Cartilage Conduction Sounds in Cases of Wearing Different Transducers on a Head and Torso Simulator with a Manipulated Ear Pinna Simulator
Abstract
:1. Introduction
2. Method
2.1. General Methods
2.2. Cartilage Conduction Transducers
2.3. Measurement of Airborne Sound
2.4. Measurement of Cartilage Conduction Sound
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosoi, H. Receiver. Japanese Patent Application Number 166644, 4 June 2004. [Google Scholar]
- Hosoi, H. Approach in the Use of Cartilage Conduction Speaker. Japanese Patent Number 4541111, 17 November 2004. [Google Scholar]
- Hosoi, H.; Nishimura, T.; Shimokura, R.; Kitahara, T. Cartilage conduction as the third pathway for sound transmission. Auris Nasus Larynx 2019, 46, 151–159. [Google Scholar] [CrossRef]
- Shimokura, R.; Hosoi, H.; Nishimura, T.; Yamanaka, T.; Levitt, H. Cartilage conduction hearing. J. Acoust. Soc. Am. 2014, 135, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Hosoi, H.; Saito, O.; Miyamae, R.; Shimokura, R.; Matsui, T.; Yamanaka, T.; Levitt, H. Is cartilage conduction classified into air or bone conduction? Laryngoscope 2014, 124, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Hosoi, H.; Saito, O.; Miyamae, R.; Shimokura, R.; Yamanaka, T.; Kitahara, T.; Levitt, H. Cartilage conduction is characterized by vibrations of the cartilaginous portion of the ear canal. PLoS ONE 2015, 10, e0120135. [Google Scholar] [CrossRef] [PubMed]
- Yazama, H.; Arii, S.; Kataoka, H.; Watanabe, T.; Kamitani, R.; Fujiwara, K. In vivo measurement of ear ossicle and bony wall vibration by sound stimulation of cartilage conduction. Audiol. Res. 2023, 13, 495–505. [Google Scholar] [CrossRef]
- Vento, B.A.; Durrant, J.D. Assessing bone conduction thresholds in clinical practice. In Handbook of Clinical Audiology; Katz, J., Burkard, R., Hood, L., Medwetsky, L., Eds.; Lippincott, Williams & Wilkins: Baltimore, MD, USA, 2009. [Google Scholar]
- Ravicz, M.E.; Melcher, J.R. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and body. J. Acoust. Soc. Am. 2001, 109, 216–231. [Google Scholar] [CrossRef]
- Verrecchia, L.; Fredén Jansson, K.J.; Westin, M.; Velikoselskii, A.; Reinfeldt, S.; Håkansson, B. Ankle Audiometry: A Clinical Test for the Enhanced Hearing Sensitivity for Body Sounds in Superior Canal Dehiscence Syndrome. Audiol. Neurootol. 2023, 28, 219–229. [Google Scholar] [CrossRef]
- Brantberg, K.; Verrecchia, L.; Westin, M. Enhanced Auditory Sensitivity to Body Vibrations in Superior Canal Dehiscence Syndrome. Audiol. Neurootol. 2016, 21, 365–371. [Google Scholar] [CrossRef]
- Ishikawa, H.; Otsuka, S.; Nakagawa, S. Basic properties of distantly-presented bone-conduction perception. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 1–5 November 2021; pp. 6376–6379. [Google Scholar]
- Hosoi, H.; Yanai, S.; Nishimura, T.; Sakaguchi, T.; Iwakura, T.; Yoshino, K. Development of cartilage conduction hearing aid. Arch. Mater. Sci. Eng. 2010, 42, 104–110. [Google Scholar]
- Shimokura, R.; Hosoi, H.; Iwakura, T.; Nishimura, T.; Matsui, T. Development of monaural and binaural behind-the-ear cartilage conduction hearing aids. Appl. Acoust. 2013, 74, 1234–1240. [Google Scholar] [CrossRef]
- Available online: https://www.rionet.jp/product/series/ccha/ (accessed on 1 August 2023).
- Nairn, E.M.; Chen, A.S.; Nishimura, T.; Berezovsly, A.; Stucken, E.Z. Hearing outcomes of new cartilage conduction device vs bone conduction devices. Otol. Neurotol. 2022, 168, 821–828. [Google Scholar] [CrossRef]
- Kitama, T.; Nishiyama, T.; Iwabu, K.; Wakabayashi, T.; Shimanuki, M.N.; Hosoya, M.; Oishi, N.; Ozawa, H. Comparison of cartilage conduction hearing aid, bone anchored hearing aid, and ADHEAR: Case series of 6 patients with conductive and mixed hearing loss. Appl. Sci. 2022, 12, 12099. [Google Scholar] [CrossRef]
- Available online: https://cch-sound.co.jp/ (accessed on 1 August 2023).
- Available online: https://www.audio-technica.co.jp/product/ATH-CC500BT (accessed on 1 August 2023).
- Wang, J.; Stenfelt, S.; Wu, S.; Yan, Z.; Sang, J.; Zheng, C.; Li, X. The effect stimulation position and ear canal occlusion on perception of bone conducted sound. Trends Hear. 2022, 26, 23312165221130185. [Google Scholar] [CrossRef]
- Shimokura, R.; Nishimura, T.; Hosoi, H. Manipulating the hardness of HATS mounted ear pinna simulators to reproduce cartilage sound. Appl. Sci. 2022, 12, 12532. [Google Scholar] [CrossRef]
- Shimokura, R.; Hosoi, H.; Nishimura, T.; Iwakura, T.; Yamanaka, T. Simulating cartilage conduction sound to estimate the sound pressure level in the external auditory canal. J. Sound Vib. 2015, 335, 261–268. [Google Scholar] [CrossRef]
- Berger, E.H. Hearing Protector Performance: How They Work-and-What Goes Wrong in the Real World. 1980. Available online: https://multimedia.3m.com/mws/media/893183O/earlog-5.pdf (accessed on 6 November 2023).
- Berger, E.H. Preferred methods for measuring hearing protector attenuation. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Reston, VA, USA, 2005; Volume 2005, pp. 4432–4441. [Google Scholar]
- IEC 60318-7; Electroacoustics—Simulations of Human Head and Ear—Part 7: Head and Torso Simulator for the Measurement of Hearing Aids. International Electrotechnical Commission: Geneva, Switzerland, 2011.
- Shimokura, R.; Nishimura, T.; Hosoi, H. Vibrational and acoustical characteristics of ear pinna simulators that differ in hardness. Audiol. Res. 2021, 11, 30. [Google Scholar] [CrossRef]
- Griffin, M.F.; Premakumar, Y.; Seifalian, A.M.; Szarko, M.; Butler, P.E.M. Biomechanical characterization of human auricular cartilages; Implications for tissue engineering. Ann. Biomed. Eng. 2016, 44, 3460–3467. [Google Scholar] [CrossRef] [PubMed]
- Nayyer, L.; Birchall, M.; Seifalian, A.M.; Jell, G. Design and development of nanocomposite scaffolds for auricular reconstruction. Nanomedicine 2014, 10, 235–246. [Google Scholar] [CrossRef]
- Tamura, A.; Irwansyah; Otsuka, S.; Nakagawa, S. Effects of morphology and hardness of the pinna and gender on detection threshold of cartilage conduction. Proc. Autumn Meet. Acoust. Soc. Jpn. 2022, 11, 943–944. (In Japanese) [Google Scholar]
- Wheatstone, C. Experiments on audition. Q. J. Sci. Lit. Art 1827, 24, 67–72. [Google Scholar]
- Zwislocki, J. Acoustic attenuation between the ears. J. Acoust. Soc. Am. 1953, 25, 752–759. [Google Scholar] [CrossRef]
- Elpern, B.S.; Naunton, R.F. The stability of the occlusion effect. Arch. Otolaryngol. 1963, 77, 44–52. [Google Scholar] [CrossRef]
- Stenfelt, S.; Wild, T.; Hato, N.; Goode, R.L. Factors contributing to bone conduction: The outer ear. J. Acoust. Soc. Am. 2003, 113, 902–913. [Google Scholar] [CrossRef] [PubMed]
- Shimokura, R.; Hosoi, H.; Nishimura, T.; Yamanaka, T. Aural cartilage vibration and sound measured in the external auditory canal for several transducer positions. J. Temp. Des. Arc. Env. 2014, 12, 137–143. [Google Scholar]
- Blondé-Weinmann, C.; Joubaud, T.; Zimpfer, V.; Hamery, P.; Roth, R. Characterization of cartilage implication in protected hearing perception during direct vibro-acoustic stimulation at various locations. Appl. Acoust. 2021, 179, 108074. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimokura, R.; Nishimura, T.; Hosoi, H. Cartilage Conduction Sounds in Cases of Wearing Different Transducers on a Head and Torso Simulator with a Manipulated Ear Pinna Simulator. Audiol. Res. 2023, 13, 898-909. https://doi.org/10.3390/audiolres13060078
Shimokura R, Nishimura T, Hosoi H. Cartilage Conduction Sounds in Cases of Wearing Different Transducers on a Head and Torso Simulator with a Manipulated Ear Pinna Simulator. Audiology Research. 2023; 13(6):898-909. https://doi.org/10.3390/audiolres13060078
Chicago/Turabian StyleShimokura, Ryota, Tadashi Nishimura, and Hiroshi Hosoi. 2023. "Cartilage Conduction Sounds in Cases of Wearing Different Transducers on a Head and Torso Simulator with a Manipulated Ear Pinna Simulator" Audiology Research 13, no. 6: 898-909. https://doi.org/10.3390/audiolres13060078
APA StyleShimokura, R., Nishimura, T., & Hosoi, H. (2023). Cartilage Conduction Sounds in Cases of Wearing Different Transducers on a Head and Torso Simulator with a Manipulated Ear Pinna Simulator. Audiology Research, 13(6), 898-909. https://doi.org/10.3390/audiolres13060078