You are currently viewing a new version of our website. To view the old version click .
Future Internet
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

16 December 2025

Enhancing Microservice Security Through Adaptive Moving Target Defense Policies to Mitigate DDoS Attacks in Cloud-Native Environments

,
and
School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue DDoS Attack Detection for Cyber–Physical Systems

Abstract

Cloud-native microservice architectures offer scalability and resilience but introduce complex interdependencies and new attack surfaces, making them vulnerable to resource-exhaustion Distributed Denial-of-Service (DDoS) attacks. These attacks propagate along service call chains, closely mimic legitimate traffic, and evade traditional detection and mitigation techniques, resulting in cascading bottlenecks and degraded Quality of Service (QoS). Existing Moving Target Defense (MTD) approaches lack adaptive, cost-aware policy guidance and are often ineffective against spatiotemporally adaptive adversaries. To address these challenges, this paper proposes ScaleShield, an adaptive MTD framework powered by Deep Reinforcement Learning (DRL) that learns coordinated, attack-aware defense policies for microservices. ScaleShield formulates defense as a Markov Decision Process (MDP) over multi-dimensional discrete actions, leveraging a Multi-Dimensional Double Deep Q-Network (MD3QN) to optimize service availability and minimize operational overhead. Experimental results demonstrate that ScaleShield achieves near 100% defense success rates and reduces compromised nodes to zero within approximately 5 steps, significantly outperforming state-of-the-art baselines. It lowers service latency by up to 72% under dynamic attacks while maintaining over 94% resource efficiency, providing robust and cost-effective protection against resource-exhaustion DDoS attacks in cloud-native environments.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.