Essential Oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical Composition, Antibacterial Activity and Cytotoxic Activity against Various Human Cancer Cell Lines
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection of Plants
2.2. Extraction of Essential Oils
2.3. Chemical Compositions
2.4. Antibacterial Activity
- In order to perform antimicrobial testing, each of the two essential oils was tested at concentrations of 5 µL.
- Screening concentration: 5 µL of sample + 95 µL of Mueller–Hinton cation-adjusted medium (CAMHB) = 5% final.
- The bacterial inoculum was carried out in order to have a final concentration of 5 × 105 [2 × 105–8 × 105] CFU/mL in the wells.
- In the plate plan, each condition contained a sterile control (medium only), product (medium + final 5% sample) and growth control (bacteria + medium, without sample).
- The growth was detected after incubation in 96-well microplates for 24 h at 35 °C by visualization of a growth cloud/pellet and comparison with the corresponding product control. A microplate corresponded to the test on a bacterium. Only one test/bacteria/product was performed.
2.5. Cytotoxicity Tests
2.6. Statistical Analysis
3. Results
3.1. Essential Oils: Yields and Compositions
3.2. Chemical Compositions
3.3. Antibacterial Activity
3.4. Cytotoxic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdoul-Latif, F.M.; Ainane, A.; Merito, A.; Ainane, T. Chemical composition and biological activities of essential oils from Djibouti. J. Anal. Sci. Appl. Biotechnol. 2020, 4, 1–9. [Google Scholar]
- Attahar, W.; Mohamed Abdoul-Latif, F.; Mohamed, J.; Ainane, A.; Ainane, T. Antimicrobial and antioxidant activities of Trigonella foenum-graecum essential oil from the region of settat (Morocco). Pharmacologyonline 2021, 2, 434–442. [Google Scholar]
- Ainane, A.; Cherroud, S.; El Kouali, M.; Abba, E.H.; Ainane, T. Chemical compositions, insecticidal and antimicrobial activities of two moroccan essential oils of Citrus limonum and Syzygium aromaticum. Pharmacologyonline 2020, 2, 190–199. [Google Scholar]
- Ainane, T.; Abdoul-Latif, F.M.; Ouassil, M.; Am, A.; Ainane, A. Antagonistic antifungal activities of Mentha suaveolens and Artemisia absinthium essential oils from Morocco. Pharmacologyonline 2021, 2, 470–478. [Google Scholar]
- Abdoul-Latif, F.M.; Ainane, A.; Abdoul-Latif, T.M.; Ainane, T. Chemical study and evaluation of insectical properties of African Lippia citriodora essential oil. J. Biopestic. 2020, 13, 119–126. [Google Scholar]
- Ainane, A.; Abdoul-Latif, F.M.; Abdoul-Latif, T.M.; Ainane, T. Feasibility study of a project to produce an insecticide formulation based on the essential oil of Rosmarinus officinalis. EnvironmentAsia 2021, 14, 33–40. [Google Scholar]
- Talbi, M.; Saadali, B.; Boriky, D.; Elkouali, M.; Ainane, T. Two natural compounds–a benzofuran and a phenylpropane–from Artemisia dracunculus. J. Asian Nat. Prod. Res. 2016, 18, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar]
- Radi, F.Z.; Bouhrim, M.; Mechchate, H.; Al-Zahrani, M.; Qurtam, A.A.; Aleissa, A.M.; Zair, T. Phytochemical Analysis, Antimicrobial and Antioxidant Properties of Thymus zygis L. and Thymus willdenowii Boiss. Essential Oils. Plants 2021, 11, 15. [Google Scholar] [CrossRef]
- Ainane, T. Moroccan traditional treatment for fever and influenza, similar to symptoms of coronavirus COVID-19 disease: Mini Review. J. Anal. Sci. Appl. Biotechnol. 2020, 2, 1–3. [Google Scholar]
- Maru, G.B.; Gandhi, K.; Ramchandani, A.; Kumar, G. The role of inflammation in skin cancer. Inflamm. Cancer 2014, 816, 437–469. [Google Scholar]
- Elabboubi, M.; Bennani, L.; Ainane, A.; Charaf, S.; Bouhadi, M.; Elkouali, M.; Ainane, T. Treatment of mycoses by essential oils: Mini Review. J. Anal. Sci. Appl. Biotechnol. 2019, 1, 35–40. [Google Scholar]
- Ainane, A.; Abdoul-Latif, F.M.; Mohamed, J.; Attahar, W.; Ouassil, M.; Shybat, Z.L.; Ainane, T. Behaviour desorption study of the essential oil of Cedrus atlantica in a porous clay versus insecticidal activity against Sitophilus granarius: Explanation of the phenomenon by statistical studies. Int. J. Metrol. Qual. Eng. 2021, 12, 12. [Google Scholar] [CrossRef]
- Pavithra, P.S.; Mehta, A.; Verma, R.S. Essential oils: From prevention to treatment of skin cancer. Drug Discov. Today 2019, 24, 644–655. [Google Scholar] [CrossRef]
- Gharby, S.; Asdadi, A.; Ibourki, M.; Hamdouch, A.; Ainane, T.; Hassani, L.A.I. Chemical characterization of the essential oil from aerial parts of Lavandula rejdalii Upson & Jury, a medicinal plant endemic to Morocco. J. Essent. Oil Bear. Plants 2020, 23, 1422–1427. [Google Scholar]
- Craveiro, A.A.; Matos, F.J.A.; Machado, M.I.L.; Alencar, J.W. Essential oils of Tagetes minuta from Brazil. Perfum. Flavor 1988, 13, 35–36. [Google Scholar]
- Tereschuk, M.L.; Riera, M.V.; Castro, G.R.; Abdala, L.R. Antimicrobial activity of flavonoids from leaves of Tagetes minuta. J. Ethnopharmacol. 1997, 56, 227–232. [Google Scholar] [CrossRef]
- Green, M.M.; Singer, J.M.; Sutherland, D.J.; Hibben, C.R. Larvicidal activity of Tagetes minuta (marigold) toward Aedes aegypti. J. Am. Mosq. Control. Assoc. 1991, 7, 282–286. [Google Scholar]
- Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Hassan, W.H.; Al-Khedhairy, A.A.; Musarrat, J.; Siddiqui, M.A. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells. Toxicol. Ind. Health 2015, 31, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Emam, M.; Abdel-Haleem, D.R.; Salem, M.M.; Abdel-Hafez, L.J.M.; Latif, R.R.A.; Farag, S.M.; El Raey, M.A. Phytochemical Profiling of Lavandula coronopifolia poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 2021, 26, 1710. [Google Scholar] [CrossRef]
- Hasanin, M.S.; Emam, M.; Soliman, M.M.; Latif, R.R.A.; Salem, M.M.; El Raey, M.A.; Eisa, W.H. Green silver nanoparticles based on Lavandula coronopifolia aerial parts extract against mycotic mastitis in cattle. Biocatal. Agric. Biotechnol. 2022, 42, 102350. [Google Scholar] [CrossRef]
- Ainane, T.; Abdoul-Latif, F.M.; Shybat, Z.L.; Mohamed, J.; Ainane, A. Antifungal activity of essential oil of Pistacia atlantica against Ascochyta rabiei and its correlation with antioxidant activity. Pharmacologyonline 2021, 3, 829–837. [Google Scholar]
- Abdoul-Latif, F.M.; Ainane, A.; Oumaskour, K.; Boujaber, N.; Mohamed, J.; Ainane, T. Effect of atlas cedar essential oil against pathogenic medical bacterial strains-in vitro test. Pharmacologyonline 2021, 3, 857–864. [Google Scholar]
- Abdoul-Latif, F.M.; Ainane, A.; Oumaskour, K.; Boujaber, N.; Mohamed, J.; Ainane, T. In vitro antidiabetic activity of essential oil of two species of Artemisia: Artemisia heba-alba asso and Artemisia ifranensis. Pharmacologyonline 2021, 3, 812–820. [Google Scholar]
- SFM Antibiogram Committee. Comité de l’Antibiogramme de la Société Française de Microbiologie report 2003. Int. J. Antimicrob. Agents 2003, 21, 364–391. [Google Scholar]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J. Clin. Microbiol. 2021, 59, e00213-21. [Google Scholar] [CrossRef]
- Skjolding, L.M.; Sørensen, S.N.; Dyhr, K.S.; Hjorth, R.; Schlüter, L.; Hedberg, C.; Baun, A. Separating toxicity and shading in algal growth inhibition tests of nanomaterials and colored substances. Nanotoxicology 2022, 16, 265–275. [Google Scholar] [CrossRef]
- Sun, M.; Yuan, M.; Kang, Y.; Qin, J.; Zhang, Y.; Duan, Y.; Yao, Y. Identification of novel non-toxic and anti-angiogenic α-fluorinated chalcones as potent colchicine binding site inhibitors. J. Enzym. Inhib. Med. Chem. 2022, 37, 339–354. [Google Scholar] [CrossRef]
- Rathore, S.; Mukhia, S.; Kapoor, S.; Bhatt, V.; Kumar, R.; Kumar, R. Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Sci. Rep. 2022, 12, 3305. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, M.A.; Farghaly, A.A.; Hassan, E.E.; Hassan, E.M.; Hassan, Z.M.; Mahmoud, K.; Omara, E.A. Evaluation of the Anti-Cancer/Anti-Mutagenic Efficiency of Lavandula officinalis Essential Oil. Asian Pac. J. Cancer Prev. 2022, 23, 1215–1222. [Google Scholar] [CrossRef]
- Chamorro, E.R.; Ballerini, G.; Sequeira, A.F.; Velasco, G.A.; Zalazar, M.F. Chemical composition of essential oil from Tagetes minuta L. leaves and flowers. J. Argent. Chem. Soc. 2008, 96, 80–86. [Google Scholar]
- Pichette, A.; Garneau, F.X.; Collin, G.; Jean, F.I.; Gagnon, H.; Arze, J.B.L. Essential oils from Bolivia. IV. Compositae: Tagetes aff. maxima Kuntze and Tagetes multiflora HBK. J. Essent. Oil Res. 2005, 17, 27–28. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Garry, R.P.; Muhayimana, A. Essential oil of Tagetes minuta from Rwanda and France: Chemical composition according to harvesting location, growth stage and part of plant extracted. J. Essent. Oil Res. 1995, 7, 375–386. [Google Scholar] [CrossRef]
- Chagonda, L.S.; Makanda, C.; Chalchat, J.C. Essential Oils of Four Wild and Semi-Wild Plants from Zimbabwe: Colospermum mopane (Kirk ex Benth.) Kirk ex Leonard, Helichrysum splendidum (Thunb.) Less, Myrothamnus flabellifolia (Welw.) and Tagetes minuta L. J. Essent. Oil Res. 1999, 11, 573–578. [Google Scholar] [CrossRef]
- Rajeswara Rao, B.R.; Kaul, P.N.; Bhattacharya, A.K.; Rajput, D.K.; Syamasundar, K.V.; Ramesh, S. Comparative chemical composition of steam-distilled and water-soluble essential oils of South American marigold (Tagetes minuta L.). J. Essent. Oil Res. 2006, 18, 622–626. [Google Scholar] [CrossRef]
- Ait Said, L.; Zahlane, K.; Ghalbane, I.; El Messoussi, S.; Romane, A.; Cavaleiro, C.; Salgueiro, L. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Nat. Prod. Res. 2015, 29, 582–585. [Google Scholar] [CrossRef]
- Messaoud, C.; Chograni, H.; Boussaid, M. Chemical composition and antioxidant activities of essential oils and methanol extracts of three wild Lavandula L. species. Nat. Prod. Res. 2012, 26, 1976–1984. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.; El Gamal, A.; El-Sheddy, E.; Al-Oquil, M.; Farshori, N. The chemical composition and antimicrobial activity of the essential oil of Lavandula coronopifolia growing in Saudi Arabia. J. Chem. Pharm. Res. 2014, 6, 604–615. [Google Scholar]
- Gakuubi, M.M.; Wagacha, J.M.; Dossaji, S.F.; Wanzala, W. Chemical composition and antibacterial activity of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. Int. J. Microbiol. 2016, 2016, 7352509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senatore, F.; Napolitano, F.; Mohamed, M.A.H.; Harris, P.J.C.; Mnkeni, P.N.S.; Henderson, J. Antibacterial activity of Tagetes minuta L. (Asteraceae) essential oil with different chemical composition. Flavour Fragr. J. 2004, 19, 574–578. [Google Scholar] [CrossRef]
- Sharifzadeh, S.; Karimi, S.; Abbasi, H.; Assari, M. Sequential ultrasound-microwave technique as an efficient method for extraction of essential oil from Lavandula coronopifolia Poir. J. Food Meas. Charact. 2022, 16, 377–390. [Google Scholar] [CrossRef]
- Sayout, A.; Ouarhach, A.; Dilagui, I.; Soraa, N.; Romane, A. Antibacterial activity and chemical composition of essential oil from Lavandula tenuisecta Coss. ex Ball. an endemic species from Morocco. Eur. J. Integr. Med. 2020, 33, 101017. [Google Scholar]
- Walia, S.; Mukhia, S.; Bhatt, V.; Kumar, R.; Kumar, R. Variability in chemical composition and antimicrobial activity of Tagetes minuta L. essential oil collected from different locations of Himalaya. Ind. Crops Prod. 2020, 150, 112449. [Google Scholar] [CrossRef]
- Naseef, H.; Al-Maharik, N.; Rabba, A.K.; Sharifi-Rad, M.; Hawash, M.; Jaradat, N. Phytochemical characterization and assessments of antimicrobial, cytotoxic and anti-inflammatory properties of Lavandula coronopifolia Poir. volatile oil from Palestine. Arab. J. Chem. 2022, 15, 104069. [Google Scholar] [CrossRef]
- Khazraei, H.; Shamsdin, S.A.; Zamani, M. In Vitro cytotoxicity and apoptotic assay of Eucalyptus globulus essential oil in colon and liver cancer cell lines. J. Gastrointest. Cancer 2022, 53, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Najar, B.; Shortrede, J.E.; Pistelli, L.; Buhagiar, J. Chemical composition and in vitro cytotoxic screening of sixteen commercial essential oils on five cancer cell lines. Chem. Biodivers. 2020, 17, e1900478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyenihi, O.R.; Delgoda, R.; Matsabisa, M.G. Tagetes minuta leaf extracts triggered apoptosis in MCF-7 human breast cancer cell line. S. Afr. J. Bot. 2021, 137, 359–364. [Google Scholar] [CrossRef]
Name of the Plant | Place of Collection |
---|---|
Tagetes minuta L. | Day (North Djibouti) (11°45.18′ N; 42°37.73′ E) |
Lavandula coronopifolia L. |
Species | Yield (%) |
---|---|
Tagetes minuta L. | 0.25 ± 0.05 |
Lavandula coronopifolia L. | 0.42 ± 0.06 |
Pic | RT | Compounds | Tagetes minuta L. | Lavandula coronopifolia L. |
---|---|---|---|---|
1 | 4.39 | α-Pinene | - | 0.7 |
2 | 7.10 | D-Limonene | 5.8 | 0.4 |
3 | 8.75 | Linalol | - | 0.3 |
4 | 9.54 | Isopinocarveol | - | 0.4 |
5 | 9.64 | Verbenol | - | 0.9 |
6 | 9.67 | Camphor | 1.8 | - |
7 | 10.57 | Myrtenol | - | 0.4 |
8 | 10.62 | Estragole | 9.5 | - |
9 | 10.78 | D-Verbenone | - | 0.2 |
10 | 11.18 | Verbenone | 5.4 | - |
11 | 11.46 | (Z)-Tagetenone | 12.4 | - |
12 | 11.55 | Piperitone | 5.1 | - |
13 | 11.99 | Bornyl Acetate | - | 0.6 |
14 | 12.13 | 2-Undecanone | 2 | 0.5 |
15 | 12.91 | α-Terpineol Acetate | - | 0.3 |
16 | 13.32 | Copaene | - | 0.2 |
17 | 13.47 | Cubenene | - | 1.5 |
18 | 13.67 | Zingiberene | - | 0.2 |
19 | 13.83 | Benzene, 2-tert-butyl-1,4-dimethoxy- | 3.3 | - |
20 | 13.93 | Cis-Caryophyllene | - | 18.9 |
21 | 14.09 | α-Bergamotene | - | 2.6 |
22 | 14.36 | β-Sesquiphellandrene | - | 0.8 |
23 | 14.41 | Humulene | - | 5.1 |
24 | 14.47 | Aromadendrene | - | 0.1 |
25 | 14.74 | Germacrene D | - | 0.6 |
26 | 14.86 | β-Eudesmene | - | 0.5 |
27 | 14.94 | Methyl (2E)-2-nonenoate | - | 0.8 |
28 | 15.06 | Bisabolene | - | 0.8 |
29 | 15.15 | τ-Cadinene | - | 0.9 |
30 | 15.20 | δ-Cadinene | - | 0.7 |
31 | 15.24 | α-Panasinsen | - | 0.9 |
32 | 15.46 | α-Caryophyllene | - | 0.8 |
33 | 15.59 | β- Elemol | - | 0.7 |
34 | 15.65 | Epiglobulol | - | 3.6 |
35 | 15.71 | Dehydronerolidol | - | 12.8 |
36 | 15.81 | Farnesyl acetone | - | 0.2 |
37 | 15.95 | (-)—Spathulenol | 11.0 | 0.4 |
38 | 16.03 | Caryophyllene Oxide | - | 8.2 |
39 | 16.09 | 12-Heptadecyn-1-ol | - | 0.5 |
40 | 16.28 | Longipinane | - | 3.4 |
41 | 16.37 | Humulene Epoxide | - | 1.5 |
42 | 16.41 | Cubenol | 3.3 | - |
43 | 16.63 | α-Cadinol | - | 0.5 |
44 | 16.72 | τ-Cadinol | 1.7 | 2.8 |
45 | 16.89 | 10-epi-β-eudesmol | - | 7.7 |
46 | 16.97 | Viridiflorol | - | 3.7 |
47 | 17.2 | α-Bisabolol | - | 1.9 |
48 | 17.57 | Isolongifolanone | - | 11.2 |
49 | 18.7 | Trans-Farnesol | - | 0.2 |
50 | 21.57 | Dihydrotagetone | 20.8 | - |
51 | 21.96 | Artemisia | 17.9 | - |
Total (%) | 100 | 99.4 |
Bacterial Strain | Tagetes minuta L. | Lavandula coronopifolia L. |
---|---|---|
Staphylococcus aureus | - | - |
Enterococcus faecalis | - | - |
Streptococcus agalactiae | - | - |
Staphylococcus epidermidis | - | + |
Corynebacterium sp. | + | + |
Pseudomonas aeruginosa | + | + |
Escherichia coli | - | + |
Klebsiella pneumoniae | + | + |
Acinetobacter baumannii | - | + |
Shigella sonnei | + | + |
Salmonella enterica sv. Typhimurium | + | + |
Enterobacter cloacae | - | + |
Concentration (µg/mL) | 10 | 5 | 1 | 0.5 | 0.1 | 0.05 | 0.01 | 0.005 |
---|---|---|---|---|---|---|---|---|
% Viability of K562 | 0.132 | 0.135 | 60.143 | 93.914 | 99.212 | 100.686 | 95.323 | 94.160 |
0.062 | 0.060 | 58.816 | 102.310 | 101.356 | 103.539 | 97.953 | 99.371 | |
0.035 | 0.000 | 55.202 | 95.936 | 95.592 | 101.359 | 94.368 | 98.047 | |
% Viability of A549 | 0.070 | 21.672 | 46.632 | 72.479 | 85.664 | 98.925 | 101.021 | 95.272 |
0.128 | 19.870 | 57.755 | 68.532 | 71.567 | 102.238 | 96.558 | 96.213 | |
0.103 | 22.101 | 68.277 | 77.959 | 67.023 | 82.742 | 85.453 | 98.795 | |
% Viability of HCT116 | 0.061 | 0.035 | 29.727 | 41.375 | 91.394 | 89.984 | 91.810 | 97.379 |
0.042 | 0.010 | 35.671 | 35.351 | 88.193 | 86.781 | 93.360 | 100.727 | |
0.021 | 0.029 | 41.157 | 42.025 | 90.718 | 85.432 | 99.987 | 97.632 | |
% Viability of MRC5 | −0.002 | 0.123 | 68.782 | 74.298 | 92.549 | 106.315 | 110.648 | 112.465 |
0.004 | 0.156 | 68.729 | 78.604 | 89.021 | 93.533 | 98.798 | 101.784 | |
0.011 | −0.002 | 70.030 | 78.168 | 88.810 | 94.511 | 98.705 | 103.778 | |
% Viability of PC3 | 0.022 | 0.030 | 86.001 | 93.193 | 93.199 | 92.794 | 103.045 | 97.490 |
0.078 | 6.858 | 85.724 | 97.571 | 97.431 | 103.990 | 97.318 | 100.992 | |
0.050 | 0.161 | 84.679 | 95.804 | 104.181 | 101.358 | 103.014 | 96.191 | |
% Viability of U87 | 0.036 | 0.108 | 48.441 | 66.427 | 88.847 | 94.622 | 99.669 | 94.643 |
0.065 | 0.079 | 54.432 | 69.890 | 87.530 | 96.875 | 106.790 | 102.203 | |
0.043 | 0.122 | 60.487 | 78.919 | 98.733 | 102.138 | 93.239 | 104.190 | |
% Viability of MiaPaca | 0.046 | 3.995 | 77.181 | 95.899 | 98.964 | 99.721 | 96.328 | 95.370 |
0.019 | 0.893 | 75.354 | 99.208 | 95.767 | 92.299 | 90.759 | 100.002 | |
0.035 | 1.978 | 80.685 | 88.753 | 98.890 | 101.399 | 100.071 | 93.353 | |
% Viability of HEK293 | 0.001 | 0.025 | 51.769 | 73.777 | 104.911 | 102.225 | 100.426 | 96.442 |
0.054 | 0.128 | 79.862 | 80.507 | 99.485 | 97.591 | 106.593 | 101.172 | |
0.012 | 0.050 | 61.012 | 73.738 | 105.982 | 104.230 | 103.431 | 98.831 | |
% Viability of NCI-N87 | 0.144 | 0.053 | 67.901 | 78.976 | 84.186 | 83.492 | 102.387 | 99.272 |
0.041 | 0.114 | 76.855 | 82.461 | 88.753 | 94.142 | 101.383 | 99.423 | |
0.027 | 0.119 | 69.745 | 78.486 | 90.804 | 95.817 | 100.596 | 102.297 | |
% Viability of RT4 | 0.031 | 0.078 | 69.821 | 104.428 | 97.508 | 105.900 | 101.479 | 99.404 |
0.091 | 0.154 | 79.391 | 87.859 | 93.833 | 94.920 | 94.130 | 101.905 | |
0.034 | 0.014 | 71.182 | 84.068 | 91.313 | 97.905 | 92.921 | 96.357 | |
% Viability of U2OS | 0.010 | 0.055 | 56.720 | 88.899 | 99.278 | 107.134 | 91.143 | 93.098 |
0.032 | 0.114 | 61.351 | 91.029 | 98.685 | 102.890 | 100.645 | 96.322 | |
0.022 | 0.057 | 61.282 | 86.819 | 93.922 | 106.523 | 96.788 | 94.170 | |
% Viability of A2780 | 0.001 | 0.003 | 17.720 | 37.224 | 88.362 | 91.870 | 91.574 | 97.886 |
0.013 | 0.028 | 16.241 | 29.937 | 91.668 | 96.027 | 99.377 | 108.071 | |
0.021 | 0.018 | 16.723 | 38.288 | 98.740 | 99.503 | 104.114 | 103.544 | |
% Viability of JIMT-T1 | 0.065 | 11.958 | 69.134 | 87.242 | 95.128 | 91.780 | 84.795 | 89.711 |
0.103 | 28.375 | 71.067 | 91.623 | 93.433 | 89.443 | 89.379 | 94.941 | |
0.074 | 18.390 | 72.015 | 100.651 | 102.194 | 102.049 | 90.739 | 93.169 |
Concentration (µg/mL) | 10 | 5 | 1 | 0.5 | 0.1 | 0.05 | 0.01 | 0.005 |
---|---|---|---|---|---|---|---|---|
% Viability of K562 | 0.034 | 0.109 | 36.511 | 56.768 | 75.124 | 95.390 | 101.671 | 99.787 |
0.051 | 0.469 | 38.714 | 61.290 | 81.839 | 107.163 | 106.360 | 100.520 | |
0.032 | 1.833 | 46.734 | 62.133 | 78.379 | 97.406 | 94.364 | 97.321 | |
% Viability of A549 | 0.024 | 1.271 | 24.652 | 68.050 | 68.765 | 85.077 | 89.963 | 94.588 |
0.059 | 6.054 | 41.102 | 69.920 | 77.828 | 89.762 | 89.786 | 93.612 | |
0.085 | 12.962 | 48.592 | 72.926 | 79.527 | 99.723 | 97.474 | 100.101 | |
% Viability of HCT116 | 0.023 | 0.141 | 13.049 | 51.141 | 58.972 | 77.710 | 96.775 | 98.245 |
0.050 | 0.584 | 10.309 | 44.107 | 72.297 | 88.930 | 101.873 | 101.182 | |
0.020 | 0.558 | 9.474 | 46.128 | 72.595 | 88.489 | 99.253 | 104.028 | |
% Viability of MRC5 | 0.015 | 1.865 | 3.253 | 28.387 | 51.198 | 71.540 | 79.800 | 96.299 |
0.009 | 0.838 | 1.147 | 22.385 | 52.534 | 68.868 | 92.061 | 93.101 | |
0.042 | 2.075 | 2.510 | 26.689 | 52.994 | 70.290 | 95.944 | 104.164 | |
% Viability of PC3 | 0.067 | 6.956 | 51.243 | 77.226 | 93.769 | 96.101 | 103.849 | 97.692 |
0.050 | 7.659 | 45.384 | 72.479 | 83.384 | 93.532 | 99.417 | 103.838 | |
0.054 | 8.462 | 42.819 | 75.278 | 85.505 | 103.585 | 98.788 | 99.743 | |
% Viability of U87 | 0.041 | 0.125 | 18.368 | 31.601 | 77.022 | 93.789 | 94.011 | 98.784 |
0.102 | 0.186 | 23.654 | 41.690 | 83.753 | 91.028 | 97.690 | 106.968 | |
0.048 | 0.301 | 24.526 | 40.512 | 89.628 | 88.848 | 104.643 | 98.310 | |
% Viability of MiaPaca | 0.037 | 0.055 | 2.898 | 42.625 | 86.300 | 90.164 | 92.980 | 91.068 |
0.037 | 0.086 | 8.401 | 42.255 | 82.446 | 82.187 | 93.025 | 94.326 | |
0.046 | 0.126 | 17.029 | 45.138 | 83.484 | 93.773 | 100.560 | 101.937 | |
% Viability of HEK293 | 0.019 | 0.063 | 15.112 | 36.926 | 46.487 | 57.827 | 66.485 | 95.930 |
0.022 | 0.112 | 18.459 | 39.662 | 45.614 | 70.053 | 78.714 | 103.155 | |
0.035 | 3.886 | 23.315 | 40.251 | 59.402 | 72.740 | 86.680 | 106.725 | |
% Viability of NCI-N87 | 0.367 | 44.866 | 85.526 | 87.160 | 91.126 | 97.501 | 98.440 | 95.893 |
0.211 | 44.373 | 74.834 | 80.070 | 94.241 | 97.447 | 102.724 | 98.559 | |
0.167 | 50.366 | 81.310 | 87.011 | 97.033 | 96.259 | 98.942 | 100.290 | |
% Viability of RT4 | 0.071 | 22.161 | 47.684 | 74.115 | 87.597 | 101.157 | 103.300 | 97.422 |
0.131 | 20.319 | 59.058 | 70.079 | 73.182 | 104.545 | 98.736 | 98.384 | |
0.105 | 22.600 | 69.818 | 79.718 | 68.535 | 84.609 | 87.381 | 101.024 | |
% Viability of U2OS | 0.051 | 6.454 | 59.222 | 83.786 | 107.296 | 100.329 | 104.358 | 109.611 |
0.100 | 16.656 | 57.771 | 83.592 | 94.799 | 89.068 | 98.967 | 99.516 | |
0.107 | 18.563 | 51.549 | 80.135 | 96.574 | 82.410 | 97.473 | 101.379 | |
% Viability of A2780 | 0.033 | 0.328 | 18.764 | 33.397 | 64.800 | 78.758 | 86.224 | 100.504 |
0.038 | 0.275 | 17.789 | 32.112 | 64.196 | 74.316 | 86.299 | 98.366 | |
0.050 | 0.895 | 21.274 | 36.969 | 58.933 | 77.973 | 90.253 | 97.535 | |
% Viability of JIMT-T1 | 0.075 | 17.771 | 24.119 | 87.348 | 87.320 | 102.472 | 95.573 | 101.509 |
0.075 | 19.637 | 22.148 | 86.709 | 85.966 | 102.907 | 97.682 | 108.105 | |
0.092 | 21.730 | 19.268 | 92.033 | 96.284 | 110.004 | 100.831 | 118.819 |
Inhibition Concentration at 50% (IC50 in µg/mL) | ||||||
---|---|---|---|---|---|---|
Cell Line | Tagetes minuta L. | Lavandula coronopifolia L. | Vinblastine * | Doxorubicine * | Combrestatin A4 * | Monomethyl Auristatin E * |
K562 | 1.06 ± 0.05 | 0.67 ± 0.15 | 20.00 ± 0.12 | - | 5.0 ± 0.3 | 3.12 ± 0.2 |
A549 | 1.57 ± 0.73 | 0.92 ± 0.14 | - | 56.6 ± 0.84 | 20.0 ± 0.1 | 0.46 ± 0.05 |
HCT116 | 0.47 ± 0.04 | 0.25 ± 0.03 | 35.00 ± 0.84 | - | 2.0 ± 0.1 | 2.07 ± 0.02 |
PC3 | 1.71 ± 0.18 | 0.97 ± 0.07 | - | 2.09 ± 0.03 | 0.36 ± 0.03 | |
U87-MG | 1.01 ± 0.12 | 0.34 ± 0.04 | 2.00 ± 0.04 | 99.61 ± 2.34 | 9.0 ± 0.5 | 0.21 ± 0.03 |
MIA-Paca2 | 1.61 ± 0.06 | 0.45 ± 0.06 | - | - | - | 4.36 ± 0.2 |
HEK293 | 1.20 ± 0.32 | 0.12 ± 0.05 | - | - | - | - |
NCI-N87 | 1.48 ± 0.10 | 4.22 ± 1.38 | - | - | - | 1.65 ± 0.07 |
RT4 | 1.37 ± 0.29 | 1.57 ± 0.73 | - | 36.29 ± 1.20 | - | 0.5 ± 0.01 |
U2OS | 1.16 ± 0.04 | 1.28 ± 0.14 | - | - | - | - |
A2780 | 0.36 ± 0.05 | 0.21 ± 0.01 | - | - | - | 0.45 ± 0.01 |
MRC-5 | 1.33 ± 0.14 | 0.12 ± 0.01 | - | 39.88 ± 1.22 | - | - |
JIMT-T1 | 2.13 ± 0.38 | 0.71 ± 0.03 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoul-Latif, F.M.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential Oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical Composition, Antibacterial Activity and Cytotoxic Activity against Various Human Cancer Cell Lines. Int. J. Plant Biol. 2022, 13, 315-329. https://doi.org/10.3390/ijpb13030026
Abdoul-Latif FM, Elmi A, Merito A, Nour M, Risler A, Ainane A, Bignon J, Ainane T. Essential Oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical Composition, Antibacterial Activity and Cytotoxic Activity against Various Human Cancer Cell Lines. International Journal of Plant Biology. 2022; 13(3):315-329. https://doi.org/10.3390/ijpb13030026
Chicago/Turabian StyleAbdoul-Latif, Fatouma Mohamed, Abdirahman Elmi, Ali Merito, Moustapha Nour, Arnaud Risler, Ayoub Ainane, Jérôme Bignon, and Tarik Ainane. 2022. "Essential Oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical Composition, Antibacterial Activity and Cytotoxic Activity against Various Human Cancer Cell Lines" International Journal of Plant Biology 13, no. 3: 315-329. https://doi.org/10.3390/ijpb13030026
APA StyleAbdoul-Latif, F. M., Elmi, A., Merito, A., Nour, M., Risler, A., Ainane, A., Bignon, J., & Ainane, T. (2022). Essential Oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical Composition, Antibacterial Activity and Cytotoxic Activity against Various Human Cancer Cell Lines. International Journal of Plant Biology, 13(3), 315-329. https://doi.org/10.3390/ijpb13030026