Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Production System in Azores
2.1.1. Study Region
2.1.2. Sampled Farms
2.2. Carbon Footprint
2.2.1. Goal and Scope
2.2.2. Life Cycle Inventory
2.2.3. Life Cycle Impact Assessment and Interpretation
2.3. Comparison with the Literature
3. Results
3.1. Characterization of the Production System
3.2. Carbon Footprint Analysis
3.3. Comparison with the Literature
4. Discussion
4.1. Main Sources of Impact and Uncertainty
4.1.1. Methane Emissions
4.1.2. Nitrogen Emissions
4.1.3. Nitrogen Excretion
4.2. Indirect Sources of Emissions
4.3. Take-Aways for Farm Management
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leip, A.; Weiss, F.; Wassenaar, T.; Perez, I.; Fellmann, T.; Loudjani, P.; Tubiello, F.; Grandgirard, D.; Monni, S.; Biala, K. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas Emissions (GGELS)—Final Report; European Commission, Joint Research Centre: Ispra, Italy, 2010. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falculli, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- FAO. Environmental Performance of Large Ruminant Supply Chains: Guidelines for Assessment; Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2016. [Google Scholar]
- Guinée, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2002, 7, 311–313. [Google Scholar] [CrossRef]
- Hellweg, S.; Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Foster, C.; Green, K.; Bleda, M.; Dewik, P. Environmental Impacts of Food Production and Consumption; Final Report; Department for Environment Food and Rural Affairs: Manchester, UK, 2007. [Google Scholar]
- Notarnicola, B.; Hayashi, K.; Curran, M.A.; Huisingh, D. Progress in working towards a more sustainable agri-food industry. J. Clean. Prod. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Domingos, T. The effects on greenhouse gas emissions of sustainable intensification of meat production with rainfed sown biodiverse pastures. Sustainability 2018. under revision. [Google Scholar]
- Zucali, M.; Tamburini, A.; Sandrucci, A.; Bava, L. Global warming and mitigation potential of milk and meat production in Lombardy (Italy). J. Clean. Prod. 2017, 153, 474–482. [Google Scholar] [CrossRef]
- Chobtang, J.; Ledgard, S.F.; McLaren, S.J.; Zonderland-Thomassen, M.; Donaghy, D.J. Appraisal of environmental profiles of pasture-based milk production: A case study of dairy farms in the Waikato region, New Zealand. Int. J. Life Cycle Assess. 2016, 21, 311–325. [Google Scholar] [CrossRef]
- Christie, K.M.; Rawnsley, R.P.; Eckard, R.J. A whole farm systems analysis of greenhouse gas emissions of 60 Tasmanian dairy farms. Anim. Feed Sci. Technol. 2011, 166–167, 653–662. [Google Scholar] [CrossRef]
- Schader, C.; Jud, K.; Meier, M.S.; Kuhn, T.; Oehen, B.; Gattinger, A. Quantification of the effectiveness of greenhouse gas mitigation measures in Swiss organic milk production using a life cycle assessment approach. J. Clean. Prod. 2014, 73, 227–235. [Google Scholar] [CrossRef]
- Guerci, M.; Knudsen, M.T.; Bava, L.; Zucali, M.; Schönbach, P.; Kristensen, T. Parameters affecting the environmental impact of a range of dairy farming systems in Denmark, Germany and Italy. J. Clean. Prod. 2013, 54, 133–141. [Google Scholar] [CrossRef]
- Brentrup, F.; Pallière, C. GHG Emissions and Energy Efficiency in European Nitrogen Fertiliser Production and Use. In Proceedings of the International Fertiliser Society, Cambridge, UK, 11 December 2008; International Fertiliser Society: York, UK, 2008; pp. 1–15. [Google Scholar]
- O’Brien, D.; Shalloo, L.; Patton, J.; Buckley, F.; Grainger, C.; Wallace, M. A life cycle assessment of seasonal grass-based and confinement dairy farms. Agric. Syst. 2012, 107, 33–46. [Google Scholar] [CrossRef]
- Lehuger, S.; Gabrielle, B.; Gagnaire, N. Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed. J. Clean. Prod. 2009, 17, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Chobtang, J.; McLaren, S.J.; Ledgard, S.F.; Donaghy, D.J. Environmental trade-offs associated with intensification methods in a pasture-based dairy system using prospective attributional Life Cycle Assessment. J. Clean. Prod. 2017, 143, 1302–1312. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental consequences of different beef production systems in the EU. J. Clean. Prod. 2010, 18, 756–766. [Google Scholar] [CrossRef]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Animal Production and Health Division, Ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 978-92-5-107945-4. [Google Scholar]
- Weidema, B.P.; Wesnae, M.; Hermansen, J.; Kristensen, I.; Halberg, N. Environmental Improvement Potentials of Meat and Dairy Products; Eder, P., Delgado, L., Eds.; Office for Official Publications of the European Communities: Luxembourg, 2008; Volume 23491. [Google Scholar]
- Bargo, F.; Muller, L.D.; Delahoy, J.E.; Cassidy, T.W. Milk Response to Concentrate Supplementation of High Producing Dairy Cows Grazing at Two Pasture Allowances. J. Dairy Sci. 2002, 85, 1777–1792. [Google Scholar] [CrossRef]
- Hills, J.L.; Wales, W.J.; Dunshea, F.R.; Garcia, S.C.; Roche, J.R. Invited review: An evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 2015, 98, 1363–1401. [Google Scholar] [CrossRef] [PubMed]
- Baldini, C.; Gardoni, D.; Guarino, M. A critical review of the recent evolution of Life Cycle Assessment applied to milk production. J. Clean. Prod. 2017, 140, 421–435. [Google Scholar] [CrossRef]
- Cardoso, P.; Gaspar, C.; Borges, P.A.V.; Amorim, I.R.; Martins, A.F.; Maduro-Dias, F.; Porteiro, J.M.; Silva, L.; Pereira, F. Açores: Um retrato natural. In Azores: A Natural Portrait/Açores: Um Retrato Natural; Cardoso, P., Gaspar, C., Borges, P.A.V., Gabriel, R., Amorim, I.R., Martins, A.F., Maduro-Dias, F., Porteiro, J.M., Silva, L., Pereira, F., Eds.; Ver Açor: Ponta Delgada, Portugal, 2009; p. 235. ISBN 9898123169. [Google Scholar]
- Souto, L.F.; Meneses, J.F.; Bruce, J.M. Prediction of the energy balance and milk production of grazing cows in the Azores for autumn and spring calving. Biosyst. Eng. 2011, 110, 57–65. [Google Scholar] [CrossRef]
- Gomes, A. Performance of Lolium perenne with Trifolium repens, and spontaneous grasses with Trifolium repens, in Azores. In Grassland in a Changing World, Proceedings of the 23rd General Meeting of the European Grassland Federation, Kiel, Germany, 29 August–2 September 2010; Mecke Druck und Verlag: Duderstadt, Germany, 2010; pp. 952–954. [Google Scholar]
- Rodrigues, N.P.P.d.S.C. Influência da fertilizaçao azotada na produção, composição botânica e qualidade de pastagens na Ilha do Faial, Açores. Master’s Thesis, British International Studies Association, Aberystwyth, UK, 2010. [Google Scholar]
- Leitão, L.; Cameira, M.; Pato, R.; Costa, M.; Hortas, M.; D’Eça, P. Estudo de Caracterização do Impacte Ambiental da Produção Intensiva de Leite nas Regiões de Entre Douro e Minho e da Beira Litoral; PAMAF–Medida 4, acção 4.4.; Estudos Estratégicos. Projecto no. 442 992 056; FENALAC–Federação Nacional das Uniões de Cooperativas de Leite e Lacticínios: Valencia, Spain, 2001. [Google Scholar]
- INE Estatísticas da Produção e Consumo de Leite 2015; Instituto Nacional de Estatistica: Lisboa, Portugal, 2015.
- Castanheira, É.G.; Dias, A.C.; Arroja, L.; Amaro, R. The environmental performance of milk production on a typical Portuguese dairy farm. Agric. Syst. 2010, 103, 498–507. [Google Scholar] [CrossRef]
- SREA VAB por CAE—Valor Acrescentado Bruto. Available online: http://srea.azores.gov.pt/Reportserver?%2FRelatoriosVarios%2FMacroeconómicos-Valor+Acrescentado+Bruto&rs:Command=Render (accessed on 29 December 2017).
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization. ISO 14040 Environmental Management Life Cycle Assessment Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14067:2013 Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification and Communication; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- International Dairy Federation (IDF). Bulletin of the IDF N° 479/2015: A Common Carbon Footprint Approach for the Dairy Sector—The IDF Guide to Standard Life Cycle Assessment Methodology; International Dairy Federation (IDF): Brussels, Belgium, 2015. [Google Scholar]
- Sjaunja, L. A Nordic proposal for an energy-corrected milk (ECM) formula. In Proceedings of the 27th Biennial Session of the International Committee for Animal Recording (ICAR), Paris, France, 2–6 July 1990. [Google Scholar]
- International Dairy Federation (IDF). Environmental/Ecological impact of the dairy sector: Literature review on dairy products for an inventory of key issues, list of environmental initiatives and influences on the dairy sector. In Bulletin of the International Dairy Federation 436; International Dairy Federation (IDF): Brussels, Belgium, 2009. [Google Scholar]
- Morais, T.G.; Teixeira, R.F.; Domingos, T. A step toward regionalized scale-consistent agricultural life cycle assessment inventories. Integr. Environ. Assess. Manag. 2017, 13, 939–951. [Google Scholar] [CrossRef] [PubMed]
- The Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change; IPCC: Kanagawa, Japan, 2006. [Google Scholar]
- APA. Portuguese National Inventory Report on Greenhouse Gases, 1990–2018; Portuguese Environmental Agency (APA): Amadora, Portugal, 2018. [Google Scholar]
- ADP Fichas de Especificação. Available online: http://www.adp-fertilizantes.pt/templates/template5.aspx?M=120&F=23&L=24 (accessed on 25 July 2017).
- INRA; CIRAD; AFZ; FAO. Feedipedia—Animal Feed Resources Information System. Available online: http://www.feedipedia.org/content/feeds?category=13594 (accessed on 25 July 2017).
- ADEME. AGRIBALYSE®: Rapport Méthodologique–Version 1.0; ADEME: Angers, France, 2013. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The ecoinvent Database: Overview and Methodological Framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- REN. Technical Report 2016; Rede Eletrica Nacional: Lisbon, Portugal, 2016. [Google Scholar]
- IPCC. IPCC Fourth Assessment Report. Climate Change 2007. Working Group I: The Physical Science Basis. Available online: http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html (accessed on 20 May 2006).
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Kanyarushoki, C.; Corson, M.S. An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. J. Environ. Manag. 2009, 90, 3643–3652. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.G.; Teixeira, R.F.M.; Domingos, T. Regionalization of agri-food life cycle assessment: A review of studies in Portugal and recommendations for the future. Int. J. Life Cycle Assess. 2016, 21, 875–884. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Ledgard, S.; Carran, A. First Life Cycle Assessment of Milk Production from New Zealand Dairy Farm Systems. In Proceedings of the Australia New Zealand Society for Ecological Economics Conference, Palmerston North, New Zealand, 11–13 December 2005; pp. 258–265. [Google Scholar]
- Basset-Mens, C.; Ledgard, S.; Boyes, M. Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol. Econ. 2009, 68, 1615–1625. [Google Scholar] [CrossRef]
- Soltanali, H.; Emadi, B.; Rohani, A.; Khojastehpour, M.; Nikkhah, A. Life Cycle Assessment modeling of milk production in Iran. Inf. Process. Agric. 2015, 2, 101–108. [Google Scholar] [CrossRef]
- Mc Geough, E.J.; Little, S.M.; Janzen, H.H.; McAllister, T.A.; McGinn, S.M.; Beauchemin, K. A Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study. J. Dairy Sci. 2012, 95, 5164–5175. [Google Scholar] [CrossRef] [PubMed]
- De Léis, C.M.; Cherubini, E.; Ruviaro, C.F.; Prudêncio da Silva, V.; do Nascimento Lampert, V.; Spies, A.; Soares, S.R. Carbon footprint of milk production in Brazil: A comparative case study. Int. J. Life Cycle Assess. 2014, 20, 46–60. [Google Scholar] [CrossRef]
- Dall-Orsoletta, A.C.; Almeida, J.G.R.; Carvalho, P.C.F.; Savian, J.V.; Ribeiro-Filho, H.M.N. Ryegrass pasture combined with partial total mixed ration reduces enteric methane emissions and maintains the performance of dairy cows during mid to late lactation. J. Dairy Sci. 2016, 99, 4374–4383. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Gervais, R.; Chouinard, P.Y.; Petit, H.V.; Massé, D.I. Methane production, digestion, ruminal fermentation, nitrogen balance, and milk production of cows fed corn silage- or barley silage-based diets. J. Dairy Sci. 2014, 97, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Hassanat, F.; Gervais, R.; Julien, C.; Massé, D.I.; Lettat, A.; Chouinard, P.Y.; Petit, H.V.; Benchaar, C. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 4553–4567. [Google Scholar] [CrossRef] [PubMed]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed]
- Moraes, L.E.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Chang. Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities; Main Report. Defra Research Project IS0205; Cranfield University and Defra: Bedford, UK, 2006. [Google Scholar]
- Kelliher, F.M.; Cox, N.; Van Der Weerden, T.J.; De Klein, C.A.M.; Luo, J.; Cameron, K.C.; Di, H.J.; Giltrap, D.; Rys, G. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 2014, 186, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Saggar, S.; Giltrap, D.L.; Davison, R.; Gibson, R.; de Klein, C.A.; Rollo, M.; Ettema, P.; Rys, G. Estimating direct N2O emissions from sheep, beef, and deer grazed pastures in New Zealand hill country: Accounting for the effect of land slope on the N2O emission factors from urine and dung. Agric. Ecosyst. Environ. 2015, 205, 70–78. [Google Scholar] [CrossRef]
- De Klein, C.A.M.; Barton, L.; Sherlock, R.R.; Li, Z.; Littlejohn, R.P. Estimating a nitrous oxide emission factor for animal urine from some New Zealand pastoral soils. Aust. J. Soil Res. 2003, 41, 381. [Google Scholar] [CrossRef]
- NIWA Overview of New Zealand’s Climate. Available online: https://www.niwa.co.nz/education-and-training/schools/resources/climate/overview (accessed on 3 October 2018).
- Rösemann, C.; Haenel, H.-D.; Dämmgen, U.; Poddey, E.; Freibauer, A.; Wulf, S.; Eurich-Menden, B.; Döhler, H.; Schreiner, C.; Bauer, B.; et al. Calculations of Gaseous and Particulate Emissions from German Agriculture 1990–2011; Report on Methods and Data (RMD) Submission 2013; Thünen Report, No. 1; IDEAS: Sharjah, UAE, 2013. [Google Scholar]
- Energy Research Centre of the Netherlands Phyllis2—Database for Biomass and Waste. Available online: Https://www.ecn.nl/phyllis2 (accessed on 3 October 2018).
- Lovett, D.K.; Shalloo, L.; Dillon, P.; O’Mara, F.P. A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agric. Syst. 2006, 88, 156–179. [Google Scholar] [CrossRef]
- Zehetmeier, M.; Baudracco, J.; Hoffmann, H.; Heißenhuber, A. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal 2012, 6, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, T.; Mogensen, L.; Knudsen, M.T.; Hermansen, J.E. Effect of production system and farming strategy on greenhouse gas emissions from commercial dairy farms in a life cycle approach. Livest. Sci. 2011, 140, 136–148. [Google Scholar] [CrossRef]
- IACA. Anuário 2016; Associação Portuguesa dos Industriais de Alimentos Compostos Para Animais: Lisbon, Portugal, 2016. [Google Scholar]
- Yan, M.-J.; Humphreys, J.; Holden, N.M. Life cycle assessment of milk production from commercial dairy farms: The influence of management tactics. J. Dairy Sci. 2013, 96, 4112–4124. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, M.A.; Dalgaard, R.; Heijungs, R.; De Boer, I. Attributional and consequential LCA of milk production. Int. J. Life Cycle Assess. 2008, 13, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Bartl, K.; Gómez, C.A.; Nemecek, T. Life cycle assessment of milk produced in two smallholder dairy systems in the highlands and the coast of Peru. J. Clean. Prod. 2011, 19, 1494–1505. [Google Scholar] [CrossRef]
- Teixeira, R.F.M.; Morais, T.G.; Domingos, T. A practical comparison of regionalized land use and biodiversity life cycle impact assessment models using livestock production as a case study. Sustainabilty 2018. under revision. [Google Scholar]
- Chaudhary, A.; Brooks, T.M. Land Use Intensity-specific Global Characterization Factors to Assess Product Biodiversity Footprints. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Verones, F.; de Baan, L.; Hellweg, S. Quantifying Land Use Impacts on Biodiversity: Combining Species-Area Models and Vulnerability Indicators. Environ. Sci. Technol. 2015, 49, 9987–9995. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.G.; Domingos, T.; Teixeira, R.F.M. A spatially explicit life cycle assessment midpoint indicator for soil quality in the European Union using soil organic carbon. Int. J. Life Cycle Assess. 2016, 21, 1076–1091. [Google Scholar] [CrossRef]
- Teixeira, R.F.M.; Morais, T.G.; Domingos, T. Consolidating regionalized global characterization factors for soil organic carbon depletion due to land occupation and transformation. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cao, V.; Margni, M.; Favis, B.D.; Deschênes, L. Aggregated indicator to assess land use impacts in life cycle assessment (LCA) based on the economic value of ecosystem services. J. Clean. Prod. 2015, 94, 56–66. [Google Scholar] [CrossRef]
- Virgílio Cruz, J.; Silva, M.O.; Dias, M.I.; Isabel Prudêncio, M. Groundwater composition and pollution due to agricultural practices at Sete Cidades volcano (Azores, Portugal). Appl. Geochem. 2013, 29, 162–173. [Google Scholar] [CrossRef]
- Melo, A.; Cruz, J.V.; Coutinho, R. River water composition in volcanic islands: Characterization and main hydrogeochemical processes in São Miguel island (Azores, Portugal). Comunicações Geológicas 2014, 101, 693–696. [Google Scholar]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Park, J.H.; Ki, K.S.; Lim, D.H.; Kim, S.B.; Park, S.M.; Jeong, H.Y.; Park, B.Y.; Kim, T. The effect of lactation number, stage, length, and milking frequency on milk yield in Korean Holstein dairy cows using automatic milking system. Asian-Australas. J. Anim. Sci. 2017, 30, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, S.C.N. Desempenho produtivo e reprodutivo de vacas Holstein-Frísia em comparação com os respectivos cruzamentos com vermelha sueca e Montbéliarde. Master’s Thesis, Instituto Superior de Agronomia, Lisbon, Portugal, 2013. [Google Scholar]
- Teixeira, R.F.M.; Barão, L.; Morais, T.G.; Domingos, T. Determining Estimating the greenhouse gas balance of natural and sown pastures using a carbon and nitrogen mass balance approach. Sustainability 2018. under revision. [Google Scholar]
- Del Prado, A.; Brown, L.; Schulte, R.; Ryan, M.; Scholefield, D. Principles of Development of a Mass Balance N Cycle Model for Temperate Grasslands: An Irish Case Study. Nutr. Cycl. Agroecosyst. 2006, 74, 115–131. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Rodrigues, N.R.; Domingos, T. Characterizing livestock production in Portuguese sown rainfed grasslands: Applying the inverse approach to a process-based model. Sustainability 2018. under revision. [Google Scholar]
- Ali, I.; Cawkwell, F.; Green, S.; Dwyer, N. Application of statistical and machine learning models for grassland yield estimation based on a hypertemporal satellite remote sensing time series. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Beijing, China, 13–18 July 2014; pp. 5060–5063. [Google Scholar]
- INE. Estatísticas do Ambiente 2016; Instituto Nacional de Estatistica: Lisboa, Portugal, 2017. [Google Scholar]
Unit | Mean | Standard Deviation | Min | Max | ||
---|---|---|---|---|---|---|
General farms traits | Area | ha | 74 | 83 | 15 | 342 |
Total milking cows | number | 95 | 62 | 40 | 297 | |
Total dry cows | number | 14 | 15 | 4 | 75 | |
Total heifers | number | 56 | 110 | 0 | 567 | |
Total other animal classes | number | 28 | 16 | 6 | 63 | |
Stocking rate (milking cows) | cow/ha | 1.82 | 0.96 | 0.72 | 4.63 | |
Replacement rate | % | 40 | 12 | 15 | 151 | |
Milk yield | kg milk/cow.year | 9088 | 2083 | 5398 | 15,800 | |
Agricultural operations | h/ha | 7 | 4 | 2 | 15 | |
Farm inputs | Inorganic Fertilizer | kg N/ha | 663 | 288 | 163 | 1643 |
Organic fertilizer | kg N/ha | 329 | 208 | 0 | 805 | |
Fossil energy | kg | 14,078 | 15,197 | 490 | 76,939 | |
Electricity | kWh | 22,886 | 22,024 | 0 | 83,251 | |
Concentrated feed | kg/cow | 3636 | 1118 | 2034 | 6523 | |
Cleaning agents | kg | 1118 | 1116 | 50 | 4757 | |
Farm output | Milk production | kg | 861,883 | 626,957 | 322,185 | 3,170,128 |
Protein content | % | 3.18 | 0.09 | 3.01 | 3.41 | |
Fat content | % | 3.68 | 0.27 | 3.05 | 4.07 |
Ingredient | Production Region | Percentage | Emission (kg CO2e/kg Ingredient) |
---|---|---|---|
Barley grain | France | 62 | 0.57 |
Olive bagasse | France | 18 | 0.62 |
Palm bagasse | Malaysia | 10 | 1.25 |
Wheat bran | France | 5 | 0.47 |
Calcium carbonate | Europe | 3 | 0.4 |
Monocalcium phosphate | Europe | 1 | 0.5 |
Chloride sodium | Europe | 1 | 0.4 |
Source | Unit | Mean | Standard Deviation | Min | Max | |
---|---|---|---|---|---|---|
CF per source | Enteric fermentation | kg CO2e | 377,022 | 296,974 | 153,887 | 1,589,401 |
Concentrated feed | 239,591 | 237,455 | 53,397 | 1,272,907 | ||
Fertilization | 61,518 | 53,344 | 15,450 | 211,154 | ||
Manure during grazing | 123,884 | 93,005 | 54,497 | 496,768 | ||
Agricultural operations | 11,472 | 7477 | 3252 | 38,150 | ||
Energy | 20,781 | 17,291 | 2959 | 69,996 | ||
Cleaning products | 10 | 10 | 0 | 43 | ||
Functional Unit (FU) | ||||||
CF per FU | Farm | kg CO2e/FU | 1,136,056 | 671,696 | 282,943 | 3,045,093 |
Farm area (ha) | 12,351 | 6,973 | 4996 | 27,351 | ||
Cows | 7893 | 1480 | 5580 | 11,115 | ||
kg milk | 0.83 | 0.13 | 0.58 | 1.03 | ||
kg ECM | 0.93 | 0.14 | 0.63 | 1.17 | ||
kg FPCM | 0.89 | 0.13 | 0.60 | 1.13 |
Multivariate Regression (All Variables) | Multivariate Regression (Most Significant Variables) | ||||
---|---|---|---|---|---|
Parameter | Coefficient | Unit | p-Value | Coefficient | p-Value |
Constant | 3.76 × 10−1 | kg CO2e/kg milk | 0.001 * | 4.03 × 10−1 | 0.000 * |
Concentrated feed | 7.07 × 10−2 | kg CO2e/kg conc. feed | 0.686 | - | - |
Milking cows | 2.70 × 103 | kg CO2e/cow | 0.000 * | 2.67 × 103 | 0.000 * |
Dry cows | 3.88 × 103 | kg CO2e/cow | 0.034 * | 3.94 × 103 | 0.028 * |
Heifers | 1.21 × 103 | kg CO2e/heifer | 0.007 * | 1.26 × 10−2 | 0.003 * |
R Ratio * | Number of Studies | CF (kg CO2e/kg Milk) | |||
---|---|---|---|---|---|
Mean | Standard Deviation | Min | Max | ||
[0–0.11] | 17 | 1.16 | 0.31 | 0.89 | 1.81 |
]0.11–0.21] | 17 | 0.90 | 0.12 | 0.79 | 1.13 |
]0.21–0.37] | 17 | 1.08 | 0.05 | 0.99 | 1.11 |
]0.37–1.31] | 18 | 1.33 | 0.56 | 0.56 | 1.96 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, T.G.; Teixeira, R.F.M.; Rodrigues, N.R.; Domingos, T. Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal. Sustainability 2018, 10, 3658. https://doi.org/10.3390/su10103658
Morais TG, Teixeira RFM, Rodrigues NR, Domingos T. Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal. Sustainability. 2018; 10(10):3658. https://doi.org/10.3390/su10103658
Chicago/Turabian StyleMorais, Tiago G., Ricardo F. M. Teixeira, Nuno R. Rodrigues, and Tiago Domingos. 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal" Sustainability 10, no. 10: 3658. https://doi.org/10.3390/su10103658
APA StyleMorais, T. G., Teixeira, R. F. M., Rodrigues, N. R., & Domingos, T. (2018). Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal. Sustainability, 10(10), 3658. https://doi.org/10.3390/su10103658