Seed Germination and Responses of Five Native Veronica Species Under Salinity Stress in Korea
Abstract
:1. Introduction
2. Results
2.1. Preliminary Experiment for Determining NaCl Concentration
2.2. Germination Experiment
2.3. Hormonal Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Preliminary Experiment for Determining NaCl Concentration
4.3. Germination Experiment
4.4. Hormonal Analysis
4.4.1. Preparation of Seed Samples
4.4.2. Chemicals and Reagents
4.4.3. Preparation of Standard Solutions
4.4.4. Preparation of Test Solutions
4.4.5. Analytical Conditions
4.5. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, R.-H.; Kim, J.-H.; Ryu, J.-S.; Chang, H.-W. Salinization properties of a shallow groundwater in a coastal reclaimed area, Yeonggwang, Korea. Environ. Geol. 2006, 49, 1180–1194. [Google Scholar] [CrossRef]
- Jung, E.; Park, N.; Park, J. Composite modeling for evaluation of groundwater and soil salinization on the multiple reclaimed land due to sea-level rise. Transp. Porous Media 2021, 136, 271–293. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/global-soil-partnership/insas/zh/ (accessed on 11 November 2024).
- Dehnavi, A.R.; Zahedi, M.; Ludwiczak, A.; Perez, S.C.; Piernik, A. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy 2020, 10, 859. [Google Scholar] [CrossRef]
- Dai, X.; Huo, Z.; Wang, H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Res. 2011, 121, 441–449. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Pan, N.; Jiao, W. Impacts of long-term reclaimed water irrigation on soil salinity accumulation in urban green land in Beijing. Water Resour. Res. 2013, 49, 7401–7410. [Google Scholar] [CrossRef]
- Gerasimov, A.; Chugunova, M.; Polyak, Y. Changes in salinity and toxicity of soil contaminated with de-icing agents during growing season. Environ. Res. Eng. Manag. 2021, 77, 53–62. [Google Scholar] [CrossRef]
- Carlos, F.S.; Schaffer, N.; Andreazza, R.; Morris, L.A.; Tedesco, M.J.; Boechat, C.L.; Camargo, F.A.D.O. Treated industrial wastewater effects on chemical constitution maize biomass, physicochemical soil properties, and economic balance. Commun. Soil Sci. Plant Anal. 2018, 49, 319–333. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Kim, J.W.; Jeong, S.E.; Kwon, H.H.; Cho, W. Growth and physiological responses in Sanguisorba hakusanensis to different irrigation cycle and NaCl concentration. Flower Res. J. 2023, 31, 364–377. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; McDonald, G.K. High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61, 4449–4459. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zong, J.; Gao, Y.; Chen, Y.; Jiang, Q.; Zheng, Y.; Liu, J. Genetic variation of salinity tolerance in Chinese natural bermudagrass (Cynodon dactylon (L.) Pers.) Germplasm resources. Acta Agric. Scand. B Soil Plant Sci. 2014, 64, 416–424. [Google Scholar] [CrossRef]
- Puyang, X.; An, M.; Han, L.; Zhang, X. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxical. Environ. Saf. 2015, 117, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Noreen, S.; Ashraf, M.; Hussain, M.; Jamil, A. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pak. J. Bot. 2009, 41, 473–479. [Google Scholar]
- Cuartero, J.; Bolarin, M.C.; Asins, M.J.; Moreno, V. Increasing salt tolerance in the tomato. J. Exp. Bot. 2006, 57, 1045–1058. [Google Scholar] [CrossRef]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef]
- Bojovic, B.; Delic, G.; Topuzovic, M.; Stankovic, M. Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Krag. J. Sci. 2020, 32, 83–87. [Google Scholar]
- Bijeh, K.M.H. Studying the effects of different levels of salinity which caused by NaCl on early and germination of Lactuca sativa L. seedling. J. Stress Physiol. Bioch. 2012, 8, 203–208. [Google Scholar]
- Bybordi, A. The influence of salt stress on seed germination, growth and yield of canola cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 12–133. [Google Scholar]
- Shiade, S.R.G.; Boelt, B. Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 485–494. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A. Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant Soil 2003, 253, 201–218. [Google Scholar] [CrossRef]
- Katerij, N.; van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T. Classification and salt tolerance analysis of barley varieties. Agric. Water Manag. 2006, 85, 184–192. [Google Scholar] [CrossRef]
- Verma, O.P.S.; Yadava, R.B.R. Salt tolerance of some oats (Avena sativa L.) varieties at germination and seedling stage. J. Agron. Crop Sci. 2008, 156, 123–127. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Q.; Hettenhausen, C.; Cao, G.; Tan, Q.; Zhao, W.; Lin, H.; Wu, J. Salt-tolerant and -sensitive alfalfa (Medicago sativa) cultivars have large variations in defense responses to the lepidopteran insect Spodoptera litura under normal and salt stress conditions. PLoS ONE 2017, 12, e0181589. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Amador, B.; López-Aguilar, R.; Kaya, C.; Larrinaga-Mayoral, J.; Flores-Hernández, A. Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J. Agron. Crop Sci. 2002, 188, 235–247. [Google Scholar] [CrossRef]
- Liang, W.; Ma, X.; Wan, P.; Liu, P. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef]
- Hadiarto, T.; Tran, L.S.P. Progress studies of drought-responsive genes in rice. Plant Cell Rep. 2011, 30, 297–310. [Google Scholar] [CrossRef]
- Ali-Rachedi, S.; Bouinot, D.; Wagner, M.H.; Bonnet, M.; Sotta, B.; Grappin, P.; Jullien, M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: Studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 2004, 219, 479–488. [Google Scholar] [CrossRef]
- Finch-Savage, W.; Leubner-Metzger, C. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef]
- Finkelstein, R.; Reeves, W.; Ariizumi, T.; Steber, C. Molecular aspects of seed dormancy. Ann. Rev. Plant Biol. 2008, 59, 387–415. [Google Scholar] [CrossRef] [PubMed]
- Graeber, K.; Linkies, A.; Muller, K.; Wunchova, A.; Rott, A.; Luebner_Metzger, G. Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol. Biol. 2010, 73, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Cho, Y.G. Plant hormones in salt stress tolerance. J. Plant Biol. 2015, 58, 147–155. [Google Scholar] [CrossRef]
- Petersson, S.V.; Johansson, A.I.; Kowalczyk, M.; Makoveychuk, A.; Wang, J.Y.; Moritz, T.; Grebe, M.; Benfey, P.N.; Sandberg, G.; Ljung, K. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 2009, 21, 1659–1668. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Li, X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 2009, 166, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Park, C.M. Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav. 2011, 6, 1198–1200. [Google Scholar] [CrossRef]
- Akbari, G.; Sanavy, S.A.; Yousefzadeh, S. Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). PJBS 2007, 10, 2557–2561. [Google Scholar] [CrossRef]
- Javid, M.G.; Sorooshzadeh, A.; Moradi, F.; Sanavy, S.A.M.M.; Allahdadi, I. The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop Sci. 2011, 5, 726–734. [Google Scholar]
- Koh, S.; Lee, S.C.; Kim, M.K.; Koh, J.H.; Lee, S.; An, G.; Choe, S.; Kim, S.R. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol. Biol. 2007, 65, 453–466. [Google Scholar] [CrossRef]
- Achard, P.; Cheng, H.; De Grauwe, L.; Decat, J.; Schoutteten, H.; Moritz, T.; Van der Straeten, D.; Peng, J.R.; Harberd, N.P. Integration of plant responses to environmentally activated phytohormonal signals. Science 2006, 311, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N.; Liu, C.; Li, K.X.; Sun, F.F.; Hu, H.Z.; Li, X.; Zhao, Y.K.; Han, C.Y.; Zhang, W.S.; Duan, Y.F. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol. 2007, 64, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Albach, D.C.; Jensen, S.R.; Özgökce, F.; Grayer, R.J. Veronica: Chemical characters for the support of phylogenetic relationships based on nuclear ribosomal and plastid DNA sequence data. Biochem. Syst. Ecol. 2005, 33, 1087–1106. [Google Scholar] [CrossRef]
- Korean Plant Names Index. Available online: http://www.nature.go.kr/kpni/SubIndex.do (accessed on 27 May 2024).
- Hawke, R.G. Comparative studies of Veronica and Veronicastrum. Plant Evol. Notes 2010, 33, 1–8. [Google Scholar]
- Oh, H.Y.; Shin, U.S.; Song, S.J.; Kim, J.H.; Kim, S.Y.; Suh, G.U. Growth and flowering characteristics of 20 Veronica species. Flower Res. J. 2019, 27, 308–317. [Google Scholar] [CrossRef]
- Kiss, B.; Popa, D.S.; Crişan, G.; Bojiţă, M.; Loghin, F. The evaluation of antioxidant potential of Veronica officinalis and Rosmarinus officinalis extracts by monitoring malondialdehyde and glutathione levels in rats. Farmacia 2009, 57, 432–441. [Google Scholar]
- Sun, Y.; Lu, Q.; He, L.; Shu, Y.; Zhang, S.; Tan, S.; Tang, L. Active fragment of Veronica ciliata Fisch. Attenuates t-BHP-induced oxidative stress injury in HepG2 cells through antioxidant and antiapoptosis activities. Oxid. Med. Cell Longev. 2017, 2017, 4727151. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.S.; Zhao, J.; Kim, M.K.; Tae, H.J.; Kim, I.S.; Ahn, D.; Hwang, H.P.; Mao, M.X.; Park, B.Y. Veronica persica ameliorates acetaminophen-induced murine hepatotoxicity via attenuating oxidative stress and inflammation. Biomed. Pharmacother. 2023, 169, 115898. [Google Scholar] [CrossRef]
- Palmiano, E.P.; Juliano, B.O. Biochemical changes in the rice grain during germination. Plant Physiol. 1972, 49, 751–756. [Google Scholar] [CrossRef]
- Kim, S.K.; Son, T.K.; Park, S.Y.; Lee, I.J.; Lee, B.H.; Kim, H.Y.; Lee, S.C. Influence of gibberellin and auxin on endogenous during rice seed germination under salt stress. J. Environ. Biol. 2006, 27, 181–186. [Google Scholar]
- Dunlap, J.; Binzel, M. NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol. 1996, 112, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K. Auxin and the integration of environmental signals into plant root development. Ann. Bot-London. 2013, 112, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Colebrook, E.H.; Thomas, S.G.; Phillips, A.L.; Hedden, P. The role of gibberellin signaling in plant responses to abiotic stress. J. Exp. Biol. 2014, 217, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Seo, Y.; Lee, J.D.; Ishii, R.; Kim, K.U.; Shin, D.H.; Park, S.K.; Lee, I. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensative rice cultivars. J. Agron. Crop Sci. 2005, 191, 273–282. [Google Scholar] [CrossRef]
- Raghavendra, A.S.; Gonugnta, V.K.; Christmann, A.; Grill, E. ABA perception and signaling. Trends Plant Sci. 2002, 15, 395–401. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Zeng, Y.; Xiang, L. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci. Rep. 2020, 10, 10626. [Google Scholar] [CrossRef]
- Song, S.J.; Shin, U.S.; Oh, H.J.; Kim, S.Y.; Lee, S.Y. Seed germination responses and interspecific variations to different incubation temperatures in eight Veronica species native to Korea. Hortic. Sci. Technol. 2019, 37, 20–31. [Google Scholar] [CrossRef]
- Uçarlı, C. Effects of salinity on seed germination and early seedling stage. In Abiotic Stress in Plants; Fahad, S., Saud, S., Chen, Y., Wu, C., Wang, D., Eds.; Intechopen: London, UK, 2021. [Google Scholar] [CrossRef]
Species | NaCl Concentration (mM) | Germination Rate (%) | Germination Index | Germination Energy | Germination Vigor Index |
V. daurica | 0 | 76.2 ± 4.55 zay | 10.6 ± 0.94 a | 41.6 ± 4.80 a | 5.8 ± 1.04 a |
50 | 41.5 ± 2.15 b | 4.6 ± 0.77 b | 11.2 ± 3.14 b | 1.4 ± 0.36 b | |
100 | 7.9 ± 1.0 c | 0.4 ± 0.05 c | 0.0 ± 0.00 b | 0.1 ± 0.01 b | |
Significance | *** | *** | *** | ** | |
V. nakaiana | 0 | 95.8 ± 1.04 a | 21.4 ± 0.94 a | 23.0 ± 3.15 a | 15.7 ± 1.22 a |
50 | 82.6 ± 4.83 a | 9.2 ± 1.43 b | 6.5 ± 3.28 b | 3.4 ± 0.94 b | |
100 | 8.2 ± 4.52 b | 0.7 ± 0.35 c | 0.0 ± 0.00 b | 0.1 ± 0.07 b | |
Significance | *** | *** | *** | *** | |
V. kiusiana var. glabrifolia | 0 | 65.9 ± 7.13 a | 14.2 ± 1.26 a | 51.3 ± 7.42 a | 10.9 ± 2.87 a |
50 | 60.3 ± 3.18 a | 6.2 ± 0.22 b | 6.8 ± 0.91 b | 3.2 ± 0.22 b | |
100 | 14.0 ± 1.61 b | 1.1 ± 0.16 c | 0.0 ± 0.00 b | 0.3 ± 0.05 b | |
Significance | *** | *** | *** | * | |
V. pusanensis | 0 | 42.7 ± 1.78 a | 5.9 ± 0.18 a | 23.0 ± 1.82 a | 2.5 ± 0.02 a |
50 | 21.7 ± 6.13 b | 2.4 ± 0.48 b | 6.5 ± 1.89 b | 0.7 ± 0.17 b | |
100 | 6.4 ± 1.74 b | 0.5 ± 0.18 c | 0.0 ± 0.00 c | 0.1 ± 0.04 c | |
Significance | ** | *** | *** | *** | |
V. pyrethrina | 0 | 78.1 ± 6.95 a | 11.6 ± 1.19 a | 26.0 ± 5.85 a | 7.8 ± 1.56 a |
50 | 48.3 ± 4.81 b | 4.6 ± 0.76 b | 4.4 ± 2.94 b | 2.0 ± 0.50 b | |
100 | 6.5 ± 4.00 c | 0.5 ± 0.26 c | 0.0 ± 0.00 b | 0.1 ± 0.08 b | |
Significance | *** | *** | ** | ** | |
Species | NaCl Concentration (mM) | Water Content (%) | Fresh Weight (mg) | Dry Weight (mg) | Root Length (cm) |
V. daurica | 0 | 78.6 ± 1.96 a | 0.54 ± 0.034 a | 0.11 ± 0.003 a | 1.66 ± 0.038 |
50 | 65.6 ± 0.62 b | 0.29 ± 0.019 b | 0.10 ± 0.007 a | 0.38 ± 0.049 | |
100 | 54.0 ± 2.37 c | 0.21 ± 0.004 b | 0.10 ± 0.004 a | - x | |
Significance | *** | ** | ns | *** | |
V. nakaiana | 0 | 87.1 ± 0.78 a | 0.73 ± 0.014 a | 0.09 ± 0.002 a | 1.55 ± 0.321 |
50 | 75.9 ± 4.24 a | 0.35 ± 0.033 b | 0.08 ± 0.001 a | 0.43 ± 0.009 | |
100 | 46.4 ± 1.39 b | 0.16 ± 0.010 c | 0.08 ± 0.004 a | - | |
Significance | *** | *** | ns | * | |
V. kiusiana var. glabrifolia | 0 | 84.0 ± 1.65 a | 0.74 ± 0.076 a | 0.07 ± 0.020 a | 0.83 ± 0.020 |
50 | 75.6 ± 1.87 b | 0.51 ± 0.022 a | 0.12 ± 0.004 a | 0.39 ± 0.108 | |
100 | 59.6 ± 0.31 c | 0.31 ± 0.008 b | 0.13 ± 0.003 a | - | |
Significance | *** | * | ns | * | |
V. pusanensis | 0 | 73.6 ± 1.37 a | 0.42 ± 0.007 a | 0.11 ± 0.005 a | 1.34 ± 0.094 |
50 | 57.2 ± 4.56 b | 0.28 ± 0.011 b | 0.12 ± 0.003 a | 0.32 ± 0.014 | |
100 | 53.1 ± 1.50 b | 0.22 ± 0.002 c | 0.11 ± 0.003 a | - | |
Significance | ** | *** | ns | *** | |
V. pyrethrina | 0 | 78.2 ± 1.71 a | 0.66 ± 0.035 a | 0.14 ± 0.004 a | 1.75 ± 0.088 |
50 | 76.0 ± 4.03 a | 0.44 ± 0.021 b | 0.10 ± 0.009 a | 0.60 ± 0.074 | |
100 | 51.2 ± 1.74 b | 0.29 ± 0.003 c | 0.14 ± 0.004 a | - | |
Significance | ** | ** | ns | ** |
Scientific Name | Source | Date of Seed Gathering |
Veronica daurica | Useful Plant Propagation Center (Dudam-gil, Yangpyeong, Republic of Korea) | 1 November 2018 |
Veronica nakaiana | Namyang valley (Namyang-gil, Ulleung island, Republic of Korea) | 16 October 2016 |
Veronica kiusiana var. galbrifolia | Useful Plant Propagation Center (Dudam-gil, Yangpyeong, Republic of Korea) | 31 October 2016 |
Veronica pusanensis | Useful Plant Propagation Center (Dudam-gil, Yangpyeong, Republic of Korea) | 20 October 2020 |
Veronica pyrethrina | Useful Plant Propagation Center (Dudam-gil, Yangpyeong, Republic of Korea) | 1 November 2018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.W.; Yi, J.H.; Jeong, S.E.; Choi, E.J.; Ko, C.H.; Jung, J.Y.; Kim, S.H.; Cho, W. Seed Germination and Responses of Five Native Veronica Species Under Salinity Stress in Korea. Int. J. Plant Biol. 2025, 16, 60. https://doi.org/10.3390/ijpb16020060
Kim JW, Yi JH, Jeong SE, Choi EJ, Ko CH, Jung JY, Kim SH, Cho W. Seed Germination and Responses of Five Native Veronica Species Under Salinity Stress in Korea. International Journal of Plant Biology. 2025; 16(2):60. https://doi.org/10.3390/ijpb16020060
Chicago/Turabian StyleKim, Jin Woo, Ji Hun Yi, Song E Jeong, Eun Ji Choi, Chung Ho Ko, Ji Young Jung, Sang Heon Kim, and Wonwoo Cho. 2025. "Seed Germination and Responses of Five Native Veronica Species Under Salinity Stress in Korea" International Journal of Plant Biology 16, no. 2: 60. https://doi.org/10.3390/ijpb16020060
APA StyleKim, J. W., Yi, J. H., Jeong, S. E., Choi, E. J., Ko, C. H., Jung, J. Y., Kim, S. H., & Cho, W. (2025). Seed Germination and Responses of Five Native Veronica Species Under Salinity Stress in Korea. International Journal of Plant Biology, 16(2), 60. https://doi.org/10.3390/ijpb16020060