Therapeutic Potential of Wogonin–Aloperine Co-Amorphous for Oral Squamous Cell Carcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Animals
2.3. In Vivo Anti-OSCC Efficacy of Wog–Alop
2.4. Network Pharmacology
2.5. Molecular Docking and Dynamics Simulations
2.6. Western Blots Analysis
2.7. Immunohistochemistry Staining
2.8. TUNEL Staining
2.9. Statistical Analysis
3. Results
3.1. In Vivo Anti-OSCC Efficacy of Wog–Alop
3.2. Network Pharmacology
3.3. Molecular Docking and Dynamics Simulations
3.4. Wog–Alop Induced the Apoptosis of Tumor Cells
3.5. Evaluation of Multiple Organ Toxicological of Wog–Alop
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OSCC | Oral squamous cell carcinoma |
Wog | Wogonin |
Wog+Alop | Physical mixture of wogonin and aloperine |
Wog-Alop | Wogonin-aloperine co-amorphous |
TdT | Terminal deoxynucleotidyl transferase |
TUNEL | TdT-mediated dUTP nick-end labeling |
H&E | Hematoxylin and eosin |
CC | Cellular component |
BP | Biological processes |
BCL2 | B-cell lymphoma 2 |
BAX | B-cell lymphoma 2 associated X protein |
RMSF | Root means square fluctuation |
RMSD | Root means square deviation |
TCMSP | Traditional Chinese Medicine Systems Pharmacology |
References
- Haase, K.; Piwonski, I.; Stromberger, C.; Thieme, N.; Heiland, M.; Beck-Broichsitter, B.; Coordes, A. Incidence and survival of HNSCC patients living with HIV compared with HIV-negative HNSCC patients. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 3941–3953. [Google Scholar] [CrossRef]
- Omori, H.; Nishio, M.; Masuda, M.; Miyachi, Y.; Ueda, F.; Nakano, T.; Sato, K.; Mimori, K.; Taguchi, K.; Hikasa, H.; et al. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. Sci. Adv. 2020, 6, eaay3324. [Google Scholar] [CrossRef]
- Ong, Y.L.R.; Tivey, D.; Huang, L.; Sambrook, P.; Maddern, G. Factors affecting surgical mortality of oral squamous cell carcinoma resection. Int. J. Oral Maxillofac. Surg. 2021, 50, 1–6. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.; Cai, X.; Yao, Z.; Huang, J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg. Oncol. 2019, 31, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Tarrad, N.A.F.; Hassan, S.; Shaker, O.G.; AbdelKawy, M. Salivary LINC00657 and miRNA-106a as diagnostic biomarkers for oral squamous cell carcinoma, an observational diagnostic study. BMC Oral Health 2023, 23, 994. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Z.; Li, X.; Sun, S.; Lu, L. Assessment of multiple pathways involved in the inhibitory effect of HCG22 on oral squamous cell carcinoma progression. Mol. Cell. Biochem. 2021, 476, 2561–2571. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, J.; Lu, X.; Liu, F.; Shi, S.; Deng, X. MiR-199a-5p-Regulated SMARCA4 Promotes Oral Squamous Cell Carcinoma Tumorigenesis. Int. J. Mol. Sci. 2023, 24, 4756. [Google Scholar] [CrossRef]
- Yuan, S.F.; Hung, A.C.; Hsu, C.W.; Lan, T.H.; Su, C.W.; Chi, T.C.; Chang, Y.C.; Chen, Y.K.; Wang, Y.Y. CD44 Mediates Oral Squamous Cell Carcinoma-Promoting Activity of MRE11 via AKT Signaling. J. Pers. Med. 2022, 12, 841. [Google Scholar] [CrossRef]
- Lynce, F.; Stevens, L.E.; Li, Z.; Brock, J.E.; Gulvady, A.; Huang, Y.; Nakhlis, F.; Patel, A.; Force, J.M.; Haddad, T.C.; et al. TBCRC 039: A phase II study of preoperative ruxolitinib with or without paclitaxel for triple-negative inflammatory breast cancer. Breast Cancer Res. BCR 2024, 26, 20. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Wang, C.; Meng, Y.; Gao, Y. Superior Anticancer Potential of Nano-Paclitaxel Combined Bevacizumab Treatment in Ovarian Cancer. Curr. Pharm. Biotechnol. 2023, 24, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Pandhari, R.M.R.; Taranath, T.C. In-vitro Antioxidant Activity and Flow Cytometric Analysis of Simarouba glauca DC Bark Extract Induced Apoptosis in Triple Negative Breast Cancer Cells. Asian Pac. J. Cancer Prev. APJCP 2024, 25, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.K.; England, R.M.; Perrier, S. Modular design of cyclic peptide-polymer conjugate nanotubes for delivery and tunable release of anti-cancer drug compounds. J. Control. Release 2024, 367, 687–696. [Google Scholar] [CrossRef]
- Almaguer, G.; Almaguer-Vargas, G.; Molina-Trinidad, E.M.; Becerril-Flores, M.A.; Montejano, B.; Madrigal-Santillan, E.; Hernández-Ceruelos, A.; Figueroa-Gutiérrez, A.H.; Montejano, E.; Montejano-Rodríguez, J.R. Antitumor Effect of Epigallocatechin Gallate and Vincristine in Mice with L5178Y Lymphoma. Plants 2023, 12, 3757. [Google Scholar] [CrossRef]
- van de Velde, M.E.; Uittenboogaard, A.; Yang, W.; Bonten, E.; Cheng, C.; Pei, D.; van den Berg, M.H.; van der Sluis, I.M.; van den Bos, C.; Abbink, F.C.H.; et al. Genetic Polymorphisms Associated with Vincristine Pharmacokinetics and Vincristine-Induced Peripheral Neuropathy in Pediatric Oncology Patients. Cancers 2022, 14, 3510. [Google Scholar] [CrossRef]
- Long, Q.; Zhou, W.; Zhou, H.; Tang, Y.; Chen, W.; Liu, Q.; Bian, X. Polyamine-containing natural products: Structure, bioactivity, and biosynthesis. Nat. Prod. Rep. 2024, 41, 525–564. [Google Scholar] [CrossRef] [PubMed]
- Semenescu, A.D.; Moacă, E.A.; Iftode, A.; Dehelean, C.A.; Tchiakpe-Antal, D.S.; Vlase, L.; Vlase, A.M.; Muntean, D.; Chioibaş, R. Phytochemical and Nutraceutical Screening of Ethanol and Ethyl Acetate Phases of Romanian Galium verum Herba (Rubiaceae). Molecules 2023, 28, 7804. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Yang, C.; Yu, Z.; Li, X.; Mu, Q.; Liao, G.; Yu, B. Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm. Sin. B 2020, 11, 621–631. [Google Scholar] [CrossRef]
- Raguraman, R.; Bhavsar, D.; Kim, D.; Ren, X.; Sikavitsas, V.; Munshi, A.; Ramesh, R. Tumor-targeted exosomes for delivery of anticancer drugs. Cancer Lett. 2023, 558, 216093. [Google Scholar] [CrossRef]
- Park, W.; Han, J.H.; Wei, S.; Yang, E.S.; Cheon, S.Y.; Bae, S.J.; Ryu, D.; Chung, H.S.; Ha, K.T. Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2024, 25, 807. [Google Scholar] [CrossRef]
- Banik, K.; Khatoon, E.; Harsha, C.; Rana, V.; Parama, D.; Thakur, K.K.; Bishayee, A.; Kunnumakkara, A.B. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother. Res. PTR 2022, 36, 1854–1883. [Google Scholar] [CrossRef]
- Wang, T.; Wang, P.; Wang, S.; Ma, Y.; Zhao, Z.; Long, F. Wogonin Diminishes Radioresistance of Breast Cancer via Inhibition of the Nrf2/HIF-1α Pathway. Am. J. Chin. Med. 2023, 51, 2243–2262. [Google Scholar] [CrossRef]
- Xing, F.; Sun, C.; Luo, N.; He, Y.; Chen, M.; Ding, S.; Liu, C.; Feng, L.; Cheng, Z. Wogonin Increases Cisplatin Sensitivity in Ovarian Cancer Cells Through Inhibition of the Phosphatidylinositol 3-Kinase (PI3K)/Akt Pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 6007–6014. [Google Scholar] [CrossRef]
- Guo, J.; Jin, G.; Hu, Y.; Zhao, Z.; Nan, F.; Hu, X.; Hu, Y.; Han, Q. Wogonin Restrains the Malignant Progression of Lung Cancer Through Modulating MMP1 and PI3K/AKT Signaling Pathway. Protein Pept. Lett. 2023, 30, 25–34. [Google Scholar] [CrossRef]
- Chen, M.; Wu, H.L.; Wong, T.S.; Chen, B.; Gong, R.H.; Wong, H.L.X.; Xiao, H.; Bian, Z.; Kwan, H.Y. Combination of Wogonin and Artesunate Exhibits Synergistic anti-Hepatocellular Carcinoma Effect by Increasing DNA-Damage-Inducible Alpha, Tumor Necrosis Factor α and Tumor Necrosis Factor Receptor-Associated Factor 3-mediated Apoptosis. Front. Pharmacol. 2021, 12, 657080. [Google Scholar] [CrossRef]
- Tan, H.; Li, X.; Yang, W.H.; Kang, Y. A flavone, Wogonin from Scutellaria baicalensis inhibits the proliferation of human colorectal cancer cells by inducing of autophagy, apoptosis and G2/M cell cycle arrest via modulating the PI3K/AKT and STAT3 signalling pathways. J. BUON Off. J. Balk. Union Oncol. 2019, 24, 1143–1149. [Google Scholar]
- Cao, H.; Gao, Y.; Wang, R.; Guo, Q.; Hui, H. Wogonin reverses the drug resistance of chronic myelogenous leukemia cells to imatinib through CXCL12-CXCR4/7 axis in bone marrow microenvironment. Ann. Transl. Med. 2020, 8, 1046. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Dong, Y.; Xu, Z.; Li, X.; Wang, F.; Zhang, Y. Improved stability and pharmacokinetics of wogonin through loading into PASylated ferritin. Colloids Surf. B Biointerfaces 2022, 216, 112515. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Xie, J.; Lei, Y.; Jia, C.; Liang, Y.; Wang, H.; Huang, J. Mechanistic Insight into the Enhanced Anti-Pulmonary Hypertension Efficacy of Wogonin Co-Amorphous. Pharmaceutics 2025, 17, 724. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.-Y.; Zhou, J.; Yao, Y.; Xue, J.-S.; Guo, Y.-C.; Jian, W.-Z.; Zhang, R.-W.; Qiu, X.-Y.; Zhou, T.-Y. An integrated PK/PD model investigating the impact of tumor size and systemic safety on animal survival in SW1990 pancreatic cancer xenograft. Acta Pharmacol. Sin. 2022, 44, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminformatics 2014, 6, 13. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Gallo, K.; Goede, A.; Preissner, R.; Gohlke, B.O. SuperPred 3.0: Drug classification and target prediction-a machine learning approach. Nucleic Acids Res. 2022, 50, W726–W731. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, W609–W614. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Nishioka, T.; Numazaki, K.; Hasegawa, H.; Takahashi, T.; Sugawara, S.; Tada, H. Reactivation of p53 by RITA Induces Apoptosis in Human Oral Squamous Cell Carcinoma Cells. Anticancer Res. 2022, 42, 2931–2937. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Abdelgawad, L.; Abdullatif Abdelaziz, A.; Bawdy El-Begawey, M.; Mohamed Saafan, A. Influence of Nanocurcumin and Photodynamic Therapy Using Nanocurcumin in Treatment of Rat Tongue Oral Squamous Cell Carcinoma Through Histological Examination and Gene Expression of BCL2 and Caspase-3. Rep. Biochem. Mol. Biol. 2023, 11, 730–738. [Google Scholar] [CrossRef]
- Shaik, M.R.; Kandaswamy, K.; Guru, A.; Khan, H.; Giri, J.; Mallik, S.; Shah, M.A.; Arockiaraj, J. Piperine-coated zinc oxide nanoparticles target biofilms and induce oral cancer apoptosis via BCl-2/BAX/P53 pathway. BMC Oral Health 2024, 24, 715. [Google Scholar] [CrossRef]
- Azimi, Y.; Hajibabaei, S.; Azimi, G.; Rahimi-Jamnani, F.; Azizi, M. Inhibitory effect of miR-377 on the proliferative and invasive behaviors of prostate cancer cells through the modulation of MYC mRNA via its interaction with BCL-2/Bax, PTEN, and CDK4. Genes Cancer 2024, 15, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Kim, H.Y.; Park, J.O.; Choi, E. Enhanced Anti-Tumor Effects of Natural Killer Cell-Derived Exosomes Through Doxorubicin Delivery to Hepatocellular Carcinoma Cells: Cytotoxicity and Apoptosis Study. Int. J. Mol. Sci. 2025, 26, 2234. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, J.; Li, J.; Chen, Q. Hyaluronic Acid-modified Liposomes for Ursolic Acid-targeted Delivery Treat Lung Cancer Based on p53/ARTS-mediated Mitochondrial Apoptosis. Iran. J. Pharm. Res. IJPR 2023, 22, e131758. [Google Scholar] [CrossRef]
- de Morais, E.F.; Almangush, A.; Salo, T.; da Silva, S.D.; Kujan, O.; Coletta, R.D. Emerging histopathological parameters in the prognosis of oral squamous cell carcinomas. Histol. Histopathol. 2024, 39, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, A.; Jamialahmadi, T.; Kesharwani, P.; Sahebkar, A. Bioinformatic analysis of the molecular targets of curcumin in colorectal cancer. Pathol. Res. Pract. 2024, 262, 155533. [Google Scholar] [CrossRef] [PubMed]
- Özdemi, R.F.; Sever, A.; Keçeci, Y.; Incesu, Z. Resveratrol increases the sensitivity of breast cancer MDA-MB-231 cell line to cisplatin by regulating intrinsic apoptosis. Iran. J. Basic Med. Sci. 2021, 24, 66–72. [Google Scholar] [CrossRef]
- Singh, M.; Verma, M.; Pandey, S.; Kumar, R.; Khan, F.; Pandey, P. Anticancer Potential of Quercetin, Epigallocatechin Gallate, Kaempferol, Apigenin, and Curcumin against Several Human Carcinomas. Endocr. Metab. Immune Disord. Drug Targets 2024, 5, 1148–1159. [Google Scholar] [CrossRef]
- Gupta, S.; Portales-Castillo, I.; Daher, A.; Kitchlu, A. Conventional Chemotherapy Nephrotoxicity. Adv. Chronic Kidney Dis. 2021, 28, 402–414.e1. [Google Scholar] [CrossRef]
Target | Ligands | CDOCKER Interaction Energy (kcal/mol) |
---|---|---|
Bcl-2 | Wog–Alop | 39.4304 |
Wogonin | 26.0210 | |
Aloperine | 16.3727 | |
Wog–Alop | 40.0551 | |
BAX | Wogonin | 33.5262 |
Aloperine | 17.7115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Li, H.; Xie, Z.; Ni, S.; Zhu, Y.; Jia, C.; Pan, C.; Liu, S.; Wang, H. Therapeutic Potential of Wogonin–Aloperine Co-Amorphous for Oral Squamous Cell Carcinoma. Pharmaceutics 2025, 17, 1204. https://doi.org/10.3390/pharmaceutics17091204
Wu G, Li H, Xie Z, Ni S, Zhu Y, Jia C, Pan C, Liu S, Wang H. Therapeutic Potential of Wogonin–Aloperine Co-Amorphous for Oral Squamous Cell Carcinoma. Pharmaceutics. 2025; 17(9):1204. https://doi.org/10.3390/pharmaceutics17091204
Chicago/Turabian StyleWu, Guoliang, Han Li, Zhongshui Xie, Song Ni, Yiming Zhu, Chunxue Jia, Chenyu Pan, Shaoyan Liu, and Hongjuan Wang. 2025. "Therapeutic Potential of Wogonin–Aloperine Co-Amorphous for Oral Squamous Cell Carcinoma" Pharmaceutics 17, no. 9: 1204. https://doi.org/10.3390/pharmaceutics17091204
APA StyleWu, G., Li, H., Xie, Z., Ni, S., Zhu, Y., Jia, C., Pan, C., Liu, S., & Wang, H. (2025). Therapeutic Potential of Wogonin–Aloperine Co-Amorphous for Oral Squamous Cell Carcinoma. Pharmaceutics, 17(9), 1204. https://doi.org/10.3390/pharmaceutics17091204