A Pilot, Randomised, Placebo-Controlled, Double-Blind Trial of a Single Oral Dose of Ivermectin for Post-Exposure Prophylaxis of SARS-CoV-2
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Design and Setting
2.2. Participants
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Randomisation
2.4. Investigational Product (IP) and Intervention
2.5. Follow-Up and Data Collection
2.6. Primary Endpoint
2.7. Secondary Endpoints
2.8. Statistics
2.8.1. Primary Endpoint
2.8.2. Secondary Endpoint
2.8.3. Pre-Specified Exploratory Analyses
3. Results
3.1. Trial Population
3.2. Primary Endpoint
3.3. Secondary Endpoints
3.4. Exploratory Outcomes
3.5. Adverse Events
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATE | Average Treatment Effect |
BMI | Body Mass Index |
CRO | Contract Research Organisation |
DAFS | Days Alive Free of Symptoms |
DSMB | Data Safety Monitoring Board |
HREC | Human Research Ethics Committee |
IP | Investigational Product |
OR | Odds Ratio |
RAT | Rapid Antigen Test |
RCT | Randomised Controlled Trial |
RR | Rate Ratio |
SAP | Statistical Analysis Plan |
References
- Crump, A.; Omura, S. Ivermectin, ‘wonder drug’ from Japan: The human use perspective. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011, 87, 13–28. [Google Scholar] [CrossRef]
- Foundation, Nobel. The Nobel Prize in Medicine or Physiology. 2015. Available online: https://www.nobelprize.org/prizes/medicine/2015/press-release (accessed on 13 September 2025).
- Jans, D.A.; Wagstaff, K.M. Ivermectin as a Broad-Spectrum Host-Directed Antiviral: The Real Deal? Cells 2020, 9, 2100. [Google Scholar] [CrossRef] [PubMed]
- Jans, D.A.; Wagstaff, K.M. The broad spectrum host-directed agent ivermectin as an antiviral for SARS-CoV-2 ? Biochem. Biophys. Res. Commun. 2021, 538, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Canga, A.; Sahagun Prieto, A.M.; Diez Liebana, M.J.; Fernandez Martinez, N.; Sierra Vega, M.; Garcia Vieitez, J.J. The pharmacokinetics and interactions of ivermectin in humans--a mini-review. AAPS J. 2008, 10, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Omura, S.; Crump, A. Ivermectin: Panacea for resource-poor communities? Trends Parasitol. 2014, 30, 445–455. [Google Scholar] [CrossRef]
- Guzzo, C.A.; Furtek, C.I.; Porras, A.G.; Chen, C.; Tipping, R.; Clineschmidt, C.M.; Sciberras, D.G.; Hsieh, J.Y.; Lasseter, K.C. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol. 2002, 42, 1122–1133. [Google Scholar] [CrossRef]
- Twum-Danso, N.A.; Meredith, S.E. Variation in incidence of serious adverse events after onchocerciasis treatment with ivermectin in areas of Cameroon co-endemic for loiasis. Trop. Med. Int. Health 2003, 8, 820–831. [Google Scholar] [CrossRef]
- Navarro, M.; Camprubi, D.; Requena-Mendez, A.; Buonfrate, D.; Giorli, G.; Kamgno, J.; Gardon, J.; Boussinesq, M.; Munoz, J.; Krolewiecki, A. Safety of high-dose ivermectin: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2020, 75, 827–834. [Google Scholar] [CrossRef]
- Barkwell, R.; Shields, S. Deaths associated with ivermectin treatment of scabies. Lancet 1997, 349, 1144–1145. [Google Scholar] [CrossRef]
- Barkwell, R.; Shields, S. Deaths associated with ivermectin treatment of scabies. Lancet 1997, 350, 216. [Google Scholar] [CrossRef]
- Baudou, E.; Lespine, A.; Durrieu, G.; Andre, F.; Gandia, P.; Durand, C.; Cunat, S. Serious Ivermectin Toxicity and Human ABCB1 Nonsense Mutations. N. Engl. J. Med. 2020, 383, 787–789. [Google Scholar] [CrossRef] [PubMed]
- Bredal, W. Deaths associated with ivermectin treatment of scabies. Lancet 1997, 350, 216. [Google Scholar] [CrossRef] [PubMed]
- Chandler, R.E. Serious Neurological Adverse Events after Ivermectin-Do They Occur beyond the Indication of Onchocerciasis? Am. J. Trop. Med. Hyg. 2018, 98, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Coyne, P.; Addiss, D.G. Deaths associated with ivermectin treatment of scabies. Lancet 1997, 350, 215–216. [Google Scholar] [CrossRef]
- Currie, B.J.; McCarthy, J.S. Permethrin and ivermectin for scabies. N. Engl. J. Med. 2010, 362, 717–725. [Google Scholar] [CrossRef]
- Edwards, G. Ivermectin: Does P-glycoprotein play a role in neurotoxicity? Filaria J. 2003, 2 (Suppl. 1), S8. [Google Scholar] [CrossRef]
- Reintjes, R.; Hoek, C. Deaths associated with ivermectin treatment of scabies. Lancet 1997, 350, 215. [Google Scholar] [CrossRef]
- Atkinson, S.C.; Audsley, M.D.; Lieu, K.G.; Marsh, G.A.; Thomas, D.R.; Heaton, S.M.; Paxman, J.J.; Wagstaff, K.M.; Buckle, A.M.; Moseley, G.W.; et al. Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V. Sci. Rep. 2018, 8, 358. [Google Scholar] [CrossRef]
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 178, 104787. [Google Scholar] [CrossRef]
- Gotz, V.; Magar, L.; Dornfeld, D.; Giese, S.; Pohlmann, A.; Hoper, D.; Kong, B.W.; Jans, D.A.; Beer, M.; Haller, O.; et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci. Rep. 2016, 6, 23138. [Google Scholar] [CrossRef]
- Jans, D.A.; Martin, A.J.; Wagstaff, K.M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol. 2019, 58, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.S.; Jeyaraman, M.; Jain, R.; Anudeep, T.C. A Wonder Drug in the Arsenal against COVID—19: Medication Evidence from Ivermectin. J. Adv. Med. Med. Res. 2020, 32, 30–37. [Google Scholar] [CrossRef]
- Lundberg, L.; Pinkham, C.; Baer, A.; Amaya, M.; Narayanan, A.; Wagstaff, K.M.; Jans, D.A.; Kehn-Hall, K. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antivir. Res. 2013, 100, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Liu, W.; Wang, B.; Dang, R.; Qiu, L.; Ren, J.; Yan, C.; Yang, Z.; Wang, X. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antivir. Res. 2018, 159, 55–62. [Google Scholar] [CrossRef]
- Mastrangelo, E.; Pezzullo, M.; De Burghgraeve, T.; Kaptein, S.; Pastorino, B.; Dallmeier, K.; de Lamballerie, X.; Neyts, J.; Hanson, A.M.; Frick, D.N.; et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: New prospects for an old drug. J. Antimicrob. Chemother. 2012, 67, 1884–1894. [Google Scholar] [CrossRef]
- Tay, M.Y.; Fraser, J.E.; Chan, W.K.; Moreland, N.J.; Rathore, A.P.; Wang, C.; Vasudevan, S.G.; Jans, D.A. Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antivir. Res. 2013, 99, 301–306. [Google Scholar] [CrossRef]
- Thomas, D.R.; Lundberg, L.; Pinkham, C.; Shechter, S.; DeBono, A.; Baell, J.; Wagstaff, K.M.; Hick, C.A.; Kehn-Hall, K.; Jans, D.A. Identification of novel antivirals inhibiting recognition of Venezuelan equine encephalitis virus capsid protein by the Importin alpha/beta1 heterodimer through high-throughput screening. Antivir. Res. 2018, 151, 8–19. [Google Scholar] [CrossRef]
- Varghese, F.S.; Kaukinen, P.; Glasker, S.; Bespalov, M.; Hanski, L.; Wennerberg, K.; Kummerer, B.M.; Ahola, T. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antivir. Res. 2016, 126, 117–124. [Google Scholar] [CrossRef]
- Wagstaff, K.M.; Sivakumaran, H.; Heaton, S.M.; Harrich, D.; Jans, D.A. Ivermectin is a specific inhibitor of importin alpha/beta-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem. J. 2012, 443, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.N.Y.; Atkinson, S.C.; Wang, C.; Lee, A.; Bogoyevitch, M.A.; Borg, N.A.; Jans, D.A. The broad spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer. Antivir. Res. 2020, 177, 104760. [Google Scholar] [CrossRef]
- Loukas, A.; Hotez, P.J. Chemotherapy of helminth infections. In The Pharmacological Basis of Therapeutics, 11th ed.; Brunton, L.L., Lazo, J.S., Parker, K.L., Eds.; Goodman & Gilman: New York, NY, USA, 2006; pp. 1073–1093. [Google Scholar]
- King, C.R.; Tessier, T.M.; Dodge, M.J.; Weinberg, J.B.; Mymryk, J.S. Inhibition of Human Adenovirus Replication by the Importin alpha/beta1 Nuclear Import Inhibitor Ivermectin. J. Virol. 2020, 94, e00710-20. [Google Scholar] [CrossRef]
- Blakley, B.R.; Rousseaux, C.G. Effect of ivermectin on the immune response in mice. Am. J. Vet. Res. 1991, 52, 593–595. [Google Scholar] [CrossRef]
- Corbo-Rodgers, E.; Staub, E.S.; Zou, T.; Smith, A.; Kambayashi, T.; Maltzman, J.S. Oral ivermectin as an unexpected initiator of CreT2-mediated deletion in T cells. Nat. Immunol. 2012, 13, 197–198. [Google Scholar] [CrossRef][Green Version]
- Sajid, M.S.; Iqbal, Z.; Muhammad, G.; Sandhu, M.A.; Khan, M.N.; Saqib, M.; Iqbal, M.U. Effect of ivermectin on the cellular and humoral immune responses of rabbits. Life Sci. 2007, 80, 1966–1970. [Google Scholar] [CrossRef]
- Stankiewicz, M.; Cabaj, W.; Jonas, W.E.; Moore, L.G.; Millar, K.; Ng Chie, W. Influence of ivermectin on cellular and humoral immune responses of lambs. Vet. Immunol. Immunopathol. 1995, 44, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Ventre, E.; Rozieres, A.; Lenief, V.; Albert, F.; Rossio, P.; Laoubi, L.; Dombrowicz, D.; Staels, B.; Ulmann, L.; Julia, V.; et al. Topical ivermectin improves allergic skin inflammation. Allergy 2017, 72, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Chaccour, C.; Casellas, A.; Blanco-Di Matteo, A.; Pineda, I.; Fernandez-Montero, A.; Ruiz-Castillo, P.; Richardson, M.A.; Rodriguez-Mateos, M.; Jordan-Iborra, C.; Brew, J.; et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine 2021, 32, 100720. [Google Scholar] [CrossRef]
- Changeux, J.P.; Amoura, Z.; Rey, F.A.; Miyara, M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Comptes R. Biol. 2020, 343, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Krause, R.M.; Buisson, B.; Bertrand, S.; Corringer, P.J.; Galzi, J.L.; Changeux, J.P.; Bertrand, D. Ivermectin: A positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 1998, 53, 283–294. [Google Scholar] [CrossRef]
- Yamasmith, E.; Saleh-arong, F.A.; Avirutnan, P.; Angkasekwinai, N.; Mairiang, D.; Wongsawat, E.; Tanrumluk, S.; Fongsri, U.; Suputtamongkol, Y. Efficacy and Safety of Ivermectin against Dengue Infection: A Phase III, Randomized, Double-blind, Placebo-controlled Trial. In Proceedings of the 34th Annual Meeting The Royal College of Physicians of Thailand—‘Internal Medicine and One Health’, Pattaya, Thailand, 26–28 April 2018. [Google Scholar]
- Arshad, U.; Pertinez, H.; Box, H.; Tatham, L.; Rajoli, R.K.; Curley, P.; Neary, M.; Sharp, J.; Liptrott, N.J.; Valentijn, A.; et al. Prioritisation of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics. Clin. Pharmacol. Ther. 2020, 108, 775–790. [Google Scholar] [CrossRef]
- Schmith, V.D.; Zhou, J.J.; Lohmer, L.R. The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19. Clin. Pharmacol. Ther. 2020, 108, 762–765. [Google Scholar] [CrossRef]
- Lifschitz, A.; Virkel, G.; Sallovitz, J.; Sutra, J.F.; Galtier, P.; Alvinerie, M.; Lanusse, C. Comparative distribution of ivermectin and doramectin to parasite location tissues in cattle. Vet. Parasitol. 2000, 87, 327–338. [Google Scholar] [CrossRef]
- Cepelowicz Rajter, J.; Sherman, M.S.; Fatteh, N.; Vogel, F.; Sacks, J.; Rajter, J.J. Use of Ivermectin Is Associated With Lower Mortality in Hospitalized Patients With Coronavirus Disease 2019: The Ivermectin in COVID Nineteen Study. Chest 2021, 159, 85–92. [Google Scholar] [CrossRef]
- Khan, M.S.I.; Khan, M.S.I.; Debnath, C.R.; Nath, P.N.; Mahtab, M.A.; Nabeka, H.; Matsuda, S.; Akbar, S.M.F. Ivermectin Treatment May Improve the Prognosis of Patients With COVID-19. Arch. Bronconeumol. 2020, 56, 828–830. [Google Scholar] [CrossRef]
- Bryant, A.; Lawrie, T.A.; Dowswell, T.; Fordham, E.J.; Mitchell, S.; Hill, S.R.; Tham, T.C. Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines. Am. J. Ther. 2021, 28, e434–e460. [Google Scholar] [CrossRef] [PubMed]
- Popp, M.; Stegemann, M.; Metzendorf, M.I.; Gould, S.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst. Rev. 2021, 7, CD015017. [Google Scholar] [CrossRef] [PubMed]
- Biber, A.; Harmelin, G.; Lev, D.; Ram, L.; Shaham, A.; Nemet, I.; Kliker, L.; Erster, O.; Mandelboim, M.; Schwartz, E. The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19—A double-blind, randomized placebo-controlled trial. Int. J. Infect. Dis. 2022, 122, 733–740. [Google Scholar] [CrossRef]
- Behera, P.; Patro, B.K.; Padhy, B.M.; Mohapatra, P.R.; Bal, S.K.; Chandanshive, P.D.; Mohanty, R.R.; Ravikumar, S.R.; Singh, A.; Singh, S.R.; et al. Prophylactic Role of Ivermectin in Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Healthcare Workers. Cureus 2021, 13, e16897. [Google Scholar] [CrossRef]
- Shouman, W.; Hegazy, A.A.; Nafae, R.M.; Ragab, M.I.; Samra, S.R.; Ibrahim, D.A.; Al-Mahrouky, T.H.; Sileem, A.E. Use of ivermectin as a potential chemoprophylaxis for COVID-19 in Egypt: A randomized clinical trial. J. Clin. Diagn. Res. 2021, 15, OC27–OC32. [Google Scholar] [CrossRef]
- Chahla, R.E.; Ruiz, L.M.; Ortega, E.S. Intensive Treatment With Ivermectin and Iota-Carrageenan as Pre-exposure Prophylaxis for COVID-19 in Health Care Workers From Tucuman, Argentina. Am. J. Ther. 2021, 28, e601–e604. [Google Scholar]
- R Foundation for Statistical Computing, T. R: A Language and Environment for Statistical Computing; R Foundation for Statisitcal Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org (accessed on 13 September 2025).
- Heinze, G.; Ploner, M.; Jiricka, L.; Steiner, G. Logistf: Firth’s Bias-Reduced Logistic Regression. R Package Version 1.26.1. 2025. Available online: https://CRAN.Rproject.org/package=logistf (accessed on 13 September 2025).
- Cozier, Y.C.; Castro-Webb, N.; Hochberg, N.S.; Rosenberg, L.; Albert, M.A.; Palmer, J.R. Lower serum 25(OH)D levels associated with higher risk of COVID-19 infection in U.S. Black women. PLoS ONE 2021, 16, e0255132. [Google Scholar] [CrossRef]
- Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Golan Cohen, A.; Green, I.; Frenkel-Morgenstern, M. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020, 287, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Oristrell, J.; Oliva, J.C.; Casado, E.; Subirana, I.; Dominguez, D.; Toloba, A.; Balado, A.; Grau, M. Vitamin D supplementation and COVID-19 risk: A population-based, cohort study. J. Endocrinol. Investig. 2022, 45, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Beyerstedt, S.; Casaro, E.B.; Rangel, E.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, J.; Lores, E.; Ye, M.; Soler, M.J.; Batlle, D. Kidney and Lung ACE2 Expression after an ACE Inhibitor or an Ang II Receptor Blocker: Implications for COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1941–1943. [Google Scholar] [CrossRef]
Demographic Characteristics | Ivermectin (n = 36) | Placebo (n = 32) | Overall (n = 68) |
---|---|---|---|
Sex (%) | |||
Female | 23 (64%) | 20 (63%) | 43 (63%) |
Male | 13 (36%) | 12 (38%) | 25 (37%) |
Age (Years) | |||
Mean (SD) | 51.5 (11.5) | 51.3 (12.4) | 51.4 (11.8) |
Median [Min, Max] | 50.0 [24.0, 73.0] | 50.0 [18.0, 71.0] | 50.0 [18.0, 73.0] |
Weight (kg) | |||
Mean (SD) | 79.9 (15.7) | 77.6 (14.5) | 78.8 (15.1) |
Median [Min, Max] | 76.0 [57.0, 117] | 77.0 [55.0, 113] | 76.0 [55.0, 117] |
Self-Reported Height (cm) | |||
Mean (SD) | 169 (10.3) | 170 (8.22) | 170 (9.35) |
Median [Min, Max] | 169 [152, 195] | 170 [155, 188] | 169 [152, 195] |
BMI (kg/m2) | |||
Mean (SD) | 28.1 (5.77) | 26.7 (4.11) | 27.4 (5.07) |
Median [Min, Max] | 25.7 [18.5, 47.0] | 27.1 [19.0, 36.5] | 26.4 [18.5, 47.0] |
Vaccination against SARS-CoV-2 (highest vaccination status tabulated) | |||
Received a second vaccination 6 or more months prior to consent | 3 (8%) | 2 (6%) | 5 (7%) |
Received a third vaccination within the last 10 days | 3 (8%) | 3 (9%) | 6 (9%) |
Received a third vaccination more than 10 days ago | 9 (25%) | 12 (38%) | 21 (31%) |
Received a fourth vaccination within the last 10 days | 3 (8%) | 2 (6%) | 5 (7%) |
Received a fourth vaccination more than 10 days ago | 13 (36%) | 10 (31%) | 23 (34%) |
Received a fifth vaccination within the last 10 days | 1 (3%) | 0 | 1 (2%) |
Received a fifth vaccination more than 10 days ago | 4 (11%) | 2 (6%) | 6 (9%) |
Received a sixth vaccination within the last 10 days | 0 | 1 (3%) | 1 (2%) |
HISTORY | |||
Smoking status (%) | |||
Never | 23 (64%) | 23 (72%) | 46 (68%) |
Former | 10 (28%) | 6 (19%) | 16 (24%) |
Current | 3 (8%) | 3 (9%) | 6 (9%) |
Alcohol consumption per week (grams) | |||
Mean (SD) | 33 (43) | 36 (54) | 34 (48) |
Median [Min, Max] | 15 [0, 140] | 20 [0, 210] | 20 [0, 210] |
Diabetes (%) | |||
No | 33 (92%) | 31 (97%) | 64 (94%) |
Yes | 3 (8%) | 1 (3%) | 4 (6%) |
Heart disease (%) | |||
No | 36 (100%) | 30 (94%) | 66 (97%) |
Yes | 0 | 1 (3%) | 1 (2%) |
Missing | 0 (0%) | 1 (3%) | 1 (2%) |
Lung disease (%) | |||
No | 32 (89%) | 28 (88%) | 60 (88%) |
Yes | 4 (11%) | 4 (12.5%) | 8 (12%) |
Hypertension (%) | |||
No | 26 (72%) | 25 (78%) | 51 (75%) |
Yes | 10 (28%) | 7 (22%) | 17 (25%) |
Kidney disease (%) | |||
No | 36 (100%) | 31 (97%) | 67 (99%) |
Yes | 0 | 1 (3 %) | 1 (1.5%) |
Cancer (%) | |||
No | 31 (86%) | 28 (88%) | 59 (87%) |
Yes | 5 (14%) | 4 (13%) | 9 (13%) |
History of stroke (%) | |||
No | 36 (100%) | 31 (97%) | 67 (99%) |
Missing | 0 (0%) | 1 (3%) | 1 (2%) |
Outcome or Subgroup | Contrast | Model | Total (n) | Estimate a | Std Error | 95% CI | p Value |
---|---|---|---|---|---|---|---|
Primary (Definitive) | |||||||
Conversion to a SARS-CoV-2 +ve PCR or RAT | Ivermectin–Placebo | Multivariate b | 68 | −0.051 | 0.106 | [−0.26, 0.16] | 0.632 |
Primary (Sensitivity/Supplementary) | |||||||
Conversion to a SARS-CoV-2 +ve PCR or RAT: | |||||||
Univariate Analysis | Ivermectin–Placebo | Univariate | 68 | −0.038 | 0.113 | [−0.26, 0.18] | 0.738 |
Proportion who received Ivermectin | Proportion that received Ivermectin | Proportion c | 22 (11 Ivermectin) | 0.5 d | [0.29, 0.71] | 0.95 | |
Actual Ivermectin dose ≥200 μg/kg e | Ivermectin–Placebo | Multivariate b | 57 | −0.033 | 0.113 | [−0.25, 0.19] | 0.769 |
IP administered on days 0–1 following close contact | Ivermectin–Placebo | Multivariate b | 37 | −0.114 | 0.132 | [−0.37, 0.14] | 0.387 |
Proportion of placebo participants converting to a positive test, as a function of time from close contact until receipt of IP (Supplementary Analysis) f | Per additional day | Multivariate b | 32 | −0.176 | 0.079 | [−0.33, −0.02] | 0.026 |
Contrast | Model | Total (n) | ATE g (d) | OR/RR | 95% CI | p value | |
Secondary (Definitive) | |||||||
Days Alive Free of Symptoms Days 1–14 h (definitive) | Ivermectin–Placebo | Multivariate beta-binomial i | 19 | 2.5 | 2.2 j | [1.0, 4.5] | 0.036 |
Days Alive Free of Symptoms Days 1–28 h (definitive) | Ivermectin–Placebo | Multivariate beta-binomial i | 19 | 2.3 | 1.5 j | [0.7, 3.3] | 0.350 |
Days from close contact until +ve PCR or RAT to SARS-CoV-2 | Ivermectin–Placebo | Negative binomial k | 22 | 2.3 | 1.9 (RR l) | [1.1, 3.4] | 0.033 |
Secondary (Sensitivity) | |||||||
Days Alive Free of Symptoms Days 1–14 h (sensitivity) | Ivermectin–Placebo | Univariate beta-binomial | 19 | 2.1 | 1.3 j | [0.9, 3.8] | 0.102 |
Days Alive Free of Symptoms Days 1–28 h (sensitivity) | Ivermectin–Placebo | Univariate beta-binomial | 19 | 2.2 | 1.4 j | [0.6, 3.4] | 0.484 |
Exploratory | Univariate m | Multivariate m | |||||
ATEm | 95% CI | p value | ATE m | 95% CI | p value | ||
Age | Per year | 0.006 | [0, 0.02] | 0.167 | 0.001 | [−0.01, 0.01] | 0.769 |
Days from close contact until IP administration | Per day | −0.163 | [−0.26, −0.07] | 0.001 | −0.162 | [−0.25, −0.07] | <0.001 |
IP administered on days 0–1 after close contact | No–Yes | 0.225 | [0.01, 0.44] | 0.039 | 0.253 | [0.06, 0.45] | 0.01 |
History of past infection with SARS-CoV-2 | No–Yes | −0.306 | [−0.51, −0.1] | 0.003 | −0.302 | [−0.5, −0.11] | 0.002 |
Use of ACE inhibitor or angiotensin II receptor blocker | No–Yes | 0.044 | [−0.21, 0.3] | 0.737 | −0.018 | [−0.24, 0.21] | 0.878 |
BMI (kg/m2) | Per unit change in BMI | −0.005 | [−0.03, 0.02] | 0.621 | −0.001 | [−0.02, 0.02] | 0.884 |
Taking low-dose vitamin D | No–Yes | −0.018 | [−0.36, 0.32] | 0.917 | −0.066 | [−0.34, 0.21] | 0.634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagstaff, K.M.; Stein, M.S.; Herschtal, A.; Rajter, J.-J.; Rajter, J.C.; Sallaberger, M.; Smileski, A.; Kanagalingam, A.; Jans, D.A. A Pilot, Randomised, Placebo-Controlled, Double-Blind Trial of a Single Oral Dose of Ivermectin for Post-Exposure Prophylaxis of SARS-CoV-2. Pharmaceutics 2025, 17, 1205. https://doi.org/10.3390/pharmaceutics17091205
Wagstaff KM, Stein MS, Herschtal A, Rajter J-J, Rajter JC, Sallaberger M, Smileski A, Kanagalingam A, Jans DA. A Pilot, Randomised, Placebo-Controlled, Double-Blind Trial of a Single Oral Dose of Ivermectin for Post-Exposure Prophylaxis of SARS-CoV-2. Pharmaceutics. 2025; 17(9):1205. https://doi.org/10.3390/pharmaceutics17091205
Chicago/Turabian StyleWagstaff, Kylie M., Mark S. Stein, Alan Herschtal, Jean-Jacques Rajter, Juliana Cepelowicz Rajter, Michele Sallaberger, Alexia Smileski, Amala Kanagalingam, and David A. Jans. 2025. "A Pilot, Randomised, Placebo-Controlled, Double-Blind Trial of a Single Oral Dose of Ivermectin for Post-Exposure Prophylaxis of SARS-CoV-2" Pharmaceutics 17, no. 9: 1205. https://doi.org/10.3390/pharmaceutics17091205
APA StyleWagstaff, K. M., Stein, M. S., Herschtal, A., Rajter, J.-J., Rajter, J. C., Sallaberger, M., Smileski, A., Kanagalingam, A., & Jans, D. A. (2025). A Pilot, Randomised, Placebo-Controlled, Double-Blind Trial of a Single Oral Dose of Ivermectin for Post-Exposure Prophylaxis of SARS-CoV-2. Pharmaceutics, 17(9), 1205. https://doi.org/10.3390/pharmaceutics17091205