A Risk-Based Framework for Hospital Compounding: Integrating Degradation Mechanisms and Predictive Toxicology
Abstract
1. Introduction
2. Materials and Methods
2.1. Degradation Risk Identification and Profiling by Experimental and Theoretical Approaches
2.2. cQA and CPP Selection for Stability-Justified Compounding
3. Results and Discussion
3.1. Outcomes from Our Prior Studies on Drug Degradation
3.1.1. Degradation Process Highlighted in the Studies
3.1.2. Role of Theoretical Chemistry in Degradation Pathway’s Characterization
3.1.3. Risk Assessment of Degradation Implications
3.1.4. Summary of Results and Pharmaceutical Implications
3.2. Risk-Based Scientific Framework for Formulating Personalized Medicines
3.2.1. Proposed Risk-Based Decision Tree for Hospital Compounding
- Drug characteristics: chemical class, functional groups, known degradation pathways, and physicochemical properties (e.g., pKa, logP, solubility).
- Degradation data: experimental forced degradation profiles and/or predicted liabilities via theoretical modeling (Section 2.1).
- Compounding context: target patient group (e.g., pediatric, oncology), personalization level (dose flexibility, dosage form), shelf-life expectations, container availability, and administration route.
- Hydrolytic sensitivity (e.g., ester, amide cleavage)
- Oxidation-prone structures (e.g., phenols, heteroaromatics)
- Photolability (e.g., aromatic chromophores with absorbance above 290 nm)
- Structural alerts flagged by in silico software (e.g., Derek Nexus or Toxtree), interpreted per ICH M7(R2) for mutagenic potential
- Formulation strategy: adjust pH (e.g., buffer apixaban to pH 3.5–4.5), use stabilizers (e.g., antioxidants for ruxolitinib), and avoid solvents promoting hydrolysis.
- Container and protection: amber glass for photolabile or oxidative drugs, nitrogen flushing for oxidizable APIs, and plastic-free vessels to avoid catalysis or adsorption.
- Workflow controls: light-protected or closed-system compounding, short beyond-use dating for unstable compounds, and on-demand 3D printing adaptation where suitable.
3.2.2. Stability-Personalization Matrix for Oral Formulation Triage
3.2.3. Use Case Illustration
4. General Discussion and Outlook
5. Limitations and Considerations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lau, E.T.L.; Steadman, K.J.; Cichero, J.A.Y.; Nissen, L.M. Dosage Form Modification and Oral Drug Delivery in Older People. Adv. Drug Deliv. Rev. 2018, 135, 75–84. [Google Scholar] [CrossRef]
- Ivanovska, V.; Rademaker, C.M.A.; Van Dijk, L.; Mantel-Teeuwisse, A.K. Pediatric Drug Formulations: A Review of Challenges and Progress. Pediatrics 2014, 134, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Almeida, I. The Role of Pharmaceutical Compounding in Promoting Medication Adherence. Pharmaceuticals 2022, 15, 1091. [Google Scholar] [CrossRef] [PubMed]
- Vugigi, S. Extemporaneous Compounding: Prevalence, Risks and Quality Assurance. Afr. J. Pharm. Altern. Med. 2023, 1, 39–54. [Google Scholar] [CrossRef]
- USP General Chapter 795|USP. Available online: https://www.usp.org/compounding/general-chapter-795 (accessed on 11 August 2025).
- USP General Chapter 797. Available online: https://www.usp.org/compounding/general-chapter-797 (accessed on 11 August 2025).
- USP 800|USP. Available online: https://www.usp.org/compounding/general-chapter-hazardous-drugs-handling-healthcare (accessed on 11 August 2025).
- Baertschi, S.W.; Alsante, K.M.; Reed, R.A. (Eds.) Pharmaceutical Stress Testing: Predicting Drug Degradation, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-0-429-13608-5. [Google Scholar]
- Li, M. Organic Chemistry of Drug Degradation; Royal Society of Chemistry: Cambridge, UK, 2012; ISBN 978-1-84973-421-9. [Google Scholar]
- Blessy, M.; Patel, R.D.; Prajapati, P.N.; Agrawal, Y.K. Development of Forced Degradation and Stability Indicating Studies of Drugs—A Review. J. Pharm. Anal. 2014, 4, 159–165. [Google Scholar] [CrossRef]
- Beer, N.; Kaae, S.; Genina, N.; Sporrong, S.K.; Alves, T.L.; Hoebert, J.; De Bruin, M.L.; Hegger, I. Magistral Compounding with 3D Printing: A Promising Way to Achieve Personalized Medicine. Ther. Innov. Regul. Sci. 2023, 57, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Stoops, M.; Do, B.; Ramos, S.; Tan, B.X.; Sheng Chua, N.Y.; Mazet, R.; Guiblin, N.; Michelet, A.; Flynn, S.; Abbou, S.; et al. Clinical Implementation of a Paediatric 3D-Printed Combination of Sulfamethoxazole and Trimethoprim. Int. J. Pharm. 2025, 676, 125581. [Google Scholar] [CrossRef]
- Bernhardt, M.B.; Shokraneh, F.; Hrizanovska, L.; Lahtinen, J.; Brasher, C.A.; Sandler, N. Automated 3D Printing-Based Non-Sterile Compounding Technology for Pediatric Corticosteroid Dosage Forms in a Health System Pharmacy Setting. Pharmaceutics 2025, 17, 762. [Google Scholar] [CrossRef]
- Foti, C.; Alsante, K.; Cheng, G.; Zelesky, T.; Zell, M. Tools and Workflow for Structure Elucidation of Drug Degradation Products. TrAC Trends Anal. Chem. 2013, 49, 89–99. [Google Scholar] [CrossRef]
- Liu, Y.; Romijn, E.P.; Verniest, G.; Laukens, K.; De Vijlder, T. Mass Spectrometry-Based Structure Elucidation of Small Molecule Impurities and Degradation Products in Pharmaceutical Development. TrAC Trends Anal. Chem. 2019, 121, 115686. [Google Scholar] [CrossRef]
- Alampanos, V.D.; Lambropoulou, D.A. Liquid Chromatography-High Resolution Mass Spectrometry Methods for the Identification of Antifungal Azoles’ Transformation Products through Suspect and Non-Target Analysis. Trends Environ. Anal. Chem. 2025, 45, e00252. [Google Scholar] [CrossRef]
- Rajput, N.; Soni, F.; Sahu, A.K.; Jadav, T.; Sharma, S.; Sengupta, P. Degradation Kinetics and Characterization of Major Degradants of Binimetinib Employing Liquid Chromatography-High Resolution Mass Spectrometry. J. Pharm. Biomed. Anal. 2022, 215, 114753. [Google Scholar] [CrossRef]
- Guan, H.; Sun, H.; Zhao, X. Application of Density Functional Theory to Molecular Engineering of Pharmaceutical Formulations. Int. J. Mol. Sci. 2025, 26, 3262. [Google Scholar] [CrossRef]
- Bin Muhsinah, A.; Alharbi, M.M.; Kheder, N.A.; Soliman, S.M.; Ghabbour, H.A.; Mahmoud, N.S.; Elhaty, I.A.; Mabkhot, Y.N. New Thiophene Derivatives: Chemoselective Synthesis, Antitumor Effectiveness, Structural Characterization, DFT Calculations, Hirshfeld Surface, and Fukui Function Analysis. BMC Chem. 2024, 18, 228. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, Z.; Pu, Q.; Li, X.; Cui, Y.; Yang, H.; Li, Y. Identification and Mechanistic Analysis of Toxic Degradation Products in the Advanced Oxidation Pathways of Fluoroquinolone Antibiotics. Toxics 2024, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhu, Y.; Ma, S.; Cao, M.; Geng, H.; Li, J.; Gao, Z.; Leng, W.; Sun, K.; Wang, F. Substituent Structure Variances Alter Degradation Pathways of Sulfonamides in UV/PAA System: Insights from Intermediates, ROS, and DFT Calculations. J. Hazard. Mater. 2025, 485, 136806. [Google Scholar] [CrossRef] [PubMed]
- Malesuik, M.D.; Pereira, C.S.; Kaefer, C.L.; Bordim, J.M.T.; Paula, F.R.; Paim, C.S.; Machado, M.M.; da Silva, F.E.B. Synephrine Photodegradation Study: Degradation Kinetic, in Silico and LC-ESI-MS Analysis of Major Degradation Product, and in Vitro Toxicological Study. J. Photochem. Photobiol. A Chem. 2024, 449, 115382. [Google Scholar] [CrossRef]
- ICH Q8 (R2) Pharmaceutical Development-Scientific Guideline|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/ich-q8-r2-pharmaceutical-development-scientific-guideline (accessed on 11 August 2025).
- ICH Q9 Quality Risk Management-Scientific Guideline|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/ich-q9-quality-risk-management-scientific-guideline (accessed on 11 August 2025).
- ICH Q10 Pharmaceutical Quality System-Scientific Guideline|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/ich-q10-pharmaceutical-quality-system-scientific-guideline (accessed on 11 August 2025).
- ICH Q11 Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological/Biological Entities)-Scientific Guideline|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/ich-q11-development-manufacture-drug-substances-chemical-entities-biotechnological-biological-entities-scientific-guideline (accessed on 11 August 2025).
- ICH Q12 Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management-Scientific Guideline|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/ich-q12-technical-regulatory-considerations-pharmaceutical-product-lifecycle-management-scientific-guideline (accessed on 11 August 2025).
- ICH M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk-Scientific Guideline | European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential-carcinogenic-risk-scientific-guideline (accessed on 11 August 2025).
- ICH Q1A (R2) Stability Testing of New Drug Substances and Products-Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug-substances-drug-products-scientific-guideline (accessed on 29 March 2023).
- Isravel, A.D.; Jeyaraj, J.K.; Thangasamy, S.; John, W.J. DFT, NBO, HOMO-LUMO, NCI, Stability, Fukui Function and Hole–Electron Analyses of Tolcapone. Comput. Theor. Chem. 2021, 1202, 113296. [Google Scholar] [CrossRef]
- Hadidi, S.; Shiri, F.; Norouzibazaz, M. A DFT Study of the Degradation Mechanism of Anticancer Drug Carmustine in an Aqueous Medium. Struct. Chem. 2019, 30, 1315–1321. [Google Scholar] [CrossRef]
- Armaković, S.; Armaković, S.J.; Abramović, B.F. Theoretical Investigation of Loratadine Reactivity in Order to Understand Its Degradation Properties: DFT and MD Study. J. Mol. Model. 2016, 22, 240. [Google Scholar] [CrossRef]
- Ahuja, V.; Adiga Perdur, G.; Aj, Z.; Krishnappa, M.; Kandarova, H. In Silico Phototoxicity Prediction of Drugs and Chemicals by Using Derek Nexus and QSAR Toolbox. Altern. Lab. Anim. 2024, 52, 195–204. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (EPA). Toxicity Estimation Software Tool (TEST). Available online: https://www.epa.gov/comptox-tools/toxicity-estimation-software-tool-test (accessed on 13 August 2025).
- Contrera, J.F. Validation of Toxtree and SciQSAR in Silico Predictive Software Using a Publicly Available Benchmark Mutagenicity Database and Their Applicability for the Qualification of Impurities in Pharmaceuticals. Regul. Toxicol. Pharmacol. 2013, 67, 285–293. [Google Scholar] [CrossRef]
- Bercu, J.; Berlam, S.C.; Berridge, J.; Cherney, B.; Cowley, D.; Laughton, H.W.; McLoughlin, D.; McMahon, M.; Moore, C.M.V.; Murti, C.; et al. Establishing Patient Centric Specifications for Drug Substance and Drug Product Impurities. J. Pharm. Innov. 2019, 14, 76–89. [Google Scholar] [CrossRef]
- Secrétan, P.-H.; Sadou-Yayé, H.; Aymes-Chodur, C.; Bernard, M.; Solgadi, A.; Amrani, F.; Yagoubi, N.; Do, B. A Comprehensive Study of Apixaban’s Degradation Pathways under Stress Conditions Using Liquid Chromatography Coupled to Multistage Mass Spectrometry. RSC Adv. 2015, 5, 35586–35597. [Google Scholar] [CrossRef]
- Salakolusu, S.; Sharma, G.V.R.; Katari, N.K.; Puppala, U.; Kaliyapermal, M.; Vijay, R.; Doddipalla, R.; Geereddi, M.K.R. Identification, Isolation, and Structural Characterization of Novel Forced Degradation Products of Apixaban Using Advanced Analytical Techniques. J. Sep. Sci. 2022, 45, 3942–3954. [Google Scholar] [CrossRef]
- Secretan, P.-H.; Schlatter, J.; Cisternino, S.; Antignac, M.; Thirion, O.; Sadou Yayé, H.; Jouven, X.; Yagoubi, N.; Do, B. Ruxolitinib Photodegradation Mechanisms by Theoretical and Experimental Chemistry. J. Pharm. Biomed. Anal. 2021, 197, 113983. [Google Scholar] [CrossRef]
- Chaganti, S.; Dhiman, V.; Madhyanapu Golla, V.; Roshitha, K.R.; Khemchandani, R.; Samanthula, G. Forced Degradation Study of Baricitinib and Structural Characterization of Its Degradation Impurities by High-resolution Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Rapid Commun. Mass Spectrom. 2023, 37, e9605. [Google Scholar] [CrossRef]
- Secrétan, P.-H.; Karoui, M.; Bernard, M.; Ghermani, N.; Safta, F.; Yagoubi, N.; Do, B. Photodegradation of Aqueous Argatroban Investigated by LC/MSn: Photoproducts, Transformation Processes and Potential Implications. J. Pharm. Biomed. Anal. 2016, 131, 223–232. [Google Scholar] [CrossRef]
- Annereau, M.; Vignes, M.; Bouchema, T.S.E.; Denis, L.; Solgadi, A.; Vieillard, V.; Paul, M.; Rieutord, A.; Grill, J.; Secretan, P.-H.; et al. Identification of Degradation Products of the New Anticancer Drug Substance ONC201 by Liquid Chromatography–High-Resolution Multistage Mass Spectrometry. Chemosensors 2023, 11, 294. [Google Scholar] [CrossRef]
- Secretan, P.-H.; Annereau, M.; Kini-Matondo, W.; Prost, B.; Prudhomme, J.; Bournane, L.; Paul, M.; Yagoubi, N.; Sadou-Yayé, H.; Do, B. Unequal Behaviour between Hydrolysable Functions of Nirmatrelvir under Stress Conditions: Structural and Theoretical Approaches in Support of Preformulation Studies. Pharmaceutics 2022, 14, 1720. [Google Scholar] [CrossRef] [PubMed]
- Ganorkar, S.B.; Heyden, Y.V. Recent Trends in Pharmaceutical Analysis to Foster Modern Drug Discovery by Comparative In-Silico Profiling of Drugs and Related Substances. TrAC Trends Anal. Chem. 2022, 157, 116747. [Google Scholar] [CrossRef]
- EMA ICH Q3A (R2) Impurities in New Drug Substances-Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-q3a-r2-impurities-new-drug-substances-scientific-guideline (accessed on 28 March 2023).
- EMA ICH Q3B (R2) Impurities in New Drug Products-Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-q3b-r2-impurities-new-drug-products-scientific-guideline (accessed on 28 March 2023).
- Skipper, P.L.; Kim, M.Y.; Sun, H.-L.P.; Wogan, G.N.; Tannenbaum, S.R. Monocyclic Aromatic Amines as Potential Human Carcinogens: Old Is New Again. Carcinogenesis 2010, 31, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software Update: The ORCA Program System—Version 6.0. WIREs Comput. Mol. Sci. 2025, 15, e70019. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
API | Degradation Pathway | Key Degradants | Mutagenicity Alert? | Targeted CPPs | Mitigation Strategy |
---|---|---|---|---|---|
Apixaban | Acid/base-catalyzed hydrolysis | Open-ringed lactams | No | pH buffering; aqueous exposure time | Buffer to pH 3.5–4.5; use sealed containers; limit aqueous prep time |
Argatroban | Photodegradation | Aromatic hydroxylamines | Yes | Light protection; BUD limitation | Prepare in subdued light; use within 24 h; store in amber syringes |
Etoposide | Acidic hydrolysis + photolysis | Quinone species | No | Light avoidance; pH control | Prepare under low light; buffer pH; refrigerate |
Nirmatrelvir | Acid and base cata-lysed hydrolysis | Hydrolyzed nitrile and/or trifluoroacetamide | No | pH control | Buffer pH to 3.0–5.0 |
ONC201 | Oxidation + photolysis | Altered imidazole, tetrahydropyridine and piperidine rings | Yes | Light avoidance, antioxidant | Store in UV-blocking container; citric acid |
Ruxolitinib | Oxidation + photolysis | Hydroxylated aromatics | Yes | Nitrogen flush; antioxidant; light protection | Flush with N2; include antioxidant; store in amber glass |
Selumetinib | Photodegradation | Oxidized oxoamide | No | UV protection; fast administration | Store in UV-blocking blister; use within 24 h post-compounding |
Umifenovir | Oxidation | Sulfoxide/sulfone | No | Headspace minimization; antioxidant buffer | Seal containers; use low-O2 buffers |
Stability Risk (Degradation Profile) | Personalization Need | Action | Type of Compounded Drug Product Implemented in Gustave Roussy Hospital |
---|---|---|---|
High (rapid degradation, genotoxic alerts) | High (pediatric, rare dose) | Full profiling, strict CPP control | 3D printed formulations |
High | Low | Minimal personalization, consider alternative therapies | If no adapted alternative exists, oral solid dosage forms (capsules or 3D printed formulations) |
Low | High | Flexible format, but reduced need for full degradation profiling | Oral liquid formulation or 3D printed formulations |
Low | Low | Standard compounding procedures acceptable | Oral liquid or solid oral dosage forms |
Formulation | Predicted Risk Pathway | Observed Degradation | Outcome |
---|---|---|---|
Apixaban suspension | Hydrolysis | Hydrolysis | Correct prediction |
Ruxolitinib solution | Oxidation and photolysis | Oxidation and photolysis | Correct prediction |
Argatroban infusion | Hydroxylamine formation | Hydroxylamine formation | Correct prediction |
Nirmatrelvir oral liquid | Acid/base-catalyzed hydrolysis | Hydrolysis | Correct prediction |
Custom pediatric amlodipine | Photodegradation | Photodegradation | Correct prediction |
Voriconazole SSE printable ink | Oxidation | No significant degradation | No degradation observed (framework flagged as possible risk) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secretan, P.-H.; Annereau, M.; Do, B. A Risk-Based Framework for Hospital Compounding: Integrating Degradation Mechanisms and Predictive Toxicology. Pharmaceutics 2025, 17, 1202. https://doi.org/10.3390/pharmaceutics17091202
Secretan P-H, Annereau M, Do B. A Risk-Based Framework for Hospital Compounding: Integrating Degradation Mechanisms and Predictive Toxicology. Pharmaceutics. 2025; 17(9):1202. https://doi.org/10.3390/pharmaceutics17091202
Chicago/Turabian StyleSecretan, Philippe-Henri, Maxime Annereau, and Bernard Do. 2025. "A Risk-Based Framework for Hospital Compounding: Integrating Degradation Mechanisms and Predictive Toxicology" Pharmaceutics 17, no. 9: 1202. https://doi.org/10.3390/pharmaceutics17091202
APA StyleSecretan, P.-H., Annereau, M., & Do, B. (2025). A Risk-Based Framework for Hospital Compounding: Integrating Degradation Mechanisms and Predictive Toxicology. Pharmaceutics, 17(9), 1202. https://doi.org/10.3390/pharmaceutics17091202