Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality
Abstract
:1. Introduction
1.1. Acceptability of Environmental Transport Policies
1.2. Factors Influencing Acceptability of Environmental Transport Policies
1.3. The Present Study
2. Materials and Methods
2.1. Study Context
2.2. Study Design and Data Collection
2.3. Statistical Methods
2.3.1. Dependent and Independent Variables
2.3.2. Missing Data
2.3.3. Variable Selection Using Random Forests
2.3.4. Regularized Elastic-Net Logistic Regression
2.3.5. Model Selection and Optimization
3. Results
3.1. Basic Statistics
3.2. Interpretative and Predictive Variables
3.3. Regularized Elastic-Net Logistic Regression
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Air Quality: Commission Takes Action to Protect Citizens from Air Pollution (Press Release); European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Bundesverwaltungsgericht Luftreinhaltepläne Düsseldorf und Stuttgart: Diesel-Verkehrsverbote Ausnahmsweise Möglich. Available online: https://www.bverwg.de/pm/2018/9 (accessed on 28 January 2019).
- Landesamt für Umwelt. Luftqualität in Brandenburg: Jahresbericht; Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft (MLUL): Potsdam, Germany, 2017. [Google Scholar]
- Action Plan on Urban Mobility; European Commission DG Energy and Transport: Brussels, Belgium, 2009.
- Chinellato, M.; Staelens, P.; Wennberg, H.; Sundberg, R.; Böhler, S.; Brand, L.; Adams, R.; Dragutescu, A.; Gertheis, A. Users’ Needs Analysis on SUMP Take Up; CIVITAS SUMPS-UP: Brussels, Belgium, 2017. [Google Scholar]
- Nikulina, V.; Simon, D.; Ny, H.; Baumann, H. Context-Adapted Urban Planning for Rapid Transitioning of Personal Mobility towards Sustainability: A Systematic Literature Review. Sustainability 2019, 11, 1007. [Google Scholar] [CrossRef]
- Russo, F.; Comi, A. Urban freight transport planning towards green goals: Synthetic environmental evidence from tested results. Sustainability 2016, 8, 381. [Google Scholar] [CrossRef]
- García, J.; Arroyo, R.; Mars, L.; Ruiz, T. The influence of attitudes towards cycling and walking on travel intentions and actual behavior. Sustainability 2019, 11, 2554. [Google Scholar] [CrossRef]
- Suchanek, M.; Szmelter-Jarosz, A. Environmental aspects of generation Y’s sustainable mobility. Sustainability 2019, 11, 3204. [Google Scholar] [CrossRef]
- Nilsson, A.; Hansla, A.; Heiling, J.M.; Bergstad, C.J.; Martinsson, J. Public acceptability towards environmental policy measures: Value-matching appeals. Environ. Sci. Policy 2016, 61, 176–184. [Google Scholar] [CrossRef]
- Kottenhoff, K.; Brundell Freij, K. The role of public transport for feasibility and acceptability of congestion charging - The case of Stockholm. Transp. Res. Part A Policy Pract. 2009, 43, 297–305. [Google Scholar] [CrossRef]
- Börjesson, M.; Hamilton, C.J.; Näsman, P.; Papaix, C. Factors driving public support for road congestion reduction policies: Congestion charging, free public transport and more roads in Stockholm, Helsinki and Lyon. Transp. Res. Part A Policy Pract. 2015, 78, 452–462. [Google Scholar] [CrossRef]
- Schuitema, G.; Steg, L.; Forward, S. Explaining differences in acceptability before and acceptance after the implementation of a congestion charge in Stockholm. Transp. Res. Part A 2010, 44, 99–109. [Google Scholar] [CrossRef]
- Kallbekken, S.; Garcia, J.H.; Korneliussen, K. Determinants of public support for transport taxes. Transp. Res. Part A Policy Pract. 2013, 58, 67–78. [Google Scholar] [CrossRef]
- Cherry, T.L.; Kallbekken, S.; Kroll, S. The impact of trial runs on the acceptability of environmental taxes: Experimental evidence. Resour. Energy Econ. 2014, 38, 84–95. [Google Scholar] [CrossRef]
- Kallbekken, S.; Sælen, H. Public acceptance for environmental taxes: Self-interest, environmental and distributional concerns. Energy Policy 2011, 39, 2966–2973. [Google Scholar] [CrossRef]
- Dieplinger, M.; Fürst, E. The acceptability of road pricing: Evidence from two studies in Vienna and four other European cities. Transp. Policy 2014, 36, 10–18. [Google Scholar] [CrossRef]
- Sørensen, C.H.; Isaksson, K.; Macmillen, J.; Åkerman, J.; Kressler, F. Strategies to manage barriers in policy formation and implementation of road pricing packages. Transp. Res. Part A Policy Pract. 2014, 60, 40–52. [Google Scholar] [CrossRef]
- Tretvik, T. Urban Road Pricing in Norway: Public Acceptability and Travel Behaviour. In Acceptability of Transport Pricing Strategies; Emerald Group Publishing Limited: Bingley, UK, 2003; pp. 77–92. [Google Scholar]
- Eriksson, L.; Garvill, J.; Nordlund, A.M. Acceptability of travel demand management measures: The importance of problem awareness, personal norm, freedom, and fairness. J. Environ. Psychol. 2006, 26, 15–26. [Google Scholar] [CrossRef]
- Eriksson, L.; Garvill, J.; Nordlund, A.M. Acceptability of single and combined transport policy measures: The importance of environmental and policy specific beliefs. Transp. Res. Part A Policy Pract. 2008, 42, 1117–1128. [Google Scholar] [CrossRef]
- Gärling, T.; Schuitema, G. Travel Demand Management Targeting Reduced Private Car Use: Effectiveness, Public Acceptability and Political Feasibility. J. Soc. Issues 2007, 63, 139–153. [Google Scholar] [CrossRef]
- Schöller-Schwedes, O. The failure of integrated transport policy in Germany: A historical perspective. J. Transp. Geogr. 2010, 18, 85–96. [Google Scholar] [CrossRef]
- Buehler, R. Transport policies, automobile use, and sustainable transport: A comparison of Germany and the United States. J. Plan. Educ. Res. 2010, 30, 76–93. [Google Scholar] [CrossRef]
- Buehler, R. Determinants of transport mode choice: A comparison of Germany and the USA. J. Transp. Geogr. 2011, 19, 644–657. [Google Scholar] [CrossRef]
- Gawel, E. Road pricing in Germany: A behavioral economics perspective. In New Perspectives for Environmental Policies Through Behavioral Economics2; Beckenbach, F., Kahlenborn, W., Eds.; Springer International Publishing Switzerland: Basel, Switzerland, 2016. [Google Scholar]
- Stern, P.C.; Dietz, T.; Abel, T.; Guagnano, G.A.; Kalof, L. A value-belief-norm theory of support for social movements: The case of environmentalism. Hum. Ecol. Rev. 1999, 6, 81–97. [Google Scholar]
- Ünal, A.B.; Steg, L.; Granskaya, J. “To support or not to support, that is the question”. Testing the VBN theory in predicting support for car use reduction policies in Russia. Transp. Res. Part A Policy Pract. 2019, 119, 73–81. [Google Scholar] [CrossRef]
- Schuitema, G.; Steg, L.; Rothengatter, J.A. The acceptability, personal outcome expectations, and expected effects of transport pricing policies. J. Environ. Psychol. 2010, 30, 587–593. [Google Scholar] [CrossRef]
- Krupnick, A.; Harrington, W.; Alberini, A. Public Support for Pollution Fee Policies for Motor Vehicles: Survey Results. Reg. Sci. Urban Econ. 2001, 31, 505–522. [Google Scholar] [CrossRef]
- Jakobsson, C.; Fujii, S.; Gärling, T. Determinants of private car users’ acceptance of road pricing. Transp. Policy 2000, 7, 153–158. [Google Scholar] [CrossRef]
- Poortinga, W.; Steg, L.; Vlek, C.; Wiersma, G. Household preferences for energy-saving measures: A conjoint analysis. J. Econ. Psychol. 2003, 24, 49–64. [Google Scholar] [CrossRef]
- Börjesson, M.; Eliasson, J.; Hamilton, C. Why experience changes attitudes to congestion pricing: The case of Gothenburg. Transp. Res. Part A Policy Pract. 2016, 85, 1–16. [Google Scholar] [CrossRef] [Green Version]
- De Groot, J.I.M.; Steg, L. Value Orientations to explain beliefs related to environmental significant behavior. Environ. Behav. 2008, 40, 330–354. [Google Scholar] [CrossRef]
- De Groot, J.I.M.; Steg, L.; Dicke, M. Transportation trends from a moral perspective: Value orientations, norms, and reducing car use. In New Transportation Research Progress; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2007; ISBN 978-1-60456-032-9. [Google Scholar]
- Landeshauptstadt Potsdam. Potsdam als Wissenschaftsstadt Bürgerumfrage; Landeshauptstadt Potsdam: Potsdam, Germany, 2015. [Google Scholar]
- Benthin, R.; Gellrich, A.; Scholl, G.; Holzhauer, B.; Schipperges, M. Umweltbewusstsein in Deutschland; Umweltbundesamt: Dessau-Roßlau, Germany, 2016. [Google Scholar]
- European Commission Attitudes of Europeans towards air quality. Flash Eurobarom. 2013, 360, 167.
- Draugalis, J.R.; Coons, S.J.; Plaza, C.M. Best practices for survey research reports: A synopsis for authors and reviewers. Am. J. Pharm. Educ. 2008, 72, 11. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.; Weiand, L.; Becker, S.; Niehoff, N.; Schwartzbach, F.; von Schneidemesser, E. An assessment of perceptions of air quality surrounding the implementation of a traffic-reduction measure in a local urban environment. Sustain. Cities Soc. 2018, 41, 525–537. [Google Scholar] [CrossRef]
- Rubin, D. Inference and missing data. Biometrika 1976, 63, 581–592. [Google Scholar] [CrossRef]
- Van der Heijden, P.G.; Escofier, B. Multiple Correspondence Analysis with missing data. In Analyse des Correspondances; Presses de RennesRennes: Rennes, France, 2003. [Google Scholar]
- Josse, J.; Husson, F. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 2016, 70, 1–31. [Google Scholar] [CrossRef]
- Josse, J.; Chavent, M.; Liquet, B.; Husson, F. Handling missing values with regularized iterative multiple correspondence analysis. J. Classif. 2012, 29, 91–116. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R Package for Variable Selection Using Random Forests. R J. 2015, 7, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression with Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Goeman, J.; Meijer, R.; Chaturvedi, N. L1 and L2 Penalized Regression Models. Available online: http://cran. nedmirror. nl/web/packages/penalized/vignettes/penalized.pdf (accessed on 15 February 2019).
- Judd, C.M.; Mclelland, G.H.; Ryan, C. Data Analysis: A Model Comparison Approach; Harcourt Brace Jovanovich: San Diego, CA, USA, 1989. [Google Scholar]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminformatics 2014, 6, 10. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Weiand, L.; Schmitz, S.; Becker, S.; Niehoff, N.; Schwartzbach, F.; Von Schneidemesser, E. Climate change and air pollution: The connection between traffic intervention policies and public acceptance in a local context. Environ. Res. Lett. 2019, in press. [Google Scholar] [CrossRef]
- Weiand, L.; Schmitz, S.; von Schneidemesser, E. Mobilität, Luftqualität und Nachhaltige Städte: Sichtweisen der Öffentlichkeit; Institute for Advanced Sustainability Studies (IASS) e.V.: Potsdam, Germany, 2018. [Google Scholar]
- Land Brandenburg. Luftreinhalteplan für die Landeshauptstadt Potsdam Fortschreibung 2015/2016 Abschlussbericht; Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft: Potsdam, Germany, 2016. [Google Scholar]
- Steg, L. Can Public Transport Compete With the Private Car? IATSS Res. 2003, 27, 27–35. [Google Scholar] [CrossRef]
- ELTISplus. The State-of-the-Art of Sustainable Urban Mobility Plans in Europe; Rupprecht Consult—Forschung und Beratung Gmbh: Cologne, Germany, 2012. [Google Scholar]
Support_Nocars | Support_Measure | |||
---|---|---|---|---|
No Potsdam Traffic Measure Variables | All Variables | No Potsdam Traffic Measure Variables | ||
measure_aq_limit_traffic | cc_concern | effect_mobility | measure_aq_limit_traffic | zep_freq_work_bike |
use_car | measure_aq_car | effect_lifequal | use_car | zep_freq_priv_public |
decision_env | zep_freq_work_car | effect_health | decision_env | future_foot |
future_public | income | effect_aq | use_bike | budget_env |
future_bike | zep_freq_work_public | support_nocars | future_bike | access_public |
health_air_poll | zep_freq_work_bike | measure_aq_limit_traffic | access_bike | health_air_poll |
budget_env | filter_km_studyarea | effect_cc | zep_freq_work_car | measure_aq_indus_energy |
air_transportation | zep_freq_priv_foot | effect_smell | zep_freq_priv_bike | aq_concern |
cc_affected | future_carpool | use_public | qualification | |
use_public | future_carshare | future_public | zep_freq_work_public | |
use_bike | person_house | zep_freq_work_foot | access_foot | |
zep_freq_priv_bike | informed_wishes | future_carshare | use_carshare | |
qualification | measure_aq_indus_energy | filter_km_studyarea | zep_freq_work_foot | |
zep_freq_priv_car | resident_location | air_transportation | person_house | |
access_bike | future_foot | zep_freq_priv_foot | kids_house | |
env_pollution | use_foot | env_deforest | ||
aq_concern | informed_aq | |||
access_public | age | |||
zep_freq_priv_public |
Variable Category | Log-Odds Coefficient | Odds Ratio | Probability P(sup) |
---|---|---|---|
X-Intercept | −1.33 | ||
measure_aq_limit_traffic yes | 1.33 | 3.80 | 0.79 |
budget_env very low priority | −0.94 | 0.39 | 0.28 |
future_public yes | 0.90 | 2.45 | 0.71 |
use_car daily or almost daily | −0.54 | 0.58 | 0.37 |
air_transportation yes | 0.42 | 1.52 | 0.60 |
decision_env 6 = not at all important | −0.37 | 0.69 | 0.41 |
health_air_poll yes | 0.31 | 1.37 | 0.58 |
cc_concern 6 = very concerned | 0.31 | 1.36 | 0.58 |
measure_aq_car yes | 0.30 | 1.35 | 0.57 |
budget_env very high priority | 0.30 | 1.35 | 0.57 |
future_bike yes | 0.28 | 1.33 | 0.57 |
future_carpool yes | 0.28 | 1.33 | 0.57 |
future_public maybe | 0.26 | 1.29 | 0.56 |
income 60 to 69,999 EUR | 0.25 | 1.28 | 0.56 |
env_pollution yes | 0.23 | 1.26 | 0.56 |
use_bike daily or almost daily | 0.22 | 1.25 | 0.56 |
measure_aq_indus_energy yes | −0.21 | 0.81 | 0.45 |
Variable Category | Log-Odds Coefficient | Odds Ratio | Probability P(sup) |
---|---|---|---|
X-Intercept | −3.46 | ||
effect_lifequal greatly improve | 2.22 | 9.17 | 0.90 |
effect_lifequal improve | 1.53 | 4.63 | 0.82 |
measure_aq_limit_traffic yes | 1.12 | 3.07 | 0.75 |
support_nocars yes, I strongly support it | 1.02 | 2.78 | 0.74 |
effect_mobility greatly worsen | −0.84 | 0.43 | 0.30 |
effect_mobility greatly improve | 0.74 | 2.09 | 0.68 |
effect_health improve | 0.63 | 1.87 | 0.65 |
effect_mobility improve | 0.61 | 1.84 | 0.65 |
effect_aq improve | 0.53 | 1.70 | 0.63 |
effect_aq greatly improve | 0.45 | 1.56 | 0.61 |
Variable Category | Log-Odds Coefficient | Odds Ratio | Probability P(sup) |
---|---|---|---|
X-Intercept | −3.65 | ||
measure_aq_limit_traffic yes | 2.29 | 9.90 | 0.91 |
use_car daily or almost daily | −0.85 | 0.43 | 0.30 |
future_carshare yes | 0.63 | 1.88 | 0.65 |
budget_env very high priority | 0.58 | 1.79 | 0.64 |
use_bike daily or almost daily | 0.48 | 1.62 | 0.62 |
future_bike yes | 0.45 | 1.56 | 0.61 |
use_public on 1 to 3 days a week | 0.42 | 1.52 | 0.60 |
decision_env 3 | −0.39 | 0.68 | 0.40 |
env_deforest yes | −0.38 | 0.68 | 0.41 |
future_public yes | 0.37 | 1.44 | 0.59 |
measure_aq_indus_energy yes | −0.30 | 0.74 | 0.42 |
access_public good | 0.26 | 1.30 | 0.56 |
zep_freq_work_bike daily or almost daily | 0.26 | 1.29 | 0.56 |
qualification master’s degree | 0.22 | 1.25 | 0.56 |
Hypothetical Support | Both | Actual Support |
---|---|---|
|
|
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, S.; Becker, S.; Weiand, L.; Niehoff, N.; Schwartzbach, F.; von Schneidemesser, E. Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality. Sustainability 2019, 11, 3991. https://doi.org/10.3390/su11143991
Schmitz S, Becker S, Weiand L, Niehoff N, Schwartzbach F, von Schneidemesser E. Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality. Sustainability. 2019; 11(14):3991. https://doi.org/10.3390/su11143991
Chicago/Turabian StyleSchmitz, Seán, Sophia Becker, Laura Weiand, Norman Niehoff, Frank Schwartzbach, and Erika von Schneidemesser. 2019. "Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality" Sustainability 11, no. 14: 3991. https://doi.org/10.3390/su11143991
APA StyleSchmitz, S., Becker, S., Weiand, L., Niehoff, N., Schwartzbach, F., & von Schneidemesser, E. (2019). Determinants of Public Acceptance for Traffic-Reducing Policies to Improve Urban Air Quality. Sustainability, 11(14), 3991. https://doi.org/10.3390/su11143991