Regional Tourism Clustering Based on the Three Ps of the Sustainability Services Marketing Matrix: An Example of Central and Eastern European Countries
Abstract
:1. Introduction
2. Literature Review and Theoretical Considerations
- the economy sector,
- modernity of the industry,
- foundation motives,
- governance system,
- form of cooperational type,
- level of awareness,
- scope,
- life cycle stage,
3. Empirical Aims and Methodology: Disparities Among Regions of Middle and Eastern Europe in the Field of Tourism
3.1. Data: Indicators of Regional Tourism (by Eurostat)
3.2. Methods of Regional Disparities Measurement, Grouping the Regions
- Correlation matrix—testing of the correlation between variables.
- The variables have been standardized due to the avoidance of the influence of various units.
- To create hierarchical agglomeration clustering, the Ward method has been applied.
- The determination of the best fitting number of the created clusters.
- The regions were matched to the appropriate number of clusters.
- The clustering presentation using dendrogram.
- i = 1, 2, ..., n (n is the number of observations),
- j = 1, 2, ..., p (p is the number of variables),
- sj is a standard deviation of particular variable,
- is an average value of the particular variable.
- Xik denotes the value of the kth variable for the ith observation,
- Xjk denotes the value of the kth variable for the jth observation.
- nh is the cardinality of cluster h,
- Xhj is a vector of the variable´s values of the jth object in the cluster h,
- is the cluster´s average.
4. Results of the Cluster Analysis
5. Discussion and Concluding Remarks
- Place vs. people (variable: numbers of establishments—cities, urban areas, where people look for their touristic utilities), this suggests where the impact on sustainability can be stronger.
- Product vs. people (number of nights spent by non-residents as variable set in the regions), this suggests the strength(cardinality) of the impact on sustainability.
- Participants vs. people (number of bed places) can lead to some estimations of overuse, e.g., of laundry.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charles, V.; Mukesh, K. Satisficing data envelopment analysis: An application to SERVQUAL efficiency. Measurement 2014, 51, 71–80. [Google Scholar] [CrossRef]
- Smith, L.J. Tourism Analysis: A Handbook, 2nd ed.; Routledge: London, UK, 1995; 336p, ISBN 978-0582251601. [Google Scholar]
- Porter, M.E. The Competitive Advantage of Nations; Free Press: New York, NY, USA, 1990; 875p, ISBN 0029253616. [Google Scholar]
- Porter, M.A. On Competition; Harward Business Review Press: Boston, MA, USA, 1998; 485p, ISBN 978-0875847955. [Google Scholar]
- Pomering, A.; Noble, G.; Johnson, L.W. Conceptualising a contemporary marketing mix for sustainable tourism. J. Sustain. Tour. 2011, 19, 953–969. [Google Scholar] [CrossRef]
- Jesus, C.; Franco, M. Cooperation networks in tourism: A study of hotels and rural tourism establishments in an inland region of Portugal. J. Hosp. Tour. Manag. 2016, 29, 165–175. [Google Scholar] [CrossRef]
- Toca Torres, C.E.; Carrillo Rodriguez, J. Ecological Analysis of a Tourism Business Network. Rbgn-Revista Brasileira De Gestao De Negocios 2015, 17, 1044–1063. [Google Scholar] [CrossRef]
- Dobson, K.; Boone, S.; Andries, P.; Daou, A. Successfully creating and scaling a sustainable social enterprise model under uncertainty: The case of ViaVia Travellers Cafés. J. Clean. Prod. 2018, 172, 4555–4564. [Google Scholar] [CrossRef]
- Asmelash, A.G.; Kumar, S. Assessing progress of tourism sustainability: Developing and validating sustainability indicators. Tour. Manag. 2019, 71, 67–83. [Google Scholar] [CrossRef]
- Xiao, H.; Smith, S.L.J. Case studies in tourism research: A state-of-the-art analysis. Tour. Manag. 2006, 27, 738–749. [Google Scholar] [CrossRef]
- Hosany, S.; Prayag, G.; Deesilatham, S.; Causevic, S.; Odeh, K. Measuring Tourists’ Emotional Experiences: Further Validation of the Destination Emotion Scale. J. Travel Res. 2015, 54, 482–495. [Google Scholar] [CrossRef]
- Tong, D.Y.K. International Tourists Interest in Street Vendors Souvenirs: A Descriptive Study. In Proceedings of the 4th International Conference on Tourism Research (4ICTR), Kola Kinabalu, Malaysia, 9–11 December 2014; Othuman Mydin, M.A., Marzuki, A., Eds.; [Google Scholar] [CrossRef]
- Fuchs, M.; Abadzhiev, A.; Svensson, B.; Hopken, W.; Lexhagen, M. A knowledge destination framework for tourism sustainability: A business intelligence application from Sweden. Tourism 2013, 61, 121–148. [Google Scholar]
- Sidor, C.; Kršák, B.; Štrba, Ľ. The role of open data on the road to destination business intelligence: Notes on SK NACE I55. In Hotelnictví, Turismus a vzdělávání; Vysoká škola hotelová v Praze: Praha, Czech Republic, 2017; pp. 165–172. ISBN 978-80-87411-99-5. [Google Scholar]
- Sidor, C.; Kršák, B.; Štrba, Ľ. Building up basic tourism geo content for destination business intelligence via open street map file dumps. In The Image and Sustainability of Tourism Destinations. Proceedings of 9th International Tourism Congress; Polytechnic Institute of Leiria: Peniche, Portugal, 2017. [Google Scholar]
- Štrba, Ľ.; Kršák, B.; Sidor, C.; Blišťan, P. Destinations business information systems for smart destinations: The case study of Kosice County. Int. J. Bus. Manag. Stud. 2016, 5, 177–180. [Google Scholar]
- Fridgen, J.D. Dimensions of Tourism; AH&MA Education Institute: East Lansing, MI, USA, 1991; 361p, ISBN 978-0866121040. [Google Scholar]
- Ferreira, J.; Estevao, C. Regional competitiveness of a tourism cluster: A conceptual model proposal. Rev. Encontros Científicos Tour. Manag. Stud. 2009, 5, 37–51. [Google Scholar]
- Rocha, H. Entrepreneurship and Development: The Role of Clusters. Small Bus. Econ. 2004, 23, 363–400. [Google Scholar] [CrossRef]
- Jackson, J.; Murphy, P. Clusters in regional tourism: An Australian case. Ann. Tour. Res. 2006, 33, 1018–1035. [Google Scholar] [CrossRef]
- da Cunha, S.K.; da Cunha, J.C. Tourism cluster competitiveness and sustainability: Proposal for a systemic model to measure the impact of tourism on local development. Bar Braz. Adm. Rev. 2005, 2, 47–62. [Google Scholar] [CrossRef]
- Monfort, M.V.M. Competitividad y factores de éxito en la “hotelería de litoral”: Experiencia de los destinos turistícos Benidorm y Peniscola. Ph.D. Thesis, Universidad de Valencia, Valencia, Spain, 2000. [Google Scholar]
- Beni, M.C. Globalizacao do Turizmo: Megatendencias do Setor e a Realidade Brasileira; Aleph: Sao Paulo, Brazil, 2003; 208p, ISBN 978-8576571087. [Google Scholar]
- Final Report on the Expert Group in Enterprise Clusters and Networks. Available online: http://ibr.hi.is/sites/ibr.hi.is/files/FINAL_REPORT_OF_THE_EXPERT_GROUP_ON_ENTERPRISE_CLUSTERS_AND_NETWORKS.pdf (accessed on 3 January 2019).
- Kachniewska, M. Towards the Definition of a Tourism Cluster. J. Enterp. Manag. Innov. 2014, 9, 33–56. [Google Scholar] [CrossRef]
- Gorynia, M.; Jankowska, B. Koncepcja klastrów jako sposób regulacji zachowań podmiotów gospodarczych. Ekonomista 2007, 3, 311–340. [Google Scholar]
- Melisidou, S.; Papageorgiou, A.; Papayiannis, D.; Varvaressos, S. Tourism clusters as a potentially effective tool for local development and sustainability. Rev. Tour. Sci. 2014, 9, 218–232. [Google Scholar]
- Fundeanu, D.D. Innovative Regional Cluster, Model of Tourism Development. Procedia Econ. Financ. 2015, 23, 744–749. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.; Ellis, P. Porter’s competitive advantage of nations: Time for the final judgement? J. Manag. Stud. 2000, 37, 1188–1213. [Google Scholar] [CrossRef]
- Koľveková, G.; Raisová, M. Value-added close-up of Slovak industries regarding the search of sustainability. In CEFE2017 Conference Proceedings; Technical University of Kosice: Kosice, Slovakia, 2017; pp. 403–410. [Google Scholar]
- González-Benito, J.; Suárez-González, I. A Study of the Role Played by Manufacturing Strategic Objectives and Capabilities in Understanding the Relationship between Porter’s Generic Strategies and Business Performance. Br. J. Manag. 2010, 21, 1027–1043. [Google Scholar] [CrossRef]
- Romero, I.; Tejada, P. A multi-level approach to the study of production chains in the tourism sector. Tour. Manag. 2011, 32, 297–306. [Google Scholar] [CrossRef]
- Kršák, B.; Koľveková, G.; Liptáková, E.; Štrba, Ľ.; Mesároš, P.; Sidor, C.; Mitterpák, M. Meranie efektívnosti v podnikoch ubytovacích služieb. Podn. Rev. 2016, 15, 38–47. [Google Scholar]
- Pulido-Fernández, J.I.; Cárdenas-Gacía, P.J.; Espinosa-Pulido, J.A. Does environmental sustainability contribute to tourism growth? An analysis at the country level. J. Clean. Prod. 2019, 213, 309–319. [Google Scholar] [CrossRef]
- Dickmann, F. Effectiveness and efficiency of tourism maps in the World Wide Web and their potential for mobile map services. In Map-Based Mobile Services; Springer: Berlin, Germany, 2005; pp. 43–53. [Google Scholar]
- Horner, S.; Swarbrooke, J. Consumer Behaviour in Tourism; Routledge: London, UK, 2016; 464p, ISBN 978-1138013391. [Google Scholar]
- Schianetz, K.; Kavanagh, L. Sustainability Indicators for Tourism Destinations: A Complex Adaptive Systems Approach Using Systemic Indicator Systems. J. Sustain. Tour. 2008, 16, 601–628. [Google Scholar] [CrossRef]
- Roberts, S.; Tribe, J. Sustainability Indicators for Small Tourism Enterprises—An Exploratory Perspective. J. Sustain. Tour. 2008, 16, 575–594. [Google Scholar] [CrossRef]
- Manuel-Navarrete, D. Tourism and Sustainability. In Sustainability Science; Heinrichs, H., Martens, P., Michelsen, G., Wiek, A., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 283–291. [Google Scholar]
- Feranández, J.I.P.; Rivero, M.S. Measuring Tourism Sustainability: Proposal for a Composite Index. Tour. Econ. 2009, 15, 277–296. [Google Scholar] [CrossRef]
- Pomering, A.; Johnosn, L.W. Building Sustainability into Services Marketing: Expanding Decision-Making from a Mix to a Matrix. Sustainability 2018, 10, 2992. [Google Scholar] [CrossRef]
- Sahebalzamani, S.; Bertella, G. Business Models and Sustainability in Nature Tourism: A Systematic Review of the Literature. Sustainability 2018, 10, 3226. [Google Scholar] [CrossRef]
- Higgins-Desbiolles, F. Sustainable tourism: Sustaining tourism or something more? Tour. Manag. Perspect. 2018, 25, 157–160. [Google Scholar] [CrossRef]
- Kapera, I. Sustainable tourism development efforts by local governments in Poland. Sustain. Cities Soc. 2018, 40, 581–588. [Google Scholar] [CrossRef]
- Morioka, S.N.; Bolis, I.; de Carvalho, M.M. From an ideal dream towards reality analysis: Proposing Sustainable Value Exchange Matrix (SVEM) from systematic literature review on sustainable business models and face validation. J. Clean. Prod. 2018, 178, 76–88. [Google Scholar] [CrossRef]
- Koľveková, G.; Liptáková, E.; Sidor, C.; Kršák, B. Tourism information flows in destination management. In New Trends in Process Control and Production Management; CRC Press: Leiden, The Netherlands, 2017; pp. 269–274. ISBN 9781138058859. [Google Scholar]
- Kutscherauer, A.; Fachinelli, H.; Sucháček, J.; Skokan, K.; Hučka, M.; Tuleja, P.; Tománek, P. Regionální Disparity—Disparity v Regionálním Rozvoji Země, Jejich Pojetí, Identifikace a Hodnocení. Series on Advanced Economic Issues; VŠB-TU Ostrava: Ostrava, Czech Republic, 2010; 250p, ISBN 978-80-248-2335-5. [Google Scholar]
- Methodological Manual for Tourism Statistics. Available online: http://ec.europa.eu/eurostat/documents/3859598/6454997/KS-GQ-14-013-EN-N.pdf (accessed on 10 November 2017).
- Loomes, G.; Sugden, R. Regret theory: An alternative theory of rationalchoice under uncertainty. Econ. J. 1982, 92, 805–824. [Google Scholar] [CrossRef]
- Pomfret, G. Mountaineering adventure tourists: A conceptual framework for research. Tour. Manag. 2006, 27, 113–123. [Google Scholar] [CrossRef]
- Meloun, M.; Militký, J. Statistické Zpracování Experimentálních Dat; East Publishing Praha: Prague, Czech Republic, 1998; 839p, ISBN 978-8072190034. [Google Scholar]
- Meloun, M.; Militký, J.; Hill, M. Statistická Analýza Vícerozměrných dat v Příkladech; Academia: Prague, Czech Republic, 2012; 756p, ISBN 978-8020020710. [Google Scholar]
- Řezanková, H.; Húsek, D.; Snášel, V. Shluková Analýza Dat; Professional Publishing: Prague, Czech Republic, 2007; 196p, ISBN 978-80-86946-26-9. [Google Scholar]
- Stankovičová, I.; Vojtková, M. Viacrozmerné štatistické Metódy s Aplikáciami; Iura Edition: Bratislava, Slovakia, 2007; 261p, ISBN 978-8080781521. [Google Scholar]
- Pornprasertmanit, S.; Lee, J.; Preacher, K.J. Ignoring Clustering in Confirmatory Factor Analysis: Some Consequences for Model Fit and Standardized Parameter Estimates. Multivar. Behav. Res. 2014, 49, 518–543. [Google Scholar] [CrossRef] [PubMed]
- Sterba, S.K.; Preacher, K.J.; Forehand, R.; Hardcastle, E.J.; Cole, D.A.; Compas, B.E. Structural Equation Modeling Approaches for Analyzing Partially Nested Data. Multivar. Behav. Res. 2014, 49, 93–118. [Google Scholar] [CrossRef] [PubMed]
- South East England Development Agency (SEEDA). SEEDA Cluster Fund—Building your Business for a Better Future. Cluster Fund Brochure & Call for Proposal; SEEDA: Guilford, UK, 2003.
- Bhatia, A.K. International Tourism Management; Sterling Publishers Pvt. Ltd.: New Delhi, India, 2001; 539p, ISBN 978-8120724129. [Google Scholar]
- Bramwell, B.; Lane, B. Tourism Collaboration and Partnerships: Politics, Practice and Sustainability; Channel View Publications: Clevedon, UK, 2000; 351p, ISBN 9781845413989. [Google Scholar]
- Gursoy, D.; Saayman, M.; Sotiriadis, M. (Eds.) Collaboration in Toursim Businesses and Destinations: A Handbook; Emerald Group Publishing Ltd.: Bingley, UK, 2015; 368p, ISBN 9781783508112. [Google Scholar]
- Capone, F. Tourist desinations, clusters, and competetiveness: An introduction. In Tourist Clusters, Destinations and Competitiveness: Theoretical Issues and Empirical Evidences; Capone, F., Ed.; Routledge: Abingdon, UK, 2016; pp. 1–12. ISBN 9781317486237. [Google Scholar]
- Liptáková, E.; Koľveková, G.; Štrba, Ľ.; Kršák, B.; Sidor, C. Statistical indicators of tourism and their use within the Destination Business Intelligence System. In Hotelnictví, Turismus a vzdělávání; Vysoká škola hotelová v Praze: Praha, Czech Republic, 2017; pp. 110–117. ISBN 978-80-87411-99-5. [Google Scholar]
- Mody, M.A.; Suess, C.; Letho, X. The accommodation experiencescape: A comparative assessment of hotels and Airbnb. Int. J. Contemp. Hosp. Manag. 2017, 29, 2377–2404. [Google Scholar] [CrossRef]
- Blasco, D.; Guia, J.; Prats, L. Emergence of governance in cross-border destinations. Ann. Tour. Res. 2014, 49, 159–173. [Google Scholar] [CrossRef]
- Lavadinho, S. Nearness dynamics in the city: Ideas for urban change. Ciudades-Revista Del Instituto Universitatio De Urbanistica De La Universidad De Valladolid 2014, 17, 21–39. [Google Scholar]
- Hom Cary, S. The Tourist Moment. Ann. Tour. Res. 2004, 31, 61–67. [Google Scholar] [CrossRef]
- Merton, R.K.; Barber, E. The Travels and Adventures of Serendipity: A Study in Sociological Semantics and the Sociology of Science; Princeton University Press: Princeton, NJ, USA, 2011; 352p, ISBN 9781400841523. [Google Scholar]
- The WVS Cultural Map of the World. Available online: http://pagines.uab.cat/seangolden/sites/pagines.uab.cat.seangolden/files/World%20Values%20Surveys%20maps%2020110606.pdf (accessed on 11 November 2017).
- Inglehart, R.; Welzel, C. Changing mass priorities: The link between modernization and democracy. Perspect. Politics 2010, 8, 551–567. [Google Scholar] [CrossRef]
- Novelli, M.; Schmitz, B.; Spencer, T. Newtorks, clusters and innovation in tourism, A UK Experience. Tour. Manag. 2006, 27, 1141–1152. [Google Scholar] [CrossRef]
- About INSPIRE. Available online: http://inspire.ec.europa.eu/about-inspire/563 (accessed on 16 December 2018).
- About Copernicus. Available online: https://www.copernicus.eu/en/about-copernicus (accessed on 16 December 2018).
- The European Commission. The European Tourism Indicator System—Toolkit for Sustainable Destinations; Publications Office of the European Union: Luxembourg, 2013; 60p, ISBN 978-92-79-29339-9. [Google Scholar]
Product | Price | Promotion | Place | Participants | Process | Physical Evidence | Partnerships | |
---|---|---|---|---|---|---|---|---|
Planet | Service product impact on Planet | Pricing impact on Planet | Promotion impact on Planet | Place impact on Planet | Participants impact on Planet | Process impact on Planet | PE impact on Planet | Partnership impact on Planet |
People | Service product impact on people | Pricing impact on People | Promotion impact on People | Place impact on People | Participants impact on People | Process impact on People | PE impact on People | Partnership impact on People |
Profit | Service product impact on long-term Profitability | Pricing impact on long-term Profitability | Promotion impact on long-term Profitability | Place impact on long-term Profitability | Participants impact on long-term Profitability | Process impact on long-term Profitability | PE impact on long-term Profitability | Partnership impact on long-term Profitability |
Label | |
---|---|
Capacity of collective tourist accommodation | Number of establishments—total |
Number of establishments - total—PcPP | |
Number of establishments—cities | |
Number of establishments - cities—PcPP | |
Number of establishments—towns | |
Number of establishments - towns—PcPP | |
Number of establishments - rural areas | |
Number of establishments - rural areas—PcPP | |
Number of bed-places—total | |
Number of bed-places—total—PcPP | |
Number of bed-places—cities | |
Number of bed-places—cities—PcPP | |
Number of bed-places—towns | |
Number of bed-places—towns—PcPP | |
Number of bed-places—rural | |
Number of bed-places—rural—PcPP | |
Occupancy in collective tourist accommodation | Net occupancy rate of bed places |
Net occupancy rate of bedrooms | |
Arrivals of residents | |
Arrival of residents—PcPP | |
Arrivals of non-residents | |
Arrivals of non-residents—PcPP | |
Arrivals total | |
Arrivals total—PcPP | |
Total nights spent by residents—total | |
Total nights spent by residents—total—PcPP | |
Total nights spent by residents—cities | |
Total nights spent by residents—cities—PcPP | |
Total nights spent by residents—towns | |
Total nights spent by residents—towns—PcPP | |
Total nights spent by residents—rural | |
Total nights spent by residents—rural—PcPP | |
Total nights spent by non-residents—total | |
Total nights spent by non-residents—total—PcPP | |
Total nights spent by non-residents—cities | |
Total nights spent by non-residents—cities—PcPP | |
Total nights spent by non-residents—towns | |
Total nights spent by non-residents—towns—PcPP | |
Total nights spent by non-residents—rural | |
Total nights spent by non-residents—rural—PcPP | |
Nights spent by residents and non-residents—total | |
Nights spent by residents and non-residents—total—PcPP | |
Nights spent by residents and non-residents—cities | |
Nights spent by residents and non-residents—cities—PcPP | |
Nights spent by residents and non-residents—towns | |
Nights spent by residents and non-residents—towns—PcPP | |
Nights spent by residents and non-residents—rural | |
Nights spent by residents and non-residents—rural—PcPP | |
Nights spent by residents and non-residents—per thousand inhabitant | |
Nights spent by residents and non-residents—per km2 |
Ward Method | |||||||
---|---|---|---|---|---|---|---|
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Prague | |
Mean | Mean | Mean | Mean | Mean | Mean | ||
NE total | 409 | 1 068 | 605 | 1 270 | 939 | 197 | 757 |
NBP total | 23 008 | 66 539 | 40 232 | 91 786 | 81 700 | 24 498 | 91 613 |
NBP total (PcPP) | 3,8 | 1,6 | −2,2 | 1,3 | 3,1 | 1,6 | −4,4 |
NOR-BP | 26 | 40 | 28 | 29 | 44 | 31 | 54 |
NOR-BR | 33 | 50 | 40 | 35 | 55 | 43 | 65 |
AR-R | 526 670 | 748 218 | 711 372 | 1 455 388 | 1 964 992 | 528 630 | 780 961 |
AR-NR | 101 075 | 1 097 086 | 180 356 | 370 612 | 1 514 119 | 762 883 | 5 315 054 |
AR total | 627 745 | 1 845 305 | 891 728 | 1 826 000 | 3 479 111 | 1 291 513 | 6 096 015 |
TN-R total | 1 245 243 | 1 954 190 | 1 953 264 | 3 931 006 | 5 666 570 | 1 042 466 | 1 368 554 |
TN-NR total | 224 925 | 3 525 509 | 478 193 | 864 634 | 3 807 263 | 1 297 787 | 13 381 733 |
NS-R-NR total | 1 470 167 | 5 479 699 | 2 431 457 | 4 795 640 | 9 473 833 | 2 340 253 | 14 750 287 |
NS-R-NR (pTHAB) | 939 | 3 927 | 1 637 | 2 459 | 3 617 | 2 216 | 11 865 |
NS-R-NR (pkm2) | 76 | 280 | 173 | 272 | 677 | 1 222 | 29 727 |
Indicators | |||||||||
---|---|---|---|---|---|---|---|---|---|
NE Total | N-BP Total | N-BP Total (PcPP) | NOR-BP | NOR-BR | AR-R | AR-NR | |||
Ward method | Cluster 1 | Mean | 409 | 23 008 | 3,8 | 26 | 33 | 526 670 | 101 075 |
Max | 709 | 51 201 | 10 | 31 | 40 | 768 159 | 172 631 | ||
Min | 142 | 7 913 | −1,2 | 17 | 23 | 231 813 | 26 608 | ||
CV | 47% | 56% | X | 16% | 16% | 36% | 52% | ||
Cluster 2 | Mean | 1 068 | 66 539 | 1,6 | 40 | 50 | 748 218 | 1 097 086 | |
Max | 2 062 | 128 217 | 7,7 | 50 | 68 | 1 316 696 | 1 983 315 | ||
Min | 596 | 39 074 | −6,6 | 29 | 36 | 461 048 | 617 558 | ||
CV | 52% | 41% | X | 14% | 17% | 38% | 45% | ||
Cluster 3 | Mean | 605 | 40 232 | −2,2 | 28 | 40 | 711 372 | 180 356 | |
Max | 1 064 | 60 982 | 2,2 | 32 | 69 | 1 022 980 | 303 587 | ||
Min | 283 | 18 211 | −9,8 | 23 | 30 | 426 461 | 40 719 | ||
CV | 35% | 39% | X | 9% | 29% | 27% | 38% | ||
Cluster 4 | Mean | 1 270 | 91 786 | 1,3 | 29 | 35 | 1 455 388 | 370 612 | |
Max | 2 235 | 153 235 | 5,6 | 37 | 43 | 1 906 310 | 580 736 | ||
Min | 636 | 42 597 | −4,9 | 24 | 26 | 883 508 | 86 717 | ||
CV | 43% | 43% | X | 14% | 14% | 22% | 44% | ||
Cluster 5 | Mean | 939 | 81 700 | 3,1 | 44 | 55 | 1 964 992 | 1 514 119 | |
Max | 1 418 | 121 617 | 5,4 | 46 | 60 | 2 702 422 | 3 157 529 | ||
Min | 476 | 47 921 | 1,4 | 42 | 50 | 895 617 | 543 009 | ||
CV | 53% | 38% | X | 4% | 8% | 43% | 75% | ||
Cluster 6 | Mean | 197 | 24 498 | 1,6 | 31 | 43 | 528 630 | 762 883 | |
Max | 220 | 28 013 | 2,1 | 36 | 53 | 709 131 | 921 131 | ||
Min | 173 | 20 983 | 1,1 | 26 | 33 | 348 128 | 604 635 | ||
CV | 17% | 20% | X | 22% | 33% | 48% | 29% |
Indicators | ||||||||
---|---|---|---|---|---|---|---|---|
AR Total | TN-R Total | TN-NR Total | NS-R-NR Total | NS-R-NR (pTHAB) | NS-R-NR (pkm2) | |||
Ward method | Cluster 1 | Mean | 627 745 | 1 245 243 | 224 925 | 1 470 167 | 939 | 76 |
Max | 924 246 | 2 319 053 | 597 848 | 2 493 552 | 1 454 | 140 | ||
Min | 260 184 | 445 921 | 56 308 | 502 229 | 521 | 26 | ||
CV | 36% | 45% | 73% | 44% | 36% | 47% | ||
Cluster 2 | Mean | 1 845 305 | 1 954 190 | 3 525 509 | 5 479 699 | 3 927 | 280 | |
Max | 3 087 070 | 3 431 178 | 6 579 840 | 8 560 753 | 8 048 | 658 | ||
Min | 1 208 553 | 1 282 484 | 1 799 696 | 3 435 008 | 1 614 | 64 | ||
CV | 35% | 33% | 43% | 27% | 57% | 70% | ||
Cluster 3 | Mean | 891 728 | 1 953 264 | 478 193 | 2 431 457 | 1 637 | 173 | |
Max | 1 192 931 | 3 100 551 | 1 004 297 | 3 449 343 | 2 821 | 374 | ||
Min | 483 483 | 952 851 | 85 307 | 1 201 907 | 755 | 53 | ||
CV | 23% | 30% | 59% | 28% | 41% | 58% | ||
Cluster 4 | Mean | 1 826 000 | 3 931 006 | 864 634 | 4 795 640 | 2 459 | 272 | |
Max | 2 416 382 | 6 023 550 | 1 382 127 | 7 093 131 | 4 200 | 509 | ||
Min | 1 052 713 | 2 385 487 | 324 571 | 2 979 240 | 911 | 105 | ||
CV | 23% | 30% | 40% | 29% | 46% | 49% | ||
Cluster 5 | Mean | 3 479 111 | 5 666 570 | 3 807 263 | 9 473 833 | 3 617 | 677 | |
Max | 4 053 146 | 9 093 763 | 7 445 571 | 11 919 404 | 7 047 | 1 335 | ||
Min | 2 247 662 | 1 784 343 | 2 115 202 | 6 579 854 | 1 243 | 185 | ||
CV | 24% | 57% | 64% | 24% | 68% | 71% | ||
Cluster 6 | Mean | 1 291 513 | 1 042 466 | 1 297 787 | 2 340 253 | 2 216 | 1 222 | |
Max | 1 630 262 | 1 123 459 | 1 537 443 | 2 660 902 | 3 266 | 1 461 | ||
Min | 952 763 | 961 473 | 1 058 131 | 2 019 604 | 1 166 | 984 | ||
CV | 37% | 11% | 26% | 19% | 67% | 28% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koľveková, G.; Liptáková, E.; Štrba, Ľ.; Kršák, B.; Sidor, C.; Cehlár, M.; Khouri, S.; Behún, M. Regional Tourism Clustering Based on the Three Ps of the Sustainability Services Marketing Matrix: An Example of Central and Eastern European Countries. Sustainability 2019, 11, 400. https://doi.org/10.3390/su11020400
Koľveková G, Liptáková E, Štrba Ľ, Kršák B, Sidor C, Cehlár M, Khouri S, Behún M. Regional Tourism Clustering Based on the Three Ps of the Sustainability Services Marketing Matrix: An Example of Central and Eastern European Countries. Sustainability. 2019; 11(2):400. https://doi.org/10.3390/su11020400
Chicago/Turabian StyleKoľveková, Gabriela, Erika Liptáková, Ľubomír Štrba, Branislav Kršák, Csaba Sidor, Michal Cehlár, Samer Khouri, and Marcel Behún. 2019. "Regional Tourism Clustering Based on the Three Ps of the Sustainability Services Marketing Matrix: An Example of Central and Eastern European Countries" Sustainability 11, no. 2: 400. https://doi.org/10.3390/su11020400
APA StyleKoľveková, G., Liptáková, E., Štrba, Ľ., Kršák, B., Sidor, C., Cehlár, M., Khouri, S., & Behún, M. (2019). Regional Tourism Clustering Based on the Three Ps of the Sustainability Services Marketing Matrix: An Example of Central and Eastern European Countries. Sustainability, 11(2), 400. https://doi.org/10.3390/su11020400