Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Osmotic Potential at Full Turgor (Ψπ100)
3.2. Predicted Leaf Turgor Loss Point (ΨP0)
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NEWA | Network for Environment and Weather Applications |
POWO | Plants of the World Online |
References
- Pooler, M.; Contreras, R.C.; Criley, R.A.; Dosmann, M.S.; Galanti, R.; Hokanson, S.C.; Miller, B.M.; Peterson, B.J.; Nageswara-Rao, M.; Rounsaville, T.J.; et al. Seeing the Forest for the Trees: Threats, Vulnerabilities, and Opportunities for Woody Landscape Plant Genetic Resources. HortScience 2024, 59, 1497–1504. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Miller, B.M.; Bassuk, N.L. Carya Species for Use in the Managed Landscape: Predicted Drought Tolerance. HortScience 2022, 57, 1558–1563. [Google Scholar] [CrossRef]
- Avsar, M.D.; Ok, T. Using poplars (Populus L.) in urban afforestation: Kahramanmaras sample. Turk. J. For. 2010, 11, 127–135. [Google Scholar]
- Elias, T.S. The Complete Trees of North America: Field Guide and Natural History; Gramercy Publishing Company & Crown Publishers, Inc.: New York, NY, USA, 1987; pp. 457–458. [Google Scholar]
- Łukaszkiewicz, J.; Długoński, A.; Fortuna-Antoszkiewicz, B.; Fialová, J. The Ecological Potential of Poplars (Populus L.) for City Tree Planting and Management: A Preliminary Study of Central Poland (Warsaw) and Silesia (Chorzów). Land 2024, 13, 593. [Google Scholar] [CrossRef]
- Plants of the World Online. Available online: https://powo.science.kew.org/ (accessed on 4 February 2025).
- Govaerts, R.; Nic Lughadha, E.; Black, N.; Turner, R.; Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 2021, 8, 215. [Google Scholar] [CrossRef]
- Stobrawa, K. Poplars (Populus spp.): Ecological role, applications and scientific perspectives in the 21st century. Balt. For. 2014, 20, 204–213. [Google Scholar]
- Dirr, M. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses, 6th ed.; Stipes: Champaign, IL, USA, 2009; pp. 861–864. [Google Scholar]
- Peattie, D.C. A Natural History of Trees of Eastern and Central North America, 2nd ed.; Bonanza Books: New York, NY, USA, 1966; p. 88. [Google Scholar]
- Peattie, D.C. A Natural History of Western Trees; Bonanza Books: New York, NY, USA, 1950; p. 318. [Google Scholar]
- Isebrands, J.G.; Karnosky, D.F. Environmental benefits of poplar culture. In Poplar Culture in North America; Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J., Eds.; NRC Research Press: Ottawa, ON, Canada, 2001; pp. 207–218. [Google Scholar]
- Demeritt, M.E. Populus L. Poplar hybrids. Salicaceae—Willow family. In Silvics of North America; Burns, R.M., Honkala, B.H., Eds.; USDA Forest Service: Washington, DC, USA, 1990; Volume 2, pp. 570–576. [Google Scholar]
- Tschaplinski, T.J.; Tuskan, G.A.; Gunderson, C.A. Water stress tolerance of black and eastern cottonwood clones and four hybrid progeny. I. Growth, water relations and gas exchange. Can. J. For. Res. 1994, 24, 364–371. [Google Scholar] [CrossRef]
- Silim, S.; Nash, R.; Reynard, D.; White, B.; Schroeder, W. Leaf gas exchange and water potential responses to drought in nine poplar (Populus spp.) clones with contrasting drought tolerance. Trees 2009, 23, 959–969. [Google Scholar] [CrossRef]
- Rood, S.B.; Bratney, J.H.; Hughes, F.M. Ecophysiology of riparian cottonwoods: Streamflow dependency, water relations and restoration. Tree Physiol. 2003, 23, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Grossman, J.J. Phenological physiology: Seasonal patterns of plant stress tolerance in a changing climate. New Phytol. 2023, 237, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- Hirons, A.D.; Thomas, P.A. Applied Tree Biology; John Wiley & Sons Ltd.: Oxford, UK, 2018; pp. 372–373. [Google Scholar]
- Network for Environment and Weather Applications. Available online: https://newa.cornell.edu/all-weather-data-query (accessed on 30 January 2025).
- Bartlett, M.K.; Scoffoni, C.; Ardy, R.; Zhang, Y.; Sun, S.; Cao, K.; Sack, L. Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods Ecol. Evol. 2012, 3, 880–888. [Google Scholar] [CrossRef]
- Kikuta, S.B.; Richter, H. Leaf discs or press saps? A comparison of techniques for the determination of osmotic potentials in freeze-thawed leaf material. J. Expt. Bot. 1992, 43, 1039–1044. [Google Scholar] [CrossRef]
- Sjöman, H.; Hirons, A.D.; Bassuk, N.L. Urban forest resilience through tree selection-Variation in drought tolerance in Acer. Urban For. Urban Green. 2015, 14, 858–865. [Google Scholar] [CrossRef]
- Bartlett, M.K.; Scoffoni, C.; Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. 2012, 15, 393–405. [Google Scholar] [CrossRef]
- Gebre, G.M.; Tschaplinski, T.J.; Tuskan, G.A.; Todd, D.E. Clonal and seasonal differences in leaf osmotic potential and organic solutes of five hybrid poplar clones grown under field conditions. Tree Physiol. 1998, 18, 645–652. [Google Scholar] [CrossRef]
- Deacon, N.J.; Grossman, J.J.; Cavender-Bares, J. Drought and freezing vulnerability of the isolated hybrid aspen Populus ×. smithii relative to its parental species, P. tremuloides and P. grandidentata. Ecol. Evol. 2019, 9, 8062–8074. [Google Scholar] [CrossRef]
- Hirons, A.D.; Watkins, J.H.R.; Baxter, T.J.; Miesbauer, J.W.; Male-Muñoz, A.; Martin, K.W.; Bassuk, N.L.; Sjöman, H. Using botanic gardens and arboreta to help identify urban trees for the future. Plants People Planet 2021, 3, 182–193. [Google Scholar] [CrossRef]
- Schwartz Sax, M.; Bassuk, N.L.; Sjöman, H. Osmotic adjustment and gas exchange response during drought for two tree species (Quercus bicolor & Betula pendula) grown in containers with limited soil volume. In The Landscape Below Ground IV: Proceedings of the IV International Workshop on Tree Root Development in Urban Soils; Watson, G., Gilman, E., Miesbauer, J., Morgenroth, J., Scharenbroch, B., Eds.; International Society of Arboriculture: Champaign, IL, USA, 2020; pp. 742–762. [Google Scholar]
- Sjöman, H.; Hirons, A.D.; Bassuk, N.L. Improving confidence in tree species selection for challenging urban sites: A role for leaf turgor loss. Urban Ecosyst. 2018, 21, 1171–1188. [Google Scholar] [CrossRef]
- Sjöman, H.; Hirons, A.D.; Bassuk, N.L. Magnolias as urban trees-a preliminary evaluation of drought tolerance in seven magnolia species. Arboric. J. 2018, 40, 47–56. [Google Scholar] [CrossRef]
- Hirons, A.D.; Sjöman, H. Tree Species Selection for Green Infrastructure: A Guide for Specifiers, Trees & Design Action Group 2019, Issue 1.3. Available online: https://www.tdag.org.uk/tree-species-selection-for-green-infrastructure.html (accessed on 10 March 2025).
- Banks, J.M.; Hirons, A.D. Alternative methods of estimating the water potential at turgor loss point in Acer genotypes. Plant Methods 2019, 15, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hoag, D.G. Trees and Shrubs for the Northern Plains; Lund Press, Inc.: Minneapolis, MN, USA, 1965; p. 272. [Google Scholar]
- Hannus, S.; Hirons, A.; Baxter, T.; McAllister, H.; Wiström, B.; Sjöman, H. Intraspecific drought tolerance of Betula pendula genotypes: An evaluation using leaf turgor loss in a botanical collection. Trees 2021, 35, 569–581. [Google Scholar] [CrossRef]
Taxon (Hybrid Lineage) Z | Common Name(s) Y | Botanical Authority X | Accession(s)/Specimens Evaluated W |
---|---|---|---|
P. alba | White poplar | L. | 19730230 B; 20050527 A; 20000351 A–C (‘Richardii’); naturalized specimen (1; not accessioned); N = 6 |
P. balsamifera | Balsam poplar; tacamahac | L. | 19690247 A & E; 19710279 A & D; 19720284 C; N = 5 |
P. ×canadensis (P. deltoides × P. nigra) | Canadian poplar; Carolina poplar; golden poplar | Moench | 19810229 (‘Imperial’); 19950384 A & B (‘Nor’ Easter’); 20000264 B (‘Prairie Sky’); N = 4 |
P. ×canescens (P. alba × P. tremula) | Grey poplar | (Aiton) Sm. | 20040576 (‘Pendula’); 19810399 A (‘Tower’); 20120299 A & B (‘Tower’) N = 4 |
P. cathayana | Chinese aspen | Rehder | 20040577 A & B; 20070552 A; N = 3 |
P. deltoides | Eastern cottonwood | W.Bartram ex Marshall | Specimens naturally occurring on site (5; not accessioned); N = 5 |
P. grandidentata | Bigtooth aspen | Michx. | 19950385 A& B; specimens naturally occurring on site (3; not accessioned); N = 5 |
P. ×jackii (P. balsamifera × P. deltoides) | Balm-of-Gilead | Sarg. | 19710672 (A–D & F); N = 5 |
P. tremuloides | Quaking aspen; trembling aspen | Michx. | 19950386 A & B; specimens naturally occurring on site (4; not accessioned); N = 6 |
P. trichocarpa | Black cottonwood | Torr. & A.Gray ex Hook. | 19610373 E, D, & C; N = 3 |
Taxon | Spring Ψπ100 (MPa) | Summer Ψπ100 (MPa) | ΔΨπ100 (MPa) |
---|---|---|---|
P. alba | −1.44 (±0.05) cd z | −2.11 (±0.04) ab | 0.67 ***y |
P. balsamifera | −1.34 (±0.04) bc | −2.31 (±0.01) c | 0.97 *** |
P. ×canadensis | −1.04 (±0.01) a | −2.09 (±0.03) ab | 1.05 *** |
P. ×canescens | −1.30 (±0.03) b | −2.23 (±0.02) bc | 0.93 *** |
P. cathayana | −1.93 (±0.03) f | −2.73 (±0.03) d | 0.80 *** |
P. deltoides | −1.45 (±0.03) cd | −2.10 (±0.04) ab | 0.65 *** |
P. grandidentata | −1.50 (±0.01) d | −2.60 (±0.03) d | 1.10 *** |
P. ×jackii | −1.26 (±0.02) b | −2.15 (±0.02) abc | 0.89 *** |
P. tremuloides | −1.78 (±0.01) e | −2.60 (±0.06) d | 0.82 *** |
P. trichocarpa | −1.53 (±0.01) d | −1.97 (±0.01) a | 0.44 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, B.M. Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes. Int. J. Plant Biol. 2025, 16, 61. https://doi.org/10.3390/ijpb16020061
Miller BM. Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes. International Journal of Plant Biology. 2025; 16(2):61. https://doi.org/10.3390/ijpb16020061
Chicago/Turabian StyleMiller, Brandon M. 2025. "Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes" International Journal of Plant Biology 16, no. 2: 61. https://doi.org/10.3390/ijpb16020061
APA StyleMiller, B. M. (2025). Predicted Drought Tolerance of Poplars and Aspens for Use in Resilient Landscapes. International Journal of Plant Biology, 16(2), 61. https://doi.org/10.3390/ijpb16020061