Optimizing Microclimatic Conditions for Lettuce, Tomatoes, Carrots, and Beets: Impacts on Growth, Physiology, and Biochemistry Across Greenhouse Types and Climatic Zones
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodological Framework
2.1.1. Search Strategies
2.1.2. Eligibility and Exclusion Criteria
2.1.3. Data Extraction and Analysis
3. Results
3.1. Microclimatic Conditions
3.1.1. Temperature
Lettuce (Lactuca sativa L.) Response
Tomatoes (Solanum lycopersicum L.)
Carrots (Daucus carota L.)
Beet (Beta vulgaris L.) Response
3.1.2. Light Intensity (μmol·m−2·s−1) and Photoperiod (hours)
Lettuce (Lactuca sativa L.) Response
Tomatoes (Solanum lycopersicum L.)
Carrot (Daucus carota L.) Response
Beet (Beta vulgaris L.) Response
3.1.3. CO2 Concentration
Lettuce (Lactuca sativa L.) Response
Tomatoes (Solanum lycopersicum L.)
Carrots (Daucus carota L.)
Beet (Beta vulgaris L.) Response
Vegetable | Climatic Zone | CO2 Range (ppm) | Growth Impact | Physiological Impact | Biochemical Impact | Reference(s) |
---|---|---|---|---|---|---|
Lettuce | Temperate (USA) | 900–1100 | +19% fresh weight | ↑ photosynthesis, ↑ WUE, ↑ carbohydrate storage | ↓ nitrate, ↓ protein | [101] |
Lettuce | Temperate (Japan) | 700–900 | +20–25% biomass | ↑ photosynthesis, ↓ transpiration, ↑ tipburn risk | ↓ leaf nitrogen, ↓ calcium transport | [102] |
Lettuce | Temperate (Europe) | 900–1100 | ~10% more biomass | photosynthetic saturation near 1000 ppm | stable nutrient content | [103] |
Lettuce | General (Controlled) | 1100–1300 | +20–30% biomass | ↑ photosynthesis, ↑ carbohydrate accumulation | ↓ anthocyanin, ↓ antioxidants, ↓ calcium transport, ↑ tipburn risk | [104,105] |
Lettuce | General (Controlled) | 1400–1500 | +30–36% shoot biomass | ↑ photosynthesis (maximized), saturation at 1200 ppm | ↓ anthocyanin, ↓ vitamin C | [82] |
Tomato | Temperate (Asia—Japan) | 700–800 | ↑ leaf area, ↑ dry matter | ↑ photosynthesis, reduced by ventilation | not specified | [88] |
Tomato | Temperate (Europe—Denmark) | 800 | ↑ yield, ↑ stress tolerance | ↑ photosynthesis, genotype-specific responses | ↑ stress resilience, stable nutrient content | [25] |
Tomato | Arid (China) | 800 | ↑ yield (low VPD) | sustained photosynthesis under drought | ↓ lycopene, ↑ sugar (slight) | [106] |
Tomato | Subtropical (Middle East) | 500 | ↑ growth, ↑ leaf expansion | minimal sugar change | stable sugar, limited nutritional changes | [107] |
Tomato | Tropical (High-Tech) | 1100 | ↑ yield by 30% | ↑ photosynthesis, ↑ WUE | ↑ sucrose (12–18%), ↑ lycopene (10%) | [108] |
Tomato | General (Controlled) | 1000–1200 | ↑ yield by 80% via Rubisco activity | Photosynthesis plateaus after 1200 ppm | Not specified | [40] |
Tomato | General (Controlled) | 1500 (soil CO2) | ↓ biomass, ↓ fruit weight | Disrupted stomatal conductance, ↓ photosynthesis | ↓ fruit quality, ↓ sugar-acid balance, ↓ lycopene, ↓ vitamin C | [109] |
Tomato | General (Canada) | 800 | ↑ flowering, ↑ plant height | ↓ pigment concentration | Not specified | [110] |
Tomato | Global (Meta-study) | 550 | Not specified | Not specified | ↓ nutrient density in fruits (nutrient dilution) | [111] |
Carrot | Temperate (USA) | 600–800 | +15–20% root biomass | ↑ photosynthesis (10–15%), ↑ WUE, optimal root:shoot ratio | ↑ sucrose (8–10%), ↑ β-carotene (5–7%), ↑ ascorbic acid (15–25%) | [112,113] |
Carrot | Temperate (USA) | 800–1000 | +25–40% biomass | ↓ stomatal conductance, ↓ leaf N, photosynthetic acclimation | ↓ protein, ↓ calcium, ↓ magnesium, nutrient dilution risk | [111,114] |
Carrot | Temperate (USA) | 1000–1300 | +20–40% biomass, ↓ root yield > 1000 ppm | Excessive shoot growth, ↓ RuBisCO activity | ↓ zinc, ↓ iron, ↓ protein | [115] |
Carrot | General (Controlled) | 600–1000 | +25–60% biomass | ↑ photosynthesis, ↓ transpiration, downregulation > 1000 ppm | ↓ nitrogen, ↓ potassium, yield-quality trade-off | [116,117] |
Carrot | General (Meta-analysis) | 700–1000 | +10–20% yield (C3 crops) | ↑ photosynthesis, ↓ WUE | ↓ protein, ↓ Zn, ↓ Fe, dietary concerns | [111] |
Beet | Mediterranean | 600–800 | +18–32% root biomass, +10% root diameter | ↑ photosynthesis, ↑ WUE, ↓ stomatal conductance | ↑ sucrose (8–20%), ↑ betanin (7–10%) | [118] |
Beet | Temperate (Europe) | 550–700 | +28–30% root yield (with nitrogen), ↓ at high temps | ↑ Rubisco activity, ↓ leaf nitrogen, ↑ photosynthesis | ↑ sucrose, ↓ nitrogen, ↓ potassium | [97] |
Beet | Temperate (Europe) | 600 | +18% biomass (under drought) | ↑ antioxidant responses, ↑ WUE | ↑ sucrose maintained, ↓ protein | [119] |
Beet | Temperate (Austria) | 1000 | +40% root biomass, ↓ 8–12% root dry weight | ↑ carbon fixation, ↓ stomatal conductance | ↑ betalain pigments, ↓ protein | [120] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophysics 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Ahmed, M.; Babayola, M.; Bake, I.D. Role of Horticultural Crops in Food and Nutritional Security: A Review. J. Nutr. Food Process. 2024, 7, 01–06. [Google Scholar] [CrossRef]
- Ahmad, P.; Ahanger, M.A.; Alyemeni, M.N.; Alam, P. (Eds.) Photosynthesis, Productivity, and Environmental Stress; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Gibson, K.E.; Fraser, A.M.; Perez, A.P.; Weaver, R. American society for horticultural science. HortScience 2022, 57, S2. [Google Scholar] [CrossRef]
- Kalia, P. Designing Futuristic Vegetable Varieties for Multiple Purposes. In Genetic Engineering of Vegetable Crops; CABI: Wallingford, UK, 2024; pp. 414–430. [Google Scholar]
- Ahemd, H.A.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. 2016, 201, 36–45. [Google Scholar] [CrossRef]
- Yusuf, A.G.; Al-Yahya, F.A.; Saleh, A.A.; Abdel-Ghany, A.M. Optimizing greenhouse microclimate for plant pathology: Challenges and cooling solutions for pathogen control in arid regions. Front. Plant Sci. 2025, 16, 1492760. [Google Scholar] [CrossRef]
- Çaylı, A.; Akyüz, A.; Baytorun, A.N.; Boyacı, S.; Üstün, S.; Kozak, F.B. Sera çevre koşullarının nesnelerin interneti tabanlı izleme ve analiz sistemi ile denetlenmesi. Turk. J. Agric.-Food Sci. Technol. 2017, 5, 1279–1289. [Google Scholar]
- Chimankare, R.V.; Das, S.; Kaur, K.; Magare, D. A review study on the design and control of optimised greenhouse environments. J. Trop. Ecol. 2023, 39, e26. [Google Scholar] [CrossRef]
- Kirschbaum, M.U. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol. 2011, 155, 117–124. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, B.; Wang, Z.; Zhu, Y.; Lin, B. A comparison of winter indoor thermal environment and thermal comfort between regions in Europe, North America, and Asia. Build. Environ. 2017, 117, 208–217. [Google Scholar] [CrossRef]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.; Hodder, A.; Castilla, N.; Leonardi, C.; De Pascale, S.; Qaryouti, M.; Duffy, R. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; FAO Plant Production and Protection Paper No. 217; FAO: Rome, Italy, 2013. [Google Scholar]
- Waqas, A.; Umair, M.; Ahmad, R.N.; Khan, K.S. Assessment of crop responses and climatic parameters by developing indigenous hydroponic greenhouses in different regions of Punjab-Pakistan. Pak. J. Agric. Sci. 2021, 58, 643–654. [Google Scholar]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; López-Felices, B.; Román-Sánchez, I.M. An analysis of global research trends on greenhouse technology: Towards a sustainable agriculture. Int. J. Environ. Res. Public Health 2020, 17, 664. [Google Scholar] [CrossRef]
- Kaplan, A.; Khan, M.N.; Hayat, K.; Iqbal, M.; Ali, B.; Wahab, S.; Wahid, N.; Kanwal. Coupling environmental factors and climate change: Impacts on plants and vegetation growth patterns in ecologically sensitive regions. In Environment, Climate, Plant and Vegetation Growth; Springer Nature: Cham, Switzerland, 2024; pp. 307–358. [Google Scholar]
- Wheeler, T.R.; Hadley, P.; Morison, J.I.L.; Ellis, R.H. Effects of temperature on the growth of lettuce (Lactuca sativa L.) and the implications for assessing the impacts of potential climate change. Eur. J. Agron. 1993, 2, 305–311. [Google Scholar] [CrossRef]
- Chan, S.; Jerca, O.I.; Arshad, A.; Drăghici, E.M. Study regarding the influence of some fertilizers on the germination and growth of lettuce seedlings. In Proceedings of the IX South-Eastern Europe Symposium on Vegetables and Potatoes, Bucharest, Romania, 5–9 September 2023; pp. 471–478, ISHS Acta Horticulturae 1391. [Google Scholar]
- Corelli-Grappadelli, L.; Ravaglia, G.; Asirelli, A. Shoot type and light exposure influence carbon partitioning in peach cv, Elegant Lady. J. Hortic. Sci. 1996, 71, 533–543. [Google Scholar] [CrossRef]
- Jett, L.W. High tunnels. In A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Elsevier: Amsterdam, The Netherlands, 2017; pp. 107–116. [Google Scholar]
- Kabir, M.Y.; Nambeesan, S.U.; Díaz-Pérez, J.C. Shade nets improve vegetable performance. Sci. Hortic. 2024, 334, 113326. [Google Scholar] [CrossRef]
- Ilahi, W.F.F.; Rosdi, N.S.I.; Tajri, A.A. Evaluating temperature variation of nutrient solution in nutrient film technique (NFT) cooling system for temperate vegetable. J. Trop. Resour. Sustain. Sci. (JTRSS) 2024, 12, 47–50. [Google Scholar] [CrossRef]
- Chowdhury, M.; Samarakoon, U.C.; Altland, J.E. Evaluation of hydroponic systems for organic lettuce production in controlled environment. Front. Plant Sci. 2024, 15, 1401089. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Shao, Y.; An, P.; Yamamoto, S.; Ibaraki, Y. Effect of nutrient solution flow rate on hydroponic plant growth and root morphology. Plants 2021, 10, 1840. [Google Scholar] [CrossRef]
- Nitu, O.A.; Ivan, E.Ş.; Tronac, A.S.; Arshad, A. Optimizing Lettuce Growth in Nutrient Film technique hydroponics: Evaluating the impact of elevated oxygen concentrations in the Root Zone under LED illumination. Agronomy 2024, 14, 1896. [Google Scholar] [CrossRef]
- Nitu, O.A.; Ivan, E.Ş.; Tronac, A.S.; Arshad, A. Variety-Specific Lettuce Responses to Oxygen-Enriched Water and LED Light in a Controlled Greenhouse: A Multivariate Analysis Across Two Cycles. Int. J. Plant Biol. 2025, 16, 29. [Google Scholar] [CrossRef]
- Massa, G.D.; Dufour, N.F.; Carver, J.A.; Hummerick, M.E.; Wheeler, R.M.; Morrow, R.C.; Smith, T.M. VEG-01: Veggie hardware validation testing on the International Space Station. Open Agric. 2017, 2, 33–41. [Google Scholar] [CrossRef]
- Arshad, A.; Cîmpeanu, S.M.; Jerca, I.O.; Sovorn, C.; Ali, B.; Badulescu, L.A.; Drăghici, E.M. Assessing the growth, yield, and biochemical composition of greenhouse cherry tomatoes with special emphasis on the progressive growth report. BMC Plant Biol. 2024, 24, 1002. [Google Scholar] [CrossRef]
- Smol, M.; Duda, J.; Czaplicka-Kotas, A.; Szołdrowska, D. Transformation towards circular economy (CE) in municipal waste management system: Model solutions for Poland. Sustainability 2020, 12, 4561. [Google Scholar] [CrossRef]
- Iovane, M.; Aronne, G. High temperatures during microsporogenesis fatally shorten pollen lifespan. Plant Reprod. 2022, 35, 9–17. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, T.L.; Hu, C.G.; Zhang, J.Z. The role of drought and temperature stress in the regulation of flowering time in annuals and perennials. Agronomy 2023, 13, 3034. [Google Scholar] [CrossRef]
- Arshad, A.; Sovorn, C.; Draghici, E.M.; Jerca, I.O.; Iqbal, N. Study on the Influence of Climatic Factors in Greenhouses on the Growth, Yield, and Biochemical Attributes of Tomatoes Grown in the Soilless System During the Summer Season. Mod. Concepts Dev. Agron. 2024, 14, 1350–1359. [Google Scholar] [CrossRef]
- Jerca, I.O.; Cîmpeanu, S.M.; Teodorescu, R.I.; Țiu, J.; Postamentel, M.; Arshad, A.; Bădulescu, L.; Drăghici, E.M. The effect of improving the climatic conditions in the greenhouse on the cheramy tomato hybrid grown in greenhouse conditions. Sci. Pap. Ser. B Hortic. 2023, 67, 341–348. [Google Scholar]
- Arshad, A.; Jerca, I.O.; Chan, S.; Cîmpeanu, S.M.; Teodorescu, R.I.; Țiu, J. Study regarding the influence of some climatic parameters from the greenhouse on the tomato production and fruits quality. Sci. Pap. Ser. B Hortic. 2023, 67, 295–306. [Google Scholar]
- Argento, S.; Garcia, G.; Treccarichi, S. Sustainable and low-input techniques in Mediterranean greenhouse vegetable production. Horticulturae 2024, 10, 997. [Google Scholar] [CrossRef]
- Manshour, S.; Lehmann, S. A Systematic Review of Passive Cooling Strategies Integrating Traditional Wisdom and Modern Innovations for Sustainable Development in Arid Urban Environments. arXiv 2025, arXiv:2507.09365. [Google Scholar] [CrossRef]
- Farwan, K. Studies on Growth, Yield and Quality Parameters Of Carrot (Daucus carota L.) Under Different Sowing Dates. Ph.D. Thesis, Punjab Agricultural University, Ludhiana, India, 2022. [Google Scholar]
- Paparella, A.; Kongala, P.R.; Serio, A.; Rossi, C.; Shaltiel-Harpaza, L.; Husaini, A.M.; Ibdah, M. Challenges and opportunities in the sustainable improvement of carrot production. Plants 2024, 13, 2092. [Google Scholar] [CrossRef]
- El-Aidy, F. Research on the use of plastics and shade nets on the production of some vegetable crops in Egypt. In Proceedings of the II International Symposium on Plastics in Mediterranean Countries, Hammamet, Tunisia, 20–25 February 1984; pp. 109–114, ISHS Acta Horticulturae 154. [Google Scholar]
- Mohamed, A.S.; El-Sayed, S.M.; Elsayed, S.I.; Mazher, A.A. Impact of turmeric and carrot extracts on morphological, chemical composition and isozymes patterns of Azadirachta indica seedlings under water deficiency conditions. Egypt. Pharm. J. 2023, 22, 466–480. [Google Scholar] [CrossRef]
- Wheeler, T.R.; Morison, J.I.L.; Ellis, R.H.; Hadley, P. The effects of CO2, temperature and their interaction on the growth and yield of carrot (Daucus carota L.). Plant Cell Environ. 1994, 17, 1275–1284. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables: A review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of altitude on the chemical composition of grapes and wine: A review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Ochoa-Viñals, N.; Alonso-Estrada, D.; Pacios-Michelena, S.; García-Cruz, A.; Ramos-González, R.; Faife-Pérez, E.; Michelena-Álvarez, L.G.; Martínez-Hernández, J.L.; Iliná, A. Current Advances in Carotenoid Production by Rhodotorula sp. Fermentation 2024, 10, 190. [Google Scholar] [CrossRef]
- Radke, J.K.; Bauer, R.E. Growth of Sugar Beets as Affected by Root Temperatures Part I: Greenhouse Studies 1. Agron. J. 1969, 61, 860–863. [Google Scholar] [CrossRef]
- Sitompul, S.M.; Roviq, M.; Yudha, A.; Khesia, S.A.; Avyneysa, N.J.; Yolanda, Y. Plant Growth of Beetroots (Beta vulgaris L.) with Nitrogen Supply at Suboptimal Elevations in a Tropical Region. AGRIVITA J. Agric. Sci. 2020, 42, 272–282. [Google Scholar] [CrossRef]
- Sánchez-Sastre, L.F.; Alte da Veiga, N.M.; Ruiz-Potosme, N.M.; Hernández-Navarro, S.; Marcos-Robles, J.L.; Martín-Gil, J.; Martín-Ramos, P. Sugar beet agronomic performance evolution in NW Spain in future scenarios of climate change. Agronomy 2020, 10, 91. [Google Scholar] [CrossRef]
- Soussi, M.; Chaibi, M.T.; Buchholz, M.; Saghrouni, Z. Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy 2022, 12, 626. [Google Scholar] [CrossRef]
- Mandizvidza, T.C. Influence of Nutrient and Light Management on Postharvest Quality of Lettuce (Lactuca sativa L.) in Soilless Production Systems. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Jin, W.; Formiga Lopez, D.; Heuvelink, E.; Marcelis, L.F. Light use efficiency of lettuce cultivation in vertical farms compared with greenhouse and field. Food Energy Secur. 2023, 12, e391. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. (Eds.) Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Fu, W.; Li, P.; Wu, Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Lee, C.L.; Wong, S.K.; Ahmad Osman, A.F.; Sum, Z.L.; Chan, K.Y. The Effect of LED Grow Light Photoperiods on Indoor Hydroponic Lettuce Farming. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 32, 368–377. [Google Scholar] [CrossRef]
- He, J.; Qin, L.; Chong, E.L.; Choong, T.W.; Lee, S.K. Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different blue-and red-LEDs. Front. Plant Sci. 2017, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Van Ploeg, D.; Heuvelink, E. Influence of sub-optimal temperature on tomato growth and yield: A review. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar] [CrossRef]
- Kumsong, N.; Thepsilvisut, O.; Imorachorn, P.; Chutimanukul, P.; Pimpha, N.; Toojinda, T.; Trithaveesak, O.; Ratanaudomphisut, E.; Poyai, A.; Hruanun, C.; et al. Comparison of different temperature control systems in tropical-adapted greenhouses for green romaine lettuce production. Horticulturae 2023, 9, 1255. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: Blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Q.C.; Song, W.P.; Wang, L.C.; Guo, W.Z.; Xue, X.Z. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci. Hortic. 2017, 223, 44–52. [Google Scholar] [CrossRef]
- Kelly, N.; Runkle, E.S. Dependence of far-red light on red and green light at increasing growth of lettuce. PLoS ONE 2024, 19, e0313084. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y. Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs. Int. J. Agric. Biol. Eng. 2020, 13, 33–40. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J. Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 2022, 8, 178. [Google Scholar] [CrossRef]
- Miao, C.; Yang, S.; Xu, J.; Wang, H.; Zhang, Y.; Cui, J.; Zhang, H.; Jin, H.; Lu, P.; He, L.; et al. Effects of light intensity on growth and quality of lettuce and spinach cultivars in a plant factory. Plants 2023, 12, 3337. [Google Scholar] [CrossRef]
- Appolloni, E.; Paucek, I.; Pennisi, G.; Stringari, G.; Gabarrell Durany, X.; Orsini, F.; Gianquinto, G. Supplemental LED lighting improves fruit growth and yield of tomato grown under the sub-optimal lighting condition of a building integrated rooftop greenhouse (i-RTG). Horticulturae 2022, 8, 771. [Google Scholar] [CrossRef]
- Niam, A.G.; Suhardiyanto, H. Root-zone cooling in tropical greenhouse: A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 557, 012044. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Prinzenberg, A.E.; Kaiser, E.; Heuvelink, E. LED and HPS supplementary light differentially affect gas exchange in tomato leaves. Plants 2021, 10, 810. [Google Scholar] [CrossRef] [PubMed]
- Bin Arif, A.; Budiyanto, A.; Setiawan; Cahyono, T.; Sulistiyani, T.R.; Marwati, T.; Widayanti, S.M.; Setyadjit; Manalu, L.P.; Adin-egoro, H.; et al. Application of red and blue LED light on cultivation and postharvest of tomatoes (Solanum lycopersicum L.). Scientifica 2024, 2024, 3815651. [Google Scholar] [CrossRef]
- Drăghici, E.M.; Pele, M.; Dobrin, E. Research concerning effects of perlite substrate on tomato in soilless culture. Sci. Pap. Ser. B Hortic. 2013, 57, 45–48. [Google Scholar]
- Ayankojo, I.T.; Morgan, K.T. Increasing air temperatures and its effects on growth and productivity of tomato in South Florida. Plants 2020, 9, 1245. [Google Scholar] [CrossRef]
- Enciso-Maldonado, G.A.; Lozoya-Saldaña, H.; Colinas-León, M.T.; Díaz-García, G.; Montoya-García, C.O. Fungicides-late blight interaction in the synthesis of phenolic compounds and defense enzyme activity in tomato. Agrociencia Urug. 2024, 28, e1434. [Google Scholar] [CrossRef]
- Alsadon, A.A.; Al-Helal, I.M.; Ibrahim, A.A.; Shady, M.R.; Al-Selwey, W.A. Growth analysis of tomato plants in controlled greenhouses. In Proceedings of the XXX International Horticultural Congress IHC2018: III International Symposium on Innovation and New Technologies in Protected Cultivation, Istanbul, Turkey, 12–16 August 2018; pp. 177–184, ISHS Acta Horticulturae 1271. [Google Scholar]
- Song, H.; Lu, Q.; Hou, L.; Li, M. The genes crucial to carotenoid metabolism under elevated CO2 levels in carrot (Daucus carota L.). Sci. Rep. 2021, 11, 12073. [Google Scholar] [CrossRef]
- Sung, B.; Kwak, N.; Cho, Y.Y. Determining light conditions for improved carrot growth in a closed-type plant factory. Hortic. Sci. Technol. 2024, 42, 143–150. [Google Scholar] [CrossRef]
- Gonzalez-Calquin, C.; Munizaga, F.; Salvatierra, A.; Villalobos, L.; Pimentel, P.; Stange, C. LED light has a long-distance impact accelerating storage root development and sucrose content in Daucus carota L. (carrot). Res. Sq. 2024. preprint. [Google Scholar] [CrossRef]
- Gonzalez-Calquin, C.; Munizaga, F.; Salvatierra, A.; Villalobos, L.; Pimentel, P.; Stange, C. LED lighting enhances early storage root development and sucrose accumulation in carrot (Daucus carota L.) without altering carotenoid content. Sci. Hortic. 2025, 348, 114220. [Google Scholar] [CrossRef]
- Kyei-Boahen, S.; Lada, R.; Astatkie, T.; Gordon, R.; Caldwell, C. Photosynthetic response of carrots to varying irradiances. Photosynth. 2003, 41, 301–305. [Google Scholar] [CrossRef]
- Sakamoto, M.; Suzuki, T. Elevated root-zone temperature modulates growth and quality of hydroponically grown carrots. Agric. Sci. 2015, 6, 749–757. [Google Scholar] [CrossRef]
- Tossi, V.E.; Tosar, L.M.; Pitta-Álvarez, S.I.; Causin, H.F. Casting light on the pathway to betalain biosynthesis: A review. Environ. Exp. Bot. 2021, 186, 104464. [Google Scholar] [CrossRef]
- Geem, K.R.; Lee, Y.J.; Lee, J.; Hong, D.; Kim, G.E.; Sung, J. Role of carrot (Daucus carota L.) storage roots in drought stress adaptation: Hormonal regulation and metabolite accumulation. Metabolites 2025, 15, 56. [Google Scholar] [CrossRef]
- Hernández-Adasme, C.; Palma-Dias, R.; Escalona, V.H. The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae 2023, 9, 493. [Google Scholar] [CrossRef]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė-Kairienė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P.; et al. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Hortic. Environ. Biotechnol. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Oh, C.; Park, J.E.; Son, Y.J.; Nho, C.W.; Park, N.I.; Yoo, G. Light spectrum effects on the ions, and primary and secondary metabolites of red beets (Beta vulgaris L.). Agronomy 2022, 12, 1699. [Google Scholar] [CrossRef]
- Ebert, A.W. Sprouts and microgreens—Novel food sources for healthy diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef]
- Giri, A.; Armstrong, B.; Rajashekar, C.B. Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. Am. J. Plant Sci. 2016, 7, 246–258. [Google Scholar] [CrossRef]
- Wheeler, R.M.; Spencer, L.E.; Bhuiyan, R.H.; Mickens, M.A.; Bunchek, J.M.; van Santen, E.; Massa, G.D.; Romeyn, M.W. Effects of elevated and super-elevated carbon dioxide on salad crops for space. J. Plant Interact. 2024, 19, 2292219. [Google Scholar] [CrossRef]
- Song, H.; Wu, P.; Lu, X.; Wang, B.; Song, T.; Lu, Q.; Li, M.; Xu, X.; Irfan, M. Comparative physiological and transcriptomic analyses reveal the mechanisms of CO2 enrichment in promoting the growth and quality in Lactuca sativa. PLoS ONE 2023, 18, e0278159. [Google Scholar] [CrossRef] [PubMed]
- Doddrell, N.H.; Lawson, T.; Raines, C.A.; Wagstaff, C.; Simkin, A.J. Feeding the world: Impacts of elevated [CO2] on nutrient content of greenhouse grown fruit crops and options for future yield gains. Hortic. Res. 2023, 10, uhad026. [Google Scholar] [CrossRef]
- Zhang, Y.; Yasutake, D.; Hidaka, K.; Kimura, K.; Okayasu, T.; Kitano, M.; Hirota, T. Eco-friendly strategy for CO2 enrichment performance in commercial greenhouses based on the CO2 spatial distribution and photosynthesis. Sci. Rep. 2023, 13, 17277. [Google Scholar] [CrossRef]
- Takahashi, T.; Ishigami, Y.; Goto, E.; Niibori, K.; Goto, K. Effect of CO2 enrichment on the growth and yield of tomato plants cultivated in a large-scale greenhouse with a high-ventilation rate. Shokubutsu Kankyo Kogaku 2012, 24, 110–115. [Google Scholar] [CrossRef]
- Tagawa, A.; Ehara, M.; Ito, Y.; Araki, T.; Ozaki, Y.; Shishido, Y. Effects of CO2 enrichment on yield, photosynthetic rate, translocation and distribution of photoassimilates in strawberry ‘Sagahonoka’. Agronomy 2022, 12, 473. [Google Scholar] [CrossRef]
- Wang, A.; Lv, J.; Wang, J.; Shi, K. CO2 enrichment in greenhouse production: Towards a sustainable approach. Front. Plant Sci. 2022, 13, 1029901. [Google Scholar] [CrossRef]
- Esmaili, M.; Aliniaeifard, S.; Mashal, M.; Ghorbanzadeh, P.; Seif, M.; Gavilan, M.U.; Carrillo, F.F.; Lastochkina, O.; Li, T. CO2 enrichment and increasing light intensity till a threshold level, enhance growth and water use efficiency of lettuce plants in controlled environment. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2244–2262. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yuan, H.X.; Liu, Y.; Li, J.; Zheng, J.Y.; Sun, S.; Xing, G.M. Photosynthetic responses of tomato to different concentrations of CO2 enrichment in greenhouse. J. Plant Nutr. Fertil. 2018, 24, 1010–1018. [Google Scholar]
- Li, F.; Wang, J.; Chen, Y.; Zou, Z.; Wang, X.; Yue, M. Combined effects of enhanced ultraviolet-B radiation and doubled CO2 concentration on growth, fruit quality and yield of tomato in winter plastic greenhouse. Front. Biol. China 2007, 2, 414–418. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Sekoli, M.M.S. Growth, Yield and Physiological Response of Carrot (Daucus carota L.) to Different Fertilizer Levels and Bio-Stimulants. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2009. [Google Scholar]
- Long, S.P.; Marshall-Colon, A.; Zhu, X.G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 2015, 161, 56–66. [Google Scholar] [CrossRef]
- Monje, O.; Bugbee, B. Radiometric method for determining canopy stomatal conductance in controlled environments. Agronomy 2019, 9, 114. [Google Scholar] [CrossRef]
- Waters, G.; Zheng, Y.; Gidzinski, D.; Dixon, M. Carbon Gain, Water Use and Nutrient Uptake Dynamics of Beet (Beta vulgaris) Grown in Controlled Environments (No. 2004-01-2435); SAE Technical Paper; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Yolcu, S.; Alavilli, H.; Ganesh, P.; Panigrahy, M.; Song, K. Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). Plants 2021, 10, 1843. [Google Scholar] [CrossRef]
- Frantz, J.M.; Ritchie, G.; Cometti, N.N.; Robinson, J.; Bugbee, B. Exploring the limits of crop productivity: Beyond the limits of tipburn in lettuce. J. Am. Soc. Hortic. Sci. 2004, 129, 331–338. [Google Scholar] [CrossRef]
- Poudel, M.; Dunn, B. Greenhouse Carbon Dioxide Supplementation [Superseded]; Oklahoma State University: Stillwater, Oklahoma, 2017. [Google Scholar]
- Van Henten, E.J.; Bontsema, J.; Van Straten, G. Improving the efficiency of greenhouse climate control: An optimal control approach. Neth. J. Agric. Sci. 1997, 45, 109–125. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation. PLoS ONE 2018, 13, e0202386. [Google Scholar] [CrossRef]
- Sgherri, C.; Pérez-López, U.; Micaelli, F.; Miranda-Apodaca, J.; Mena-Petite, A.; Muñoz-Rueda, A.; Quartacci, M.F. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces. Plant Physiol. Biochem. 2017, 115, 269–278. [Google Scholar] [CrossRef]
- Slijper, T.; Urquhart, J.; Poortvliet, P.M.; Soriano, B.; Meuwissen, M.P. Exploring how social capital and learning are related to the resilience of Dutch arable farmers. Agric. Syst. 2022, 198, 103385. [Google Scholar] [CrossRef]
- El-Aidy, F.; Moustafa, S.; El-Afry, M. Influence of shade on growth and yield of tomatoes cultivated in summer season in [Egypt]. Tanta Univ. J. Agric. Res. 1983, 9, 123–128. [Google Scholar]
- Yu, X.; Li, Z.; Yang, Y.; Li, S.; Lu, Y.; Li, Y.; Zhang, X.; Chen, F.; Xu, C. Harnessing Green Revolution genes to optimize tomato production efficiency for vertical farming. J. Integr. Plant Biol. 2025. early view. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, X. Tomato yields and quality declines due to elevated soil CO2. Sci. Rep. 2025, 15, 5689. [Google Scholar] [CrossRef] [PubMed]
- Lanoue, J.; Leonardos, E.D.; Khosla, S.; Hao, X.; Grodzinski, B. Effect of elevated CO2 and spectral quality on whole plant gas exchange patterns in tomatoes. PLoS ONE 2018, 13, e0205861. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142, Erratum in Nature 2014, 574, E14. [Google Scholar] [CrossRef] [PubMed]
- Bolton, A.; Klimek-Chodacka, M.; Martin-Millar, E.; Grzebelus, D.; Simon, P.W. Genome-assisted improvement strategies for climate-resilient carrots. In Genomic Designing of Climate-Smart Vegetable Crops; Springer International Publishing: Cham, Switzerland, 2020; pp. 309–343. [Google Scholar]
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and their health benefits. Foods 2019, 8, 424. [Google Scholar] [CrossRef]
- Mortensen, L.M. Effects of Carbon Dioxide Concentration on Assimilate Partitioning, Photosynthesis and Transpiration of Betula pendula Roth, and Picea abies (L.) Karst, Seedlings at Two Temperatures. Acta Agric. Scand. B-Plant Soil Sci. 1994, 44, 164–169. [Google Scholar]
- Wang, X.; Zhang, S.; Li, H.; Du Laing, G.; Odlare, M.; Skvaril, J. Elevated CO2 decreases micronutrient Zn but not Fe in vegetables-Evidence from a meta-analysis. Front. Plant Sci. 2025, 16, 1509102. [Google Scholar] [CrossRef]
- Ulukan, H. Responses of cultivated plants and some preventive measures against climate change. Int. J. Agric. Biol. 2011, 13, 292–296. [Google Scholar]
- Leibar-Porcel, E.; Dodd, I.C. Above-and Below-ground Interactions. In Plant Hormones and Climate Change; Springer Nature: Singapore, 2023; p. 55. [Google Scholar]
- Mattiroli, E.; Ercoli, L.; Mariotti, M.; Masoni, A. Sugar beet response to elevated CO2 in Mediterranean conditions. Eur. J. Agron. 1999, 11, 239–247. [Google Scholar]
- Ford, M.A.; Thorne, G.N. Effect of CO2 concentration on growth of sugar-beet, barley, kale, and maize. Ann. Bot. 1967, 31, 629–644. [Google Scholar] [CrossRef]
- Wurr, D.C.E.; Hand, D.W.; Edmondson, R.N.; Fellows, J.R.; Hannah, M.A.; Cribb, D.M. Climate change: A response surface study of the effects of CO2 and temperature on the growth of beetroot, carrots and onions. J. Agric. Sci. 1998, 131, 125–133. [Google Scholar] [CrossRef]
- Wijewardene, I.; Shen, G.; Zhang, H. Enhancing crop yield by using Rubisco activase to improve photosynthesis under elevated temperatures. Stress Biol. 2021, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Bodner, G.; Alsalem, M. Sugar beet rooting pattern mediates stomatal and transpiration responses to progressive water stress. Agronomy 2023, 13, 2519. [Google Scholar] [CrossRef]
- Bunce, J. Changes in the Responses of Leaf Gas Exchange to Temperature and Photosynthesis Model Parameters in Four C3 Species in the Field. Plants 2025, 14, 550. [Google Scholar] [CrossRef]
- Thakulla, D.; Dunn, B.; Hu, B.; Goad, C.; Maness, N. Nutrient solution temperature affects growth and Brix parameters of seventeen lettuce cultivars grown in an NFT hydroponic system. Horticulturae 2021, 7, 321. [Google Scholar] [CrossRef]
- Suojala, T. Variation in sugar content and composition of carrot storage roots at harvest and during storage. Sci. Hortic. 2000, 85, 1–19. [Google Scholar] [CrossRef]
- Yousef, A.F.; Ali, M.M.; Rizwan, H.M.; Tadda, S.A.; Kalaji, H.M.; Yang, H.; Ahmed, M.A.A.; Wróbel, J.; Xu, Y.; Chen, F.; et al. Photosynthetic apparatus performance of tomato seedlings grown under various combinations of LED illumination. PLoS ONE 2021, 16, e0249373. [Google Scholar] [CrossRef]
- Mohamed, S.J.; Rihan, H.Z.; Aljafer, N.; Fuller, M.P. The impact of light spectrum and intensity on the growth, physiology, and antioxidant activity of lettuce (Lactuca sativa L.). Plants 2021, 10, 2162. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Nagar, S.; Thakur, M.; Suriyakumar, P.; Kataria, S.; Shanker, A.; Landi, M.; Anand, A. Photosystems under high light stress: Throwing light on mechanism and adaptation. Photosynthetica 2023, 61, 250. [Google Scholar] [CrossRef]
- Villagran, E.; Espitia, J.J.; Amado, G.; Rodriguez, J.; Gomez, L.; Velasquez, J.F.; Gil, R.; Baeza, E.; Aguilar, C.E.; Akrami, M.; et al. CO2 Enrichment in Protected Agriculture: A Systematic Review of Greenhouses, Controlled Environment Systems, and Vertical Farms—Part 2. Sustainability 2025, 17, 2809. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Tong, Y.; Li, L.; Sahari, S.Q.; Almogahed, A.M.; Cheng, R. Integrative effects of CO2 concentration, illumination intensity and air speed on the growth, gas exchange and light use efficiency of lettuce plants grown under artificial lighting. Horticulturae 2022, 8, 270. [Google Scholar] [CrossRef]
- Holley, J.; Mattson, N.; Ashenafi, E.; Nyman, M. The impact of CO2 enrichment on biomass, carotenoids, xanthophyll, and mineral content of Lettuce (Lactuca sativa L.). Horticulturae 2022, 8, 820. [Google Scholar] [CrossRef]
- Duggan-Jones, D.I.; Nichols, M.A. Determining the optimum temperature, irradiation and CO2 enrichment on the growth of lettuce and cabbage seedlings in plant factories. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposium on Innovation and New Technologies in Protected Cropping, Brisbane, Australia, 17–22 August 2014; pp. 187–194, ISHS Acta Horticulturae 1107. [Google Scholar]
- Manosa, N.A. Influence of Temperature on Yield and Quality of Carrots (Daucus carota var. sativa). Master’s Thesis, University of the Free State, Bloemfontein, South Africa, 2011. [Google Scholar]
- Hussain, R.; Ali, A.; Naveed, N.H.; Majid, A.; Raza, H.; Imran, M.; Nijabat, A.; Simon, P.W. Role of bio-inoculants and plant growth regulators on growth, physiology and yield of carrot (Daucus carota L.) under heat stress. Pak. J. Bot 2025, 57, 5. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, T.; Rodrigues, F.A.S.; Mahajan, P.V.; Kerry, J.P.; Gil, L.; Manso, M.C.; Cunha, L.M. Effect of minimal processing conditions on respiration rate of carrots. J. Food Sci. 2008, 73, E396–E402. [Google Scholar] [CrossRef]
- Rosenfeld, H.J. The influence of climate on sensory quality and chemical composition of carrots for fresh consume and industrial use. In Proceedings of the International Symposium on Applications of Modelling as InnovativeTechnique in the Agri-Food Chain, MODEL-IT, Wageningen, The Netherlands, 29 November–2 December 1997; pp. 69–76, ISHS Acta Horticulturae 476. [Google Scholar]
- Alshenaifi, M.A.; Mesloub, A.; Alfraidi, S.; Noaime, E.; Ahriz, A.; Sharples, S. Passive cooling and thermal comfort performance of Passive Downdraught Evaporative Cooling (PDEC) towers in a Saudi library: An on-site study. Build. Environ. 2024, 258, 111586. [Google Scholar] [CrossRef]
- Abdel-Rahman, G.M.; Al-Amoudi, A.O. Evaporative Cooling and Temperature Inside Greenhouse Under Hot Arid Air Conditions. Misr J. Agric. Eng. 2010, 27, 1420–1433. [Google Scholar] [CrossRef]
- Khan, Q.; Wang, Y.; Xia, G.; Yang, H.; Luo, Z.; Zhang, Y. Deleterious effects of heat stress on the tomato, its innate responses, and potential preventive strategies in the realm of emerging technologies. Metabolites 2024, 14, 283. [Google Scholar] [CrossRef]
- Amin, B.; Atif, M.J.; Kandegama, W.M.W.W.; Nasar, J.; Alam, P.; Fang, Z.; Cheng, Z. Low temperature and high humidity affect dynamics of chlorophyll biosynthesis and secondary metabolites in Cucumber. BMC Plant Biol. 2024, 24, 903. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.Y.; Moureau, E.; Nikolić, N.; Madena, T.; Koehn, N.; Zotz, G. Simulating climate change in situ in a tropical rainforest understorey using active air warming and CO2 addition. Ecol. Evol. 2022, 12, e8406. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.J.; Hadley, A.S.; Johnson, S.L.; Schulze, M.; Jones, J.A.; Betts, M.G. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2016, 2, e1501392. [Google Scholar] [CrossRef]
- Aaslyng, J.; Andreassen, A.; Körner, O.; Lund, J.; Jakobsen, L.; Pedersen, J.; Ottosen, C.; Rosenqvist, E. Integrated optimization of temperature, CO2, screen use and artificial lighting in greenhouse crops using a photosynthesis model. In Proceedings of the V International Symposium on Artificial Lighting in Horticulture, Lillehammer, Norway, 21–24 June 2005; pp. 79–88, ISHS Acta Horticulturae 711. [Google Scholar]
- López-Martínez, A.; Molina-Aiz, F.D.; Moreno-Teruel, M.D.L.Á.; Peña-Fernández, A.; Baptista, F.J.; Valera-Martínez, D.L. Low tunnels inside mediterranean greenhouses: Effects on air/Soil temperature and humidity. Agronomy 2021, 11, 1973. [Google Scholar] [CrossRef]
- Meca, D.; López, J.C.; Gázquez, J.C.; Baeza, E.; Parra, J.P.; Zaragoza, G. A comparison of three different cooling systems in parral type greenhouses in Almería. Span. J. Agric. Res. 2007, 5, 285–292. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of shading and insect-proof screens on crop microclimate and production: A review of recent advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Polycarpou, P.; Kitta, E.; Katsoulas, N. Energy and water related parameters in tomato and cucumber greenhouse crops in semiarid mediterranean regions. A review, part II: Irrigation and fertigation. Horticulturae 2021, 7, 548. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.; Cohen, S.; Gao, Z. Microclimate and plant transpiration of tomato (Solanum lycopersicum L.) in a sunken solar greenhouse in North China. Agriculture 2022, 12, 260. [Google Scholar] [CrossRef]
- Carotti, L.; Graamans, L.; Puksic, F.; Butturini, M.; Meinen, E.; Heuvelink, E.; Stanghellini, C. Plant factories are heating up: Hunting for the best combination of light intensity, air temperature and root-zone temperature in lettuce production. Front. Plant Sci. 2021, 11, 592171. [Google Scholar] [CrossRef]
- Loconsole, D.; Cocetta, G.; Santoro, P.; Ferrante, A. Optimization of LED lighting and quality evaluation of romaine lettuce grown in an innovative indoor cultivation system. Sustainability 2019, 11, 841. [Google Scholar] [CrossRef]
Crop | Temp Optimum (°C) | Key Temp Response | Key Light Response | Key CO2 Response |
---|---|---|---|---|
Lettuce | 15–22 | >25 °C: ↑ Respiration, ↓ Pn, ↑ Phenolics, Bolting | Blue: ↑ Anthocyanins, Stomatal Opening; Excess: ROS | Enrichment Boosts Pn; >1000 ppm: Tipburn Risk |
Tomato | 18–25 | Optimizes Pollen Viability, Fruit Set, Hormonal Signaling | Blue: ↑ Lycopene; Excess: ROS | Enrichment Boosts Pn; >1000 ppm: Stomatal Closure Risk |
Carrot | 15–20 | Balances Respiration/Pn, ↑ Root Biomass, Sucrose Synthase | Red: Promotes Partitioning/Elongation; Shading often needed | Enrichment Boosts Storage; >1000 ppm: Nutrient Dilution Risk |
Beet | 15–22 | >25 °C: ↑ Respiration, ↓ Pn, ↑ Phenolics, Bolting | Red: Promotes Partitioning/Elongation; Shading often needed | Enrichment Boosts Storage; >1000 ppm: Nutrient Dilution Risk |
Climate Zone | Suitable Greenhouse Types | Primary Control Methods | Key Limitations | Best Suited Crops |
---|---|---|---|---|
Temperate | High-Tech Venlo Glasshouses | Advanced Cooling, Tunable LEDs, CO2 Enrichment | High Capital Cost | Lettuce, Tomato, Beet |
Mediterranean | Plastic Polytunnels, Parral-type | Ventilation, Shading | Inconsistent CO2, Heat Stress Management | Tomato, (Carrot/Beet with limits) |
Tropical | Shade-Net Houses | Passive Cooling, Shading | Poor Light/CO2 Control, Humidity | Tomato (adjusted), Lettuce (cooled) |
Subtropical | Shade-Net Houses, High-Tech (modified cooling) | Shading, Ventilation, Cooling | Managing High Light Intensity | Carrot, Beet, Tomato |
Arid | High-Tech Greenhouses (Evaporative Cooling, Sealed) | Evaporative Cooling, CO2 Enrichment | Water Availability, High Cooling Load | Tomato, Carrot |
All (Precision) | Vertical Farms, Plant Factories | Tunable LEDs, Precise CO2, AI Control | Space for Root Crops, Very High Capital Cost | L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitu, O.A.; Ivan, E.S.; Arshad, A. Optimizing Microclimatic Conditions for Lettuce, Tomatoes, Carrots, and Beets: Impacts on Growth, Physiology, and Biochemistry Across Greenhouse Types and Climatic Zones. Int. J. Plant Biol. 2025, 16, 100. https://doi.org/10.3390/ijpb16030100
Nitu OA, Ivan ES, Arshad A. Optimizing Microclimatic Conditions for Lettuce, Tomatoes, Carrots, and Beets: Impacts on Growth, Physiology, and Biochemistry Across Greenhouse Types and Climatic Zones. International Journal of Plant Biology. 2025; 16(3):100. https://doi.org/10.3390/ijpb16030100
Chicago/Turabian StyleNitu, Oana Alina, Elena Stefania Ivan, and Adnan Arshad. 2025. "Optimizing Microclimatic Conditions for Lettuce, Tomatoes, Carrots, and Beets: Impacts on Growth, Physiology, and Biochemistry Across Greenhouse Types and Climatic Zones" International Journal of Plant Biology 16, no. 3: 100. https://doi.org/10.3390/ijpb16030100
APA StyleNitu, O. A., Ivan, E. S., & Arshad, A. (2025). Optimizing Microclimatic Conditions for Lettuce, Tomatoes, Carrots, and Beets: Impacts on Growth, Physiology, and Biochemistry Across Greenhouse Types and Climatic Zones. International Journal of Plant Biology, 16(3), 100. https://doi.org/10.3390/ijpb16030100