Effects of CFTR Modulators on Pseudomonas aeruginosa Infections in Cystic Fibrosis
Abstract
1. Introduction
2. Materials and Method
2.1. Search Strategy
2.2. Eligibility Criteria
3. Results
3.1. Article Characteristics
3.2. Protocol
3.3. Study Group Demographics
3.4. Description of Studies
3.4.1. ETI
3.4.2. Ivacaftor
3.4.3. Experimental
3.4.4. Orkambi
3.4.5. Biofilm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cystic Fibrosis |
CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
COPD | Chronic Obstructive Pulmonary Disease |
WHO | World Health Organization |
ETI | Elexacaftor–Tezacaftor–Ivacaftor |
EPS | Exopolysaccharides |
FEV1 | Forced Expiratory Volume in 1 s |
GRADE | Grading of Recommendations, Assessment, Development, and Evaluation |
JBI | Joanna Briggs Institute |
ppFEV1 | Percent Predicted Forced Expiratory Volume in 1 s |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
References
- Ratjen, F.; Bell, S.C.; Rowe, S.M.; Goss, C.H.; Quittner, A.L.; Bush, A. Cystic fibrosis. Nat. Rev. Dis. Primers 2015, 1, 15010. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020, 109, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros. 2015, 14, 419–430. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Bacterial Priority List; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Williams, D.; Fothergill, J.L.; Evans, B.; Caples, J.; Haldenby, S.; Walshaw, M.J.; Brockhurst, M.A.; Winstanley, C.; Paterson, S. Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. Microb. Genom. 2018, 4, e000167. [Google Scholar] [CrossRef]
- Saint-Criq, V.; Gray, M.A. Role of CFTR in epithelial physiology. Cell. Mol. Life Sci. 2017, 74, 93–115. [Google Scholar] [CrossRef]
- Lopes-Pacheco, M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front. Pharmacol. 2016, 7, 275. [Google Scholar] [CrossRef]
- Lopes-Pacheco, M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front. Pharmacol. 2020, 10, 1662. [Google Scholar] [CrossRef]
- Long, D.R.; Holmes, E.A.; Goss, C.H.; Singh, P.K.; Waalkes, A.; Salipante, S.J. Cell-Free DNA Detects Pseudomonas aeruginosa Lung Infection in Modulator-treated People with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2023, 208, 944–947. [Google Scholar] [CrossRef]
- Schnell, A.; Hober, H.; Kaiser, N.; Ruppel, R.; Geppert, A.; Tremel, C.; Sobel, J.; Plattner, E.; Woelfle, J.; Hoerning, A. Elexacaftor—Tezacaftor—Ivacaftor treatment improves systemic infection parameters and Pseudomonas aeruginosa colonization rate in patients with cystic fibrosis a monocentric observational study. Heliyon 2023, 9, e15756. [Google Scholar] [CrossRef]
- Nichols, D.P.; Paynter, A.C.; Heltshe, S.L.; Donaldson, S.H.; Frederick, C.A.; Freedman, S.D.; Gelfond, D.; Hoffman, L.R.; Kelly, A.; Narkewicz, M.R.; et al. Clinical Effectiveness of Elexacaftor/Tezacaftor/Ivacaftor in People with Cystic Fibrosis: A Clinical Trial. Am. J. Respir. Crit. Care Med. 2022, 205, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Heijerman, H.G.M.; McKone, E.F.; Downey, D.G.; Van Braeckel, E.; Rowe, S.M.; Tullis, E.; Mall, M.A.; Welter, J.J.; Ramsey, B.W.; McKee, C.M.; et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: A double-blind, randomised, phase 3 trial. Lancet 2020, 395, 1694, Erratum in Lancet 2019, 394, 1940–1948. https://doi.org/10.1016/S0140-6736(19)32597-8. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Sawicki, G.S.; Altenburg, J.; Millar, S.J.; Geiger, J.M.; Jennings, M.T.; Lou, Y.; McGarry, L.J.; Van Brunt, K.; Linnemann, R.W. Effect of elexacaftor/tezacaftor/ivacaftor on annual rate of lung function decline in people with cystic fibrosis. J. Cyst. Fibros. 2023, 22, 402–406. [Google Scholar] [CrossRef]
- Sutharsan, S.; Dillenhoefer, S.; Welsner, M.; Stehling, F.; Brinkmann, F.; Burkhart, M.; Ellemunter, H.; Dittrich, A.M.; Smaczny, C.; Eickmeier, O.; et al. Impact of elexacaftor/tezacaftor/ivacaftor on lung function, nutritional status, pulmonary exacerbation frequency and sweat chloride in people with cystic fibrosis: Real-world evidence from the German CF Registry. Lancet Reg. Health Eur. 2023, 32, 100690. [Google Scholar] [CrossRef]
- Heltshe, S.L.; Mayer-Hamblett, N.; Burns, J.L.; Khan, U.; Baines, A.; Ramsey, B.W.; Rowe, S.M.; GOAL (the G551D Observation-AL) Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef]
- Durfey, S.L.; Pipavath, S.; Li, A.; Vo, A.T.; Ratjen, A.; Carter, S.; Morgan, S.J.; Radey, M.C.; Grogan, B.; Salipante, S.J.; et al. Combining Ivacaftor and Intensive Antibiotics Achieves Limited Clearance of Cystic Fibrosis Infections. mBio 2021, 12, e0314821. [Google Scholar] [CrossRef]
- Armbruster, C.R.; Hilliam, Y.K.; Zemke, A.C.; Atteih, S.; Marshall, C.W.; Moore, J.; Koirala, J.; Krainz, L.; Gaston, J.R.; Lee, S.E.; et al. Persistence and evolution of Pseudomonas aeruginosa following initiation of highly effective modulator therapy in cystic fibrosis. mBio 2024, 15, e0051924. [Google Scholar] [CrossRef]
- Adam, D.; Bilodeau, C.; Sognigbé, L.; Maillé, É.; Ruffin, M.; Brochiero, E. CFTR rescue with VX-809 and VX-770 favors the repair of primary airway epithelial cell cultures from patients with class II mutations in the presence of Pseudomonas aeruginosa exoproducts. J. Cyst. Fibros. 2018, 17, 705–714. [Google Scholar] [CrossRef]
- Ledger, E.L.; Smith, D.J.; Teh, J.J.; Wood, M.E.; Whibley, P.E.; Morrison, M.; Goldberg, J.B.; Reid, D.W.; Wells, T.J. Impact of CFTR Modulation on Pseudomonas aeruginosa Infection in People With Cystic Fibrosis. J. Infect. Dis. 2024, 230, e536–e547. [Google Scholar] [CrossRef]
- Yau, Y.C.; Ratjen, F.; Tullis, E.; Wilcox, P.; Freitag, A.; Chilvers, M.; Grasemann, H.; Zlosnik, J.; Speert, D.; Corey, M.; et al. Randomized controlled trial of biofilm antimicrobial susceptibility testing in cystic fibrosis patients. J. Cyst. Fibros. 2015, 14, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.M.; Heltshe, S.L.; Gonska, T.; Donaldson, S.H.; Borowitz, D.; Gelfond, D.; Sagel, S.D.; Khan, U.; Mayer-Hamblett, N.; Van Dalfsen, J.M.; et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 175–184. [Google Scholar] [CrossRef]
- Westhölter, D.; Beckert, H.; Straßburg, S.; Welsner, M.; Sutharsan, S.; Taube, C.; Reuter, S. Pseudomonas aeruginosa infection, but not mono or dual-combination CFTR modulator therapy affects circulating regulatory T cells in an adult population with cystic fibrosis. J. Cyst. Fibros. 2021, 20, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Eschenhagen, P.N.; Bacher, P.; Grehn, C.; Mainz, J.G.; Scheffold, A.; Schwarz, C. Proliferative activity of antigen-specific CD154+ T cells against bacterial and fungal respiratory pathogens in cystic fibrosis decreases after initiation of highly effective CFTR modulator therapy. Front. Pharmacol. 2023, 14, 1180826. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Dayman, N.; Blyth, N.; Madge, J.; Gaillard, E. Impact of CFTR modulators on exercise capacity in adolescents with cystic fibrosis. ERJ Open Res. 2024, 10, 00687-2023. [Google Scholar] [CrossRef] [PubMed]
- Migliorisi, G.; Collura, M.; Ficili, F.; Pensabene, T.; Bongiorno, D.; Collura, A.; Di Bernardo, F.; Stefani, S. Elexacaftor-Tezacaftor-Ivacaftor as a Final Frontier in the Treatment of Cystic Fibrosis: Definition of the Clinical and Microbiological Implications in a Case-Control Study. Pharmaceuticals 2022, 15, 606. [Google Scholar] [CrossRef]
- Cigana, C.; Giannella, R.; Colavolpe, A.; Alcalá-Franco, B.; Mancini, G.; Colombi, F.; Bigogno, C.; Bastrup, U.; Bertoni, G.; Bragonzi, A. Mutual Effects of Single and Combined CFTR Modulators and Bacterial Infection in Cystic Fibrosis. Microbiol. Spectr. 2023, 11, e0408322. [Google Scholar] [CrossRef]
- Luscher, A.; Simonin, J.; Falconnet, L.; Valot, B.; Hocquet, D.; Chanson, M.; Resch, G.; Köhler, T.; van Delden, C. Combined Bacteriophage and Antibiotic Treatment Prevents Pseudomonas aeruginosa Infection of Wild Type and cftr- Epithelial Cells. Front. Microbiol. 2020, 11, 1947. [Google Scholar] [CrossRef]
- Aspinall, S.A.; Mackintosh, K.A.; Hill, D.M.; Cope, B.; McNarry, M.A. Evaluating the Effect of Kaftrio on Perspectives of Health and Wellbeing in Individuals with Cystic Fibrosis. Int. J. Environ. Res. Public Health 2022, 19, 6114. [Google Scholar] [CrossRef]
- Aromataris, E.; Munn, Z. JBI Manual for Evidence Synthesis; Joanna Briggs Institute: Adelaide, Australia, 2020. [Google Scholar]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of Reccomandation. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Petrova, N.; Balinova, N.; Marakhonov, A.; Vasilyeva, T.; Kashirskaya, N.; Galkina, V.; Ginter, E.; Kutsev, S.; Zinchenko, R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front. Genet. 2021, 12, 678374. [Google Scholar] [CrossRef]
- De Boeck, K.; Zolin, A.; Cuppens, H.; Olesen, H.V.; Viviani, L. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J. Cyst. Fibros. 2014, 13, 403–409. [Google Scholar] [CrossRef]
- Varkki, S.D.; Aaron, R.; Chapla, A.; Danda, S.; Medhi, P.; Jansi Rani, N.; Paul, G.R. CFTR mutations and phenotypic correlations in people with cystic fibrosis: A retrospective study from a single centre in south India. Lancet Reg. Health Southeast Asia 2024, 27, 100434. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Kapouni, N.; Moustaki, M.; Douros, K.; Loukou, I. Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. Children 2023, 10, 554. [Google Scholar] [CrossRef]
- Bacalhau, M.; Camargo, M.; Magalhães-Ghiotto, G.A.V.; Drumond, S.; Castelletti, C.H.M.; Lopes-Pacheco, M. Elexacaftor-Tezacaftor-Ivacaftor: A Life-Changing Triple Combination of CFTR Modulator Drugs for Cystic Fibrosis. Pharmaceuticals 2023, 16, 410. [Google Scholar] [CrossRef]
- Valladares, K.N.; Jones, L.I.; Barnes, J.W.; Krick, S. Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis. Int. J. Mol. Sci. 2024, 25, 11865. [Google Scholar] [CrossRef]
- Burgel, P.R.; Ballmann, M.; Drevinek, P.; Heijerman, H.; Jung, A.; Mainz, J.G.; Peckham, D.; Plant, B.J.; Schwarz, C.; Taccetti, G.; et al. Considerations for the use of inhaled antibiotics for Pseudomonas aeruginosa in people with cystic fibrosis receiving CFTR modulator therapy. BMJ Open Respir. Res. 2024, 11, e002049. [Google Scholar] [CrossRef]
- Perrem, L.; Ratjen, F. Anti-inflammatories and mucociliary clearance therapies in the age of CFTR modulators. Pediatr. Pulmonol. 2019, 54, S46–S55. [Google Scholar] [CrossRef]
- Chung, J.; Eisha, S.; Park, S.; Morris, A.J.; Martin, I. How Three Self-Secreted Biofilm Exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int. J. Mol. Sci. 2023, 24, 8709. [Google Scholar] [CrossRef]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microb. Biofilms 2015, 3, 223–247. [Google Scholar] [CrossRef]
- Santos-Fernandez, E.; Martin-Souto, L.; Antoran, A.; Areitio, M.; Aparicio-Fernandez, L.; Bouchara, J.P.; Schwarz, C.; Rementeria, A.; Buldain, I.; Ramirez-Garcia, A. Microbiota and fungal-bacterial interactions in the cystic fibrosis lung. FEMS Microbiol Rev. 2023, 47, fuad029. [Google Scholar] [CrossRef]
- Burgel, P.R.; Southern, K.W.; Addy, C.; Battezzati, A.; Berry, C.; Bouchara, J.P.; Brokaar, E.; Brown, W.; Azevedo, P.; Durieu, I.; et al. Standards for the care of people with cystic fibrosis (CF); recognising and addressing CF health issues. J. Cyst. Fibros. 2024, 23, 187–202. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Winstanley, C.; O’Brien, S.; Brockhurst, M.A. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. 2016, 24, 327–337. [Google Scholar] [CrossRef]
- Soares, A.; Alexandre, K.; Etienne, M. Tolerance and Persistence of Pseudomonas aeruginosa in Biofilms Exposed to Antibiotics: Molecular Mechanisms, Antibiotic Strategies and Therapeutic Perspectives. Front. Microbiol. 2020, 11, 2057. [Google Scholar] [CrossRef]
- Moser, C.; Jensen, P.Ø.; Thomsen, K.; Kolpen, M.; Rybtke, M.; Lauland, A.S.; Trøstrup, H.; Tolker-Nielsen, T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front. Immunol. 2021, 12, 625597. [Google Scholar] [CrossRef]
- Jarzynka, S.; Makarewicz, O.; Weiss, D.; Minkiewicz-Zochniak, A.; Iwańska, A.; Skorupa, W.; Padzik, M.; Augustynowicz-Kopeć, E.; Olędzka, G. The Impact of Pseudomonas aeruginosa Infection in Adult Cystic Fibrosis Patients—A Single Polish Centre Study. Pathogens 2023, 12, 1440. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2019, 7, e40, Erratum in Lancet Respir. Med. 2020, 8, 65–124. https://doi.org/10.1016/S2213-2600(19)30337-6. [Google Scholar] [CrossRef]
- Guo, J.; Garratt, A.; Hill, A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J. Cyst. Fibros. 2022, 21, 456–462. [Google Scholar] [CrossRef]
- Castellani, C.; Duff, A.J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS best practice guidelines: The 2018 revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef]
- Lopes-Pacheco, M.; Pedemonte, N.; Veit, G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin. Drug Discov. 2021, 16, 897–913. [Google Scholar] [CrossRef]
- Costa, E.; Girotti, S.; Pauro, F.; Leufkens, H.G.M.; Cipolli, M. The impact of FDA and EMA regulatory decision-making process on the access to CFTR modulators for the treatment of cystic fibrosis. Orphanet J. Rare Dis. 2022, 17, 188. [Google Scholar] [CrossRef]
- Salvatore, D.; Carnovale, V.; Iacotucci, P.; Braggion, C.; Castellani, C.; Cimino, G.; Colangelo, C.; Francalanci, M.; Leonetti, G.; Lucidi, V.; et al. Effectivenesss of ivacaftor in severe cystic fibrosis patients and non-G551D gating mutations. Pediatr. Pulmonol. 2019, 54, 1398–1403. [Google Scholar] [CrossRef]
- Zhang, M.; Brindle, K.; Robinson, M.; Ingram, D.; Cavany, T.; Morice, A. Chronic cough in cystic fibrosis: The effect of modulator therapy on objective 24-h cough monitoring. ERJ Open Res. 2022, 8, 00031-2022. [Google Scholar] [CrossRef]
- Guimbellot, J.; Solomon, G.M.; Baines, A.; Heltshe, S.L.; VanDalfsen, J.; Joseloff, E.; Sagel, S.D.; Rowe, S.M.; GOALe(2) Investigators. Effectiveness of ivacaftor in cystic fibrosis patients with non-G551D gating mutations. J. Cyst. Fibros. 2019, 18, 102–109. [Google Scholar] [CrossRef]
- Mayer-Hamblett, N.; Nichols, D.P.; Odem-Davis, K.; Riekert, K.A.; Sawicki, G.S.; Donaldson, S.H.; Ratjen, F.; Konstan, M.W.; Simon, N.; Rosenbluth, D.B.; et al. Evaluating the Impact of Stopping Chronic Therapies after Modulator Drug Therapy in Cystic Fibrosis: The SIMPLIFY Clinical Trial Study Design. Ann. Am. Thorac. Soc. 2021, 18, 1397–1405. [Google Scholar] [CrossRef]
- Dobiáš, R.; Škríba, A.; Pluháček, T.; Petřík, M.; Palyzová, A.; Káňová, M.; Čubová, E.; Houšť, J.; Novák, J.; Stevens, D.A.; et al. Noninvasive Combined Diagnosis and Monitoring of Aspergillus and Pseudomonas Infections: Proof of Concept. J. Fungi 2021, 7, 730. [Google Scholar] [CrossRef]
- Hoppe, J.E.; Kasi, A.S.; Pittman, J.E.; Jensen, R.; Thia, L.P.; Robinson, P.; Tirakitsoontorn, P.; Ramsey, B.; Mall, M.A.; Taylor-Cousar, J.L.; et al. Vanzacaftor-tezacaftor-deutivacaftor for children aged 6-11 years with cystic fibrosis (RIDGELINE Trial VX21-121-105): An analysis from a single-arm, phase 3 trial. Lancet Respir. Med. 2025, 13, e19, Erratum in Lancet Respir. Med. 2025, 13, 244–255. https://doi.org/10.1016/S2213-2600(24)00407-7. [Google Scholar] [CrossRef]
- Uluer, A.Z.; MacGregor, G.; Azevedo, P.; Indihar, V.; Keating, C.; Mall, M.A.; McKone, E.F.; Ramsey, B.W.; Rowe, S.M.; Rubenstein, R.C.; et al. Safety and efficacy of vanzacaftor-tezacaftor-deutivacaftor in adults with cystic fibrosis: Randomised, double-blind, controlled, phase 2 trials. Lancet Respir. Med. 2023, 11, 550–562. [Google Scholar] [CrossRef]
- Keating, C.; Yonker, L.M.; Vermeulen, F.; Prais, D.; Linnemann, R.W.; Trimble, A.; Kotsimbos, T.; Mermis, J.; Braun, A.T.; O’Carroll, M.; et al. Vanzacaftor-tezacaftor-deutivacaftor versus elexacaftor-tezacaftor-ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): Results from two randomised, active-controlled, phase 3 trials. Lancet Respir. Med. 2025, 13, e19, Erratum in Lancet Respir. Med. 2025, 13, 256–271. https://doi.org/10.1016/S2213-2600(24)00411-9. [Google Scholar] [CrossRef] [PubMed]
Authors | Design | Protocol | Outcomes | JBI | GRADE |
---|---|---|---|---|---|
Lee et al. [15] | Observational cohort study | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | Colonization: not reported; Lung function: stable 2 years; Markers: not reported. | 7/10 | Moderate |
Ledger et al. [21] | Randomized controlled trial | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | Colonization: persistent; Resistance: unchanged; Biofilm: maintained after CFTR modulator therapy. | 9/10 | Low |
Long et al. [10] | Randomized controlled trial | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | Colonization: detectable by cfDNA; Relative cfDNA level: unchanged. | 8/10 | Moderate |
Schnell et al. [11] | Prospective monocentric study | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | Colonization: 36% negative conversion; Lung function: improved; Markers: ↓leukocytes, Ig. | 9/10 | Moderate |
Migliorisi et al. [27] | Prospective observational study | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | Colonization: slight↓; Lung function: improved; Exacerbations: decreased. | 8/10 | Moderate |
Aspinall et al. [30] | Qualitative analysis study | Physiological effects of ETI | Colonization: not reported; Subjective effects: ↑anxiety, improved quality of life. | 8/10 | Low |
Sutharsan et al. [16] | Observational cohort study | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | ↓Colonization; Lung function: ↑FEV1; Exacerbations: ↓75.9%; Markers: ↓sweat chloride. | 9/10 | High |
Middleton et al. [13] | Randomized controlled trial | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | ↓Colonization; Lung function: ↑FEV1; Markers: ↑CFQ-R, ↓sweat chloride. | 9/10 | High |
Heijerman et al. [14] | Randomized controlled trial | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | ↓Colonization; Lung function: ↑FEV1; Markers: ↓sweat chloride. | 9/10 | High |
Nichols et al. [12] | Prospective observational study | Elexacaftor/Tezacaftor/Ivacaftor (ETI) | ↓Colonization; Lung function: ↑FEV1, BMI; Exacerbations: ↓. | 8/10 | High |
Rowe et al. [23] | Longitudinal cohort study | Ivacaftor | ↓Colonization; Lung function: ↑FEV1; Clinical markers: ↑BMI, ↓hospitalizations. | 8/10 | Moderate |
Heltshe et al. [17] | Observational cohort study | Ivacaftor | Colonization: ↓35% mucoid; Lung function: improved; | 8/10 | Moderate |
Durfey et al. [18] | Observational cohort study | Ivacaftor and antibiotics | Colonization: ↓density; Eradication: Still present; Lung function: ↑FEV1. | 8/10 | Moderate |
Westholter et al. [24] | Longitudinal cohort study | Ivacaftor; Ivacaftor/Lumacaftor; Tezacaftor/Ivacaftor | ↓Colonization; T regulatory cells influenced; Lung function: partially improved. | 9/10 | Moderate |
Cigana et al. [28] | Experimental study | Ivacaftor, Lumacaftor, Tezacaftor, Elexacaftor, and ETI combined with antibiotics on sequential CF isolates | Colonization: ↓density; Antibiotics + modulators: partial synergy. | 8/10 | Moderate |
Armbruster et al. [19] | Observational cohort study | rRNA gene amplicon sequencing of sinus, throat, and sputum samples before and after initiation of ETI | Colonization: persistent; Same strain in upper and lower tracts. | 7/10 | Low |
Eschenhagen et al. [25] | Longitudinal cohort study | Ex vivo analyses of Ki-67 expression in antigen-specific CD154 (+) T cells against P. aeruginosa | Colonization: not reported; Immunological markers: ↓activation of B and T lymphocytes. | 8/10 | Moderate |
Yau et al. [2] | Randomized controlled trial | Antibiotic treatment to combat P. aeruginosa biofilms | Colonization: persistent; Biofilm-guided antibiotics: limited efficacy. | 8/10 | Low |
Ahmed et al. [26] | Prospective monocentric study | Symkevi/ETI | Colonization: no significant changes; Pulmonary function: not reported. | 7/10 | Low |
Luscher et al. [29] | Experimental study | Phage and ciprofloxacin alone and in combination to treat P. aeruginosa infections in an ex vivo human airway epithelial cell line model | Colonization: ↓with phage + antibiotic combination; Ex vivo model. | 8/10 | Low |
Adam et al. [20] | Observational cohort study | Orkambi | Colonization: slight↓; Lung function: partially improved; ↑Epithelial repair. | 9/10 | Moderate |
Table legend: ↑—increase; ↓—decrease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pescaru, C.C.; Crișan, A.F.; Marițescu, A.; Cărunta, V.; Marc, M.; Dumitrache-Rujinski, Ș.; Laitin, S.; Oancea, C. Effects of CFTR Modulators on Pseudomonas aeruginosa Infections in Cystic Fibrosis. Infect. Dis. Rep. 2025, 17, 80. https://doi.org/10.3390/idr17040080
Pescaru CC, Crișan AF, Marițescu A, Cărunta V, Marc M, Dumitrache-Rujinski Ș, Laitin S, Oancea C. Effects of CFTR Modulators on Pseudomonas aeruginosa Infections in Cystic Fibrosis. Infectious Disease Reports. 2025; 17(4):80. https://doi.org/10.3390/idr17040080
Chicago/Turabian StylePescaru, Camelia Corina, Alexandru Florian Crișan, Adelina Marițescu, Vlad Cărunta, Monica Marc, Ștefan Dumitrache-Rujinski, Sorina Laitin, and Cristian Oancea. 2025. "Effects of CFTR Modulators on Pseudomonas aeruginosa Infections in Cystic Fibrosis" Infectious Disease Reports 17, no. 4: 80. https://doi.org/10.3390/idr17040080
APA StylePescaru, C. C., Crișan, A. F., Marițescu, A., Cărunta, V., Marc, M., Dumitrache-Rujinski, Ș., Laitin, S., & Oancea, C. (2025). Effects of CFTR Modulators on Pseudomonas aeruginosa Infections in Cystic Fibrosis. Infectious Disease Reports, 17(4), 80. https://doi.org/10.3390/idr17040080