Ultra-low-temperature district heating with individual peak heat source in context of covering typical detached house heat demand. Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2018, 2, 79–90. [Google Scholar]
- Łukasiewicz, E.; Rząsa, M. Examination of coagulant additives on qualitative composition of selected thermal waters. E3S Web Conf. 2017, 19, 02013. [Google Scholar] [CrossRef]
- Study for the Development of Energy Systems in: Opolskie Voivodeship 2015; Renewable Energy No. W-416.III; State Research Institute: Pulawy, Poland, 2003; Available online: http://archiwum.opolskie.pl/docs/03_odnawialne.pdf (accessed on 28 October 2019).
- Kolasa-Więcek, A. Development perspectives for renewable energy in the Opole Voivodeship. Barometr Regionalny Analizy i Prognozy 2012, 2, 107–114. [Google Scholar]
- Kolasa-Więcek, A. The Current State of Renewable Energy Development in the Opolskie Voivodship. Barometr Regionalny 2015, 4, 89–98. [Google Scholar]
- Kłosok-Bazan, I. Modeling of geothermal water deironing processes using artificial neural networks. In Proceedings of the 16th International Multidisciplinary Scientific Geoconference, Sgem 2016: Science and Technologies in Geology, Exploration and Mining, Albena, Bulgaria, 30 June–6 July 2016; Volume III, pp. 187–193. [Google Scholar]
- Kłosok-Bazan, I. Innovations in industrial water preparation in a metallurgical plant. Metalurgija 2016, 55, 59–62. [Google Scholar]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G.; Płoskonka, J. Planning the optimal solution for wastewater management in rural areas—Case study. In Proceedings of the MATEC Web of Conferences 174, Opole, Poland, 26 June 2018; Volume 2, p. 01035. [Google Scholar]
- Pollutant Emission Calculator. Available online: http://vaillant-partner.pl/kalkulatory-on-line/kalkulator-emisji-zanieczyszczen/ (accessed on 24 October 2019).
- Grzesiak, E. The Use of Geothermal Water for Heating Purposes on the Example of the Geothermal Heating Plant in Pyrzyce. Bechelor’s Thesis, State University of Applied Sciences in Kalisz, Kalisz, Poland, 2007; p. 64. [Google Scholar]
- Socha, M.; Gryszkiewicz, I.; Stożek, J. Potential and prospects for using geothermal resources in Poland. PIG-PIB supporting medium-temperature geothermal development. In Deposit and Economic Geology; Program Polish Geological Institute—National Research Institute: Warsaw, Poland, 2019. [Google Scholar]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Petty, S. The future of geothermal energy. In Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006; p. 372. [Google Scholar]
- Dickson, M.H.; Fanelli, M. Geothermal Energy: Utilization and Technology; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Bombara, P.; Duvia, A.; Macchi, E. Combined, mixed, flash and binary cycles for electricity generation from geothermal sources. In Proceedings of the 20th NZ Geothermal Workshop, Auckland, New Zealand, 11–13 November 1998. [Google Scholar]
- Clarke, J. Optimal Design of Geothermal Power Plants; Virginia Commonwealth University Richmond: Richmond, WV, USA, 13 May 2014. [Google Scholar]
- Lund, J.W.; Boyd, T.L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics 2016, 60, 66–93. [Google Scholar] [CrossRef]
- Kłonowski, M.R.; Kocyła, J.; Ryżyński, G.; Żeruń, M. Assessment of low-temperature geothermal energy potential based on analysis, interpretation and reclassification of geological data in urban areas. Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2018, 2, 19–38. [Google Scholar]
- Renewable Energy in the Opole Region. Geothermal Energy. Available online: http://www.odnowawsi.eu (accessed on 1 February 2019).
- Bologa, O.; Crenganis, M. Geothermal energy. In Proceedings of the ASTRA, Noordwijk, The Netherlands, 15–17 May 2013. [Google Scholar]
Place | Inflow Water Temperature [°C] | Maximum Mass Flow of Flowing Water [m3/h] | Water Mineralization [g/dm3] | Installed Geothermal Thermal Power [MWt] | Total Installed Thermal Power [MWt] | Geothermal Heat Production [TJ] |
---|---|---|---|---|---|---|
Mszczonow | 42 | 60 | 0.5 | 3.7 | 8.3 | 17 |
Poddebice | 68 | 252 | 0.4 | 10 | 10 | 68 |
Podhale | 82–86 | 960 | 2.5 | 40.7 | 82.6 | 512 |
Pyrzyce | 61 | 360 | 120 | 6 | 22 | 64 |
Stargard | 83 | 180 | 150 | 12.6 | 12.6 | 186 |
Uniejow | 68 | 120 | 6–8 | 3.2 | 7.4 | 21 |
Total | 76.2 | 142.9 | 868 |
Pollution * | Averaging Time of Concentrations | Level Permissible/ Target/ Long Term Goal | Upper Assessment Threshold | Lower Assessment Threshold | Permissible Crossing Frequency |
---|---|---|---|---|---|
% Of Acceptable/Target/Long-Term Goal Value [Unit] | % of Acceptable/Target/Long-Term Goal Value [Unit] | ||||
SO2 | 24 h | 125 [μg/m3] | 60% 75 [μg/m3] | 40% 50 [μg/m3] | 3 times |
NO2 | 1 h | 200 [μg/m3] | 70% 140 [μg/m3] | 50% 100 [μg/m3] | 18 times |
calendar year | 40 [μg/m3] | 80% 32 [μg/m3] | 65% 26 [μg/m3] | - | |
CO | 8-h moving average | 10 [mg/m3] | 70% 7 [mg/m3] | 50% 5 [mg/m3] | |
C6H6 | calendar year | 5 [μg/m3] | 70% 3.5 [μg/m3] | 40% 2.0 [μg/m3] | |
O3 | max. daily from 8 h walking concentrations | 120 [μg/m3] | 100% 120 [μg/m3] | ||
PM10 | 24 h | 50 [μg/m3] | 70% 35 [μg/m3] | 50% 25 [μg/m3] | 35 times |
calendar year | 40 [μg/m3] | 70% 28 [μg/m3] | 50% 20 [μg/m3] | - | |
PM2.5 | calendar year | 25 [μg/m3] | 70% 17 [μg/m3] | 50% 12 [μg/m3] | |
BaP(PM10) | calendar year | 1 [ng/m3] | 60% 0.6 [ng/m3] | 40% 0.4 [ng/m3] |
Zone Name | SO2 | NO2 | C6H6 | CO | O3 | PM10 | BaP(PM10) | PM2.5 |
---|---|---|---|---|---|---|---|---|
Opole | 1 * | 1 | 1 | 1 | 3a | 3b | 3b | 3a |
Opole Region | 1 | 1 | 2 | 1 | 3a | 3b | 3b | 3b |
Intake | Thermal Power | Thermal Energy | Number of Heated Homes/Years S [-] | Area of Heated Objects N [m2] |
---|---|---|---|---|
Nysa | 1.13 | 9.9 | 330 | 14.200 |
Grabin | 2.64 | 2.12 | 771 | 33.041 |
Wołczyn | 0.157 | 1.3 | 46 | 1971 1 |
CO2 [kg/year] | CO [kg/year] | PM (10, 2, 5) [kg/year] | SO2 [kg/year] | NOx [kg/year] | ||
---|---|---|---|---|---|---|
Natural gas | Old-type boiler, constant temperature | 6283 | 3.71 | 0.01 | 0.10 | 2.72 |
Coal | The boiler for fine coal | 12342 | 508.18 | 12.75 | 69.69 | 10.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boguniewicz-Zabłocka, J.; Łukasiewicz, E.; Guida, D. Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland. Sustainability 2019, 11, 6730. https://doi.org/10.3390/su11236730
Boguniewicz-Zabłocka J, Łukasiewicz E, Guida D. Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland. Sustainability. 2019; 11(23):6730. https://doi.org/10.3390/su11236730
Chicago/Turabian StyleBoguniewicz-Zabłocka, Joanna, Ewelina Łukasiewicz, and Domenico Guida. 2019. "Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland" Sustainability 11, no. 23: 6730. https://doi.org/10.3390/su11236730