High-Dosage Gamma Irradiation Alters Lotus (Nelumbo nucifera Gaertn.) Seedling Structure: A Morphological and Anatomical Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Culture Medium
2.2. Plant Material Preparation and Gamma Irradiation
2.3. Morphological and Anatomical Examination
2.4. Statistical Analysis
3. Results
3.1. Morphological Observation
3.2. Anatomical Observation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAP | 6-Benzylaminopurine |
BMS | Murashige and Skoog medium (1962) supplemented with 2 mg L−1 of 6-Benzylaminopurine |
PCD | Programmed cell death |
ROS | Reactive oxygen species |
References
- Zhu, F. Structures, Properties, and Applications of Lotus Starches. Food Hydrocoll. 2017, 63, 332–348. [Google Scholar] [CrossRef]
- Yang, H.; He, S.; Feng, Q.; Liu, Z.; Xia, S.; Zhou, Q.; Wu, Z.; Zhang, Y. Lotus (Nelumbo nucifera): A Multidisciplinary Review of Its Cultural, Ecological, and Nutraceutical Significance. Bioresour. Bioprocess. 2024, 11, 18. [Google Scholar] [CrossRef]
- Aishwariya, S.; Thamima, S. Sustainable textiles from lotus. Asian Text. J. 2019, 28, 56–59. [Google Scholar]
- Mekbib, Y.; Huang, S.X.; Ngarega, B.K.; Li, Z.Z.; Shi, T.; Ou, K.F.; Liang, Y.T.; Chen, J.M.; Yang, X.Y. The Level of Genetic Diversity and Differentiation of Tropical Lotus, Nelumbo nucifera Gaertn. (Nelumbonaceae) from Australia, India, and Thailand. Bot. Stud. 2020, 61, 15. [Google Scholar] [CrossRef]
- Ma, L.; Kong, F.; Sun, K.; Wang, T.; Guo, T. From Classical Radiation to Modern Radiation: Past, Present, and Future of Radiation Mutation Breeding. Front. Public Health 2021, 9, 768071. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation: UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Volume I: Sources; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Bala, M.; Singh, K.P. In Vitro Mutagenesis of Rose (Rosa hybrida L.) Explants Using Gamma-Radiation to Induce Novel Flower Colour Mutations. J. Hortic. Sci. Biotechnol. 2013, 88, 462–468. [Google Scholar] [CrossRef]
- Puripunyavanich, V.; Boonsirichai, K. Effect of gamma irradiation in ‘jongkolnee’ waterlily. In Proceedings of the 31st Congress on Science and Technology of Thailand, Bangkok, Thailand, 18–20 October 2005. [Google Scholar]
- Li, Y.; Chen, L.; Zhan, X.; Liu, L.; Feng, F.; Guo, Z.; Wang, D.; Chen, H. Biological Effects of Gamma-Ray Radiation on Tulip (Tulipa gesneriana L.). PeerJ 2022, 10, e12792. [Google Scholar] [CrossRef] [PubMed]
- Jaipo, N.; Kosiwikul, M.; Panpuang, N.; Prakrajang, K. Low dose gamma radiation effects on seed germination and seedling growth of cucumber and okra. J. Phys. Conf. Ser. 2019, 1380, 012106. [Google Scholar] [CrossRef]
- Wiendl, T.A.; Wiendl, F.W.; Arthur, P.B.; Franco, S.S.H.; Franco, J.G.; Arthur, V. Effects of Gamma Radiation in Tomato Seeds. In Proceedings of the 2013 International Nuclear Atlantic Conference, Recife, Brazil, 24–29 November 2013; Assciação Brasileira de Energia Nuclear-Aben: Rio de Janeiro, Brazil, 2013. ISBN 978-85-99141-05-2. [Google Scholar]
- Marcu, D.; Cristea, V.; Daraban, L. Dose-Dependent Effects of Gamma Radiation on Lettuce (Lactuca sativa var. capitata) Seedlings. Int. J. Radiat. Biol. 2013, 89, 219–223. [Google Scholar] [CrossRef]
- Hasbullah, N.A.; Taha, R.M.; Saleh, A.; Mahmad, N. Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Hortic. Bras. 2012, 30, 252–257. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Shimizu, A.; Degi, K.; Morishita, T. Effects of Dose and Dose Rate of Gamma Ray Irradiation on Mutation Induction and Nuclear DNA Content in Chrysanthemum. Breed. Sci. 2008, 58, 331–335. [Google Scholar] [CrossRef]
- Soontornyatara, S.; Singhavorachai, P.; Puripunyavanich, V.; Taywiya, P. Effect of Gamma Ray on Morphological Characteristic of Nelumbo nucifera (Roseum Plenum Lotus). ISHS Acta Hortic. 2017, 1167, 217–220. [Google Scholar] [CrossRef]
- Pikulthong, V.; Hongjan, N.; Ariya, S.; Dechkla, M.; Boonman, N.; Wanna, C.; Wongwiwat, P.; Phakpaknam, S. In Vitro Acute Gamma Radiation on Tissue of Pink and White Lotus (Nelumbo nucifera Gaertn.) in Thailand. Plant Sci. Today 2024, 11, 306–313. [Google Scholar] [CrossRef]
- Takahashi, H.; Yamauchi, T.; Colmer, T.D.; Nakazono, M. Aerenchyma Formation in Plants. Plant Cell Monogr. 2014, 21, 247–265. [Google Scholar] [CrossRef]
- Murasnige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy, 3rd ed.; Oxford University Press: New York, NY, USA, 1999; pp. 154–196. [Google Scholar]
- Lokesha, R.; Vasudeva, R.; Shashidhar, H.E.; Reddy, A.N.Y. Radio-sensitivity of Bambusa arundinacea to gamma rays. J. Trop. For. Sci. 1994, 6, 444–450. [Google Scholar]
- Maynard, R.C.I.; Ruter, J.M. Co60 Gamma Irradiation Reduces Rooting Ability in M1V1 Salvia uliginosa While Inducing Leaf Variegation. Int. J. Radiat. Biol. 2024, 100, 663–668. [Google Scholar] [CrossRef]
- Chatse, D.; Gajbhiye, R.; Kedar, D.; Ningot, E.P.; Shende, P. Impact of Gamma Radiation on Bougainvillea Varieties Root Parameters in the VM1 and VM2 Generation. Int. J. Adv. Biochem. Res. 2024, 8, 521–524. [Google Scholar] [CrossRef]
- Puripunyavanich, V.; Piriyaphattarakit, A.; Chanchula, N.; Taychasinpitak, T. Mutation induction of in vitro chrysanthemum by gamma irradiation. Chiang Mai J. Sci. 2019, 46, 609–617. [Google Scholar]
- Jan, S.; Parween, T.; Siddiqi, T.O.; Mahmooduzzafar. Gamma Radiation Effects on Growth and Yield Attributes of Psoralea corylifolia L. with Reference to Enhanced Production of Psoralen. Plant Growth Regul. 2011, 64, 163–171. [Google Scholar] [CrossRef]
- Widiastuti, A.; Sibir, S.; Suhartanto, M.R. Diversity Analysis of Mangosteen (Garcinia mangostana) Irradiated by Gamma-Ray Based on Morphological and Anatomical Characteristics. Nusant. Biosci. 1970, 2, 1. [Google Scholar] [CrossRef]
- Rosmala, A.; Khumaida, N.; Sukma, D. Alteration of Leaf Anatomy of Handeuleum (Graptophyllum pictum L. Griff) Due to Gamma Irradiation. HAYATI J. Biosci. 2016, 23, 138–142. [Google Scholar] [CrossRef]
- Sakr, S.S.; El-Khateeb, M.A.; Taha, H.S.; Esmail, S.A. Effects of Gamma Irradiation on In Vitro Growth, Chemical Composition and Anatomical Structure of Dracaena surculosa (L.). J. Appl. Sci. Res. 2013, 9, 3795–3801. [Google Scholar]
- Janiak, M.A.; Slavova-Kazakova, A.; Karamać, M.; Kancheva, V.; Terzieva, A.; Ivanova, M.; Tsrunchev, T.; Amarowicz, R. Effects of Gamma-Irradiation on the Antioxidant Potential of Traditional Bulgarian Teas. Nat. Prod. Commun. 2017, 12, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H. Gamma Radiation Effects on Phenolics, Antioxidants Activity and In Vitro Digestion of Pistachio (Pistachia vera) Hull. Radiat. Phys. Chem. 2011, 80, 963–967. [Google Scholar] [CrossRef]
- Visser, E.J.W.; Voesenek, L.A.C.J. Acclimation to Soil Flooding-Sensing and Signal-Transduction. Plant Soil. 2005, 274, 197–214. [Google Scholar] [CrossRef]
- Jung, J.; Lee, S.C.; Choi, H.-K. Anatomical patterns of aerenchyma in aquatic and wetland plants. J. Plant Biol. 2008, 51, 428–439. [Google Scholar] [CrossRef]
Gamma Dose (Gy) | Leaf Length (cm) | Leaf Number | Petiole Length (cm) | Node Number | Root Length (cm) | Root Number |
---|---|---|---|---|---|---|
0 | 2.34 ± 0.17 a | 6.88 ± 0.65 a | 38.60 ± 4.96 a | 5.59 ± 0.58 a | 2.81 ± 0.41 a | 14.35 ± 2.05 a |
100 | 0.84 ± 0.06 b | 1.92 ± 0.15 b | 4.22 ± 0.53 b | 1.00 ± 0.00 b | 1.10 ± 0.29 b | 1.38 ± 0.36 b |
200 | 1.00 ± 0.09 b | 1.92 ± 0.10 b | 5.49 ± 0.63 b | 1.00 ± 0.00 b | 0.18 ± 0.11 b | 0.38 ± 0.18 b |
300 | 1.06 ± 0.14 ab | 1.86 ± 0.14 b | 2.81 ± 0.32 b | 1.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
400 | 0.88 ± 0.07 b | 1.92 ± 0.08 b | 2.73 ± 0.23 b | 1.00 ± 0.00 b | 0.33 ± 0.16 b | 0.50 ± 0.27 b |
500 | 0.78 ± 0.07 b | 1.83 ± 0.17 b | 2.28 ± 0.37 b | 1.00 ± 0.00 b | 0.52 ± 0.52 b | 0.33 ± 0.33 b |
600 | 0.59 ± 0.11 b | 1.77 ± 0.12 b | 2.46 ± 0.29 b | 1.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Gamma Dose (Gy) | Diameter | |||
---|---|---|---|---|
Midrib (μm) | Petiole (mm) | Stem (mm) | Root (μm) | |
0 | 350.92 ± 1.27 a | 1.70 ± 0.03 ab | 1.91 ± 0.08 d | 440.79 ± 59.88 bc |
100 | 382.86 ± 13.10 a | 1.56 ± 0.16 b | 2.48 ± 0.03 a | 359.77 ± 2.54 c |
200 | 417.91 ± 109.62 a | 1.13 ± 0.04 c | 2.39 ± 0.17 ab | 510.67 ± 9.87 b |
300 | 306.77 ± 54.43 a | 1.81 ± 0.02 ab | 2.20 ± 0.04 bc | 514.21 ± 7.25 b |
400 | 350.72 ± 42.25 a | 1.71 ± 0.09 ab | 2.07 ± 0.06 cd | 542.02 ± 57.56 ab |
500 | 345.00 ± 6.55 a | 1.77 ± 0.06 ab | 2.17 ± 0.04 bc | 646.46 ± 58.83 a |
600 | 368.08 ± 23.37 a | 1.86 ± 0.03 a | 2.13 ± 0.01 cd | 476.88 ± 3.77 bc |
Gamma Dose (Gy) | Aerenchyma Area Ratio (%) | |||
---|---|---|---|---|
Leaf | Petiole | Stem | Root | |
0 | 40.23 ± 1.15 a | 36.11 ± 4.32 a | 7.20 ± 0.76 b | 31.26 ± 4.35 a |
100 | 9.12 ± 0.12 b | 31.69 ± 2.73 ab | 6.11 ± 0.64 b | 28.69 ± 3.12 ab |
200 | 7.93 ± 2.50 b | 37.59 ± 1.54 a | 9.39 ± 2.76 ab | 31.92 ± 1.88 a |
300 | 8.47 ± 0.76 b | 27.45 ± 2.34 ab | 5.82 ± 1.54 b | 36.98 ± 3.51 a |
400 | 6.83 ± 0.58 b | 29.79 ± 1.09 ab | 14.17 ± 3.74 a | 27.23 ± 2.91 ab |
500 | 8.24 ± 0.72 b | 25.15 ± 2.06 ab | 8.12 ± 0.16 ab | 11.54 ± 2.54 c |
600 | 6.13 ± 0.71 b | 25.15 ± 1.88 ab | 7.65 ± 0.92 b | 20.24 ± 3.78 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutthinon, P.; Orpong, P.; Kaewubon, P.; Yenchon, S.; Detrueang, O.; Soonthornkalump, S. High-Dosage Gamma Irradiation Alters Lotus (Nelumbo nucifera Gaertn.) Seedling Structure: A Morphological and Anatomical Perspective. Int. J. Plant Biol. 2025, 16, 101. https://doi.org/10.3390/ijpb16030101
Sutthinon P, Orpong P, Kaewubon P, Yenchon S, Detrueang O, Soonthornkalump S. High-Dosage Gamma Irradiation Alters Lotus (Nelumbo nucifera Gaertn.) Seedling Structure: A Morphological and Anatomical Perspective. International Journal of Plant Biology. 2025; 16(3):101. https://doi.org/10.3390/ijpb16030101
Chicago/Turabian StyleSutthinon, Pornsawan, Piyanuch Orpong, Paveena Kaewubon, Sureerat Yenchon, Orawan Detrueang, and Sutthinut Soonthornkalump. 2025. "High-Dosage Gamma Irradiation Alters Lotus (Nelumbo nucifera Gaertn.) Seedling Structure: A Morphological and Anatomical Perspective" International Journal of Plant Biology 16, no. 3: 101. https://doi.org/10.3390/ijpb16030101
APA StyleSutthinon, P., Orpong, P., Kaewubon, P., Yenchon, S., Detrueang, O., & Soonthornkalump, S. (2025). High-Dosage Gamma Irradiation Alters Lotus (Nelumbo nucifera Gaertn.) Seedling Structure: A Morphological and Anatomical Perspective. International Journal of Plant Biology, 16(3), 101. https://doi.org/10.3390/ijpb16030101