Dimethyl Fumarate vs. Monomethyl Fumarate: Unresolved Pharmacologic Issues
Abstract
1. Introduction
2. Brief Overview—Basic Features of DMF and MMF
3. Different Experimental Approaches—Different Findings
4. Issue 1: DMF vs. MMF—Which One Is Acting?
5. Issue 2: DMF After Oral Administration
6. Issue 3: Carboxylesterase-Mediated Hydrolysis of DMF—Familiar and Unknown
7. Issue 4: Methanol—Reason for Gastrointestinal Events and Flushing, or More?
8. DMF—Universal Repurposing?
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADH1 | Alcohol dehydrogenase class I |
| ADH5 | Alcohol dehydrogenase 5 |
| ALDH | Aldehyde dehydrogenase |
| ARE | Antioxidant-responsive elements |
| AUC | Area under the curve |
| BfArM | German Federal Institute for Drugs and Medical Devices |
| CES1 | Carboxylesterase-1 |
| CES2 | Carboxylesterase-2 |
| CESs | Carboxylesterases |
| Cmax | Maximum plasma concentration |
| DMF | Dimethyl fumarate |
| EMA | European medicines agency |
| FDAA | U.S. Food and Drug Administration |
| FDH | Formaldehyde dehydrogenase |
| GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
| GSH | Glutathione |
| HCAR2 | Hydroxycarboxylic acid receptor 2 |
| HIF-1α | Hypoxia-inducible factor 1α |
| HO-1 | Heme oxygenase-1 |
| IUPAC | International union of pure and applied chemistry |
| KEAP1 | Kelch-like ECH-associated protein 1 |
| LD50 | Median lethal dose |
| MEF | Monoethyl fumarate |
| MMF | Monomethyl fumarate |
| MS | Multiple sclerosis |
| NF-κB | Nuclear factor κb |
| NRF2 | Nuclear factor erythroid 2-related factor 2 |
| PD | Pharmacodynamics |
| PK | Pharmacokinetics |
| ROS | Reactive oxygen species |
| tmax | time to maximum plasma concentration |
References
- Paolinelli, M.; Diotallevi, F.; Emanuela, M.; Giulia, R.; Tommaso, B.; Alfredo, G.; Anna, C.; Annamaria, O. New and Old Horizons for an Ancient Drug: Pharmacokinetics, Pharmacodynamics, and Clinical Perspectives of Dimethyl Fumarate. Pharmaceutics 2022, 14, 2732. [Google Scholar] [CrossRef]
- Bresciani, G.; Manai, F.; Davinelli, S.; Tucci, P.; Saso, L.; Amadio, M. Novel Potential Pharmacological Applications of Dimethyl Fumarate—An Overview and Update. Front. Pharmacol. 2023, 14, 1264842. [Google Scholar] [CrossRef]
- Oliveira, A.P.d.; Figueiredo-Junior, A.T.; Mineiro, P.C.d.O.; Mota, E.C.; Amorim, C.S.d.; Valenca, H.d.M.; Gomes, A.C.C.d.A.; Serra, S.S.d.S.; Silva, P.L.; Takiya, C.M.; et al. Modulation of Pulmonary Inflammation and the Redox Pathway In Vitro and In Vivo by Fumaric Ester. Antioxidants 2025, 14, 1141. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-L.; Yin, H. Fumarate Signaling in Cardiovascular Disease: Therapeutic Potential and Pathologic Pitfalls of DMF/MMF and FH1 Deficiency. J. Cardiovasc. Transl. Res. 2025, 18, 1283–1297. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, C.; Chen, S.; Li, L.; Zhong, X.; Zhang, J.; Feng, Y.; Wang, L.; Chen, J.; Yu, M.; et al. Dimethyl Fumarate Attenuates LPS Induced Septic Acute Kidney Injury by Suppression of NFκB P65 Phosphorylation and Macrophage Activation. Int. Immunopharmacol. 2022, 102, 108395. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Guerau-de-Arellano, M.; Mehta, V.B.; Yang, Y.; Huss, D.J.; Papenfuss, T.L.; Lovett-Racke, A.E.; Racke, M.K. Dimethyl Fumarate Inhibits Dendritic Cell Maturation via Nuclear Factor κB (NF-κB) and Extracellular Signal-Regulated Kinase 1 and 2 (ERK1/2) and Mitogen Stress-Activated Kinase 1 (MSK1) Signaling. J. Biol. Chem. 2012, 287, 28017–28026. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; Suárez-Rojas, I.; Bai, X.; Martínez-Martel, I.; Ciaffaglione, V.; Pittalà, V.; Salerno, L.; Pol, O. Novel Heme Oxygenase-1 Inducers Palliate Inflammatory Pain and Emotional Disorders by Regulating NLRP3 Inflammasome and Activating the Antioxidant Pathway. Antioxidants 2023, 12, 1794. [Google Scholar] [CrossRef]
- Tastan, B.; Arioz, B.I.; Tufekci, K.U.; Tarakcioglu, E.; Gonul, C.P.; Genc, K.; Genc, S. Dimethyl Fumarate Alleviates NLRP3 Inflammasome Activation in Microglia and Sickness Behavior in LPS-Challenged Mice. Front. Immunol. 2021, 12, 737065. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, W.; Xie, Q.; Cao, X.; Zhang, M.; Zhang, X.; Chai, J. Dimethyl Fumarate Attenuates Cholestatic Liver Injury by Activating the NRF2 and FXR Pathways and Suppressing NLRP3/GSDMD Signaling in Mice. Exp. Cell Res. 2023, 432, 113781. [Google Scholar] [CrossRef]
- Pei, X.; Ma, S.; Hong, L.; Zuo, Z.; Xu, G.; Chen, C.; Shen, Y.; Liu, D.; Li, C.; Li, D. Molecular Insights of T-2 Toxin Exposure-Induced Neurotoxicity and the Neuroprotective Effect of Dimethyl Fumarate. Food Chem. Toxicol. 2025, 196, 115166. [Google Scholar] [CrossRef]
- Kosinska, J.; Assmann, J.C.; Inderhees, J.; Müller-Fielitz, H.; Händler, K.; Geisler, S.; Künstner, A.; Busch, H.; Worthmann, A.; Heeren, J.; et al. Diet Modulates the Therapeutic Effects of Dimethyl Fumarate Mediated by the Immunometabolic Neutrophil Receptor HCAR2. eLife 2025, 14, e98970. [Google Scholar] [CrossRef]
- Etemadifar, M.; Kaveyee, H.; Ebne-Ali-Heydari, Y.; Zohrabi, P.; Miralaei, P.; Sedaghat, N.; Jozaie, A.M.; Salari, M.; Ramezani, A. Dimethyl Fumarate for Pediatric-Onset Multiple Sclerosis: A Systematic Review. Pediatr. Neurol. 2025, 167, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Rosito, M.; Testi, C.; Parisi, G.; Cortese, B.; Baiocco, P.; Di Angelantonio, S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants 2020, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Manai, F.; Zanoletti, L.; Arfini, D.; Micco, S.G.D.; Gjyzeli, A.; Comincini, S.; Amadio, M. Dimethyl Fumarate and Intestine: From Main Suspect to Potential Ally against Gut Disorders. Int. J. Mol. Sci. 2023, 24, 9912. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.A.; Ogrodnik, M.A.; Plave, A.; Mao-Draayer, Y. Emerging Understanding of the Mechanism of Action for Dimethyl Fumarate in the Treatment of Multiple Sclerosis. Front. Neurol. 2018, 9, 5. [Google Scholar] [CrossRef]
- Tang, H.; Lu, J.Y.-L.; Zheng, X.; Yang, Y.; Reagan, J.D. The Psoriasis Drug Monomethylfumarate Is a Potent Nicotinic Acid Receptor Agonist. Biochem. Biophys. Res. Commun. 2008, 375, 562–565. [Google Scholar] [CrossRef]
- Hanson, J.; Gille, A.; Offermanns, S. Role of HCA2 (GPR109A) in Nicotinic Acid and Fumaric Acid Ester-Induced Effects on the Skin. Pharmacol. Ther. 2012, 136, 1–7. [Google Scholar] [CrossRef]
- Parodi, B.; Sanna, A.; Cedola, A.; Uccelli, A.; Kerlero de Rosbo, N. Hydroxycarboxylic Acid Receptor 2, a Pleiotropically Linked Receptor for the Multiple Sclerosis Drug, Monomethyl Fumarate. Possible Implications for the Inflammatory Response. Front. Immunol. 2021, 12, 655212. [Google Scholar] [CrossRef]
- Hoogendoorn, A.; Avery, T.D.; Li, J.; Bursill, C.; Abell, A.; Grace, P.M. Emerging Therapeutic Applications for Fumarates. Trends Pharmacol. Sci. 2021, 42, 239–254. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research. Clinical Pharmacology and Biopharmaceutics Review(s); Application Number 204063Orig1s000; Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204063Orig1s000ClinPharmR.pdf (accessed on 13 August 2025).
- Spencer, R.P. Tecfidera®: An Approach for Repurposing. Pharm. Pat. Anal. 2014, 3, 183–198. [Google Scholar] [CrossRef]
- Dibbert, S.; Clement, B.; Skak-Nielsen, T.; Mrowietz, U.; Rostami-Yazdi, M. Detection of Fumarate–Glutathione Adducts in the Portal Vein Blood of Rats: Evidence for Rapid Dimethylfumarate Metabolism. Arch. Dermatol. Res. 2013, 305, 447–451. [Google Scholar] [CrossRef]
- Werdenberg, D.; Joshi, R.; Wolffram, S.; Merkle, H.P.; Langguth, P. Presystemic Metabolism and Intestinal Absorption of Antipsoriatic Fumaric Acid Esters. Biopharm. Drug Dispos. 2003, 24, 259–273. [Google Scholar] [CrossRef]
- Yang, B.; Parker, R.B.; Meibohm, B.; Temrikar, Z.H.; Srivastava, A.; Laizure, S.C. Alcohol Inhibits the Metabolism of Dimethyl Fumarate to the Active Metabolite Responsible for Decreasing Relapse Frequency in the Treatment of Multiple Sclerosis. PLoS ONE 2022, 17, e0278111. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, S.I.; Nestorov, I.; Russell, H.; O’Gorman, J.; Huang, R.; Milne, G.L.; Scannevin, R.H.; Novas, M.; Dawson, K.T. Tolerability and Pharmacokinetics of Delayed-Release Dimethyl Fumarate Administered With and Without Aspirin in Healthy Volunteers. Clin. Ther. 2013, 35, 1582–1594.e9. [Google Scholar] [CrossRef] [PubMed]
- Blewett, M.M.; Xie, J.; Zaro, B.W.; Backus, K.M.; Altman, A.; Teijaro, J.R.; Cravatt, B.F. Chemical Proteomic Map of Dimethyl Fumarate–Sensitive Cysteines in Primary Human T Cells. Sci. Signal. 2016, 9, rs10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, J.; Zhou, Y.; Xiao, Q.; Chen, Q.; Wang, H.; Lan, J.; Wu, L.; Peng, Y. Short-Term Exposure to Dimethyl Fumarate (DMF) Inhibits LPS-Induced IκBζ Expression in Macrophages. Front. Pharmacol. 2023, 14, 1114897. [Google Scholar] [CrossRef]
- Wang, L.-C.; Wang, H.; Zhao, J.-H.; Song, C.-Y.; Wang, J.-S. Solubility of Dimethyl Fumarate in Methanol, Ethanol, 1-Propanol, 2-Propanol, 1,2-Propanediol, and Water from (289.95 to 347.15) K. J. Chem. Eng. Data 2011, 56, 356–357. [Google Scholar] [CrossRef]
- Litjens, N.H.; Van Strijen, E.; Van Gulpen, C.; Mattie, H.; Van Dissel, J.T.; Thio, H.B.; Nibbering, P.H. In Vitro Pharmacokinetics of Anti-Psoriatic Fumaric Acid Esters. BMC Pharmacol. 2004, 4, 22. [Google Scholar] [CrossRef]
- Serri, C.; Cossu, M.; Guarino, V.; Cruz-Maya, I.; Botti, G.; Ferraro, L.; Giunchedi, P.; Rassu, G.; Gavini, E.; Dalpiaz, A. Intranasal Delivery of Dimethyl Fumarate and Monomethyl Fumarate Using Hyaluronic Acid-Based Hybrid Nanoparticles to Enhance CNS Bioavailability. J. Drug Deliv. Sci. Technol. 2025, 114, 107617. [Google Scholar] [CrossRef]
- Laizure, S.C.; Parker, R.B. Is Genetic Variability in Carboxylesterase-1 and Carboxylesterase-2 Drug Metabolism an Important Component of Personalized Medicine? Xenobiotica 2020, 50, 92–100. [Google Scholar] [CrossRef]
- Alderson, N.L.; Wang, Y.; Blatnik, M.; Frizzell, N.; Walla, M.D.; Lyons, T.J.; Alt, N.; Carson, J.A.; Nagai, R.; Thorpe, S.R.; et al. S-(2-Succinyl)Cysteine: A Novel Chemical Modification of Tissue Proteins by a Krebs Cycle Intermediate. Arch. Biochem. Biophys. 2006, 450, 1–8. [Google Scholar] [CrossRef]
- Andersen, J.L.; Gesser, B.; Funder, E.D.; Nielsen, C.J.F.; Gotfred-Rasmussen, H.; Rasmussen, M.K.; Toth, R.; Gothelf, K.V.; Arthur, J.S.C.; Iversen, L.; et al. Dimethyl Fumarate Is an Allosteric Covalent Inhibitor of the P90 Ribosomal S6 Kinases. Nat. Commun. 2018, 9, 4344. [Google Scholar] [CrossRef] [PubMed]
- Sauerland, M.; Mertes, R.; Morozzi, C.; Eggler, A.L.; Gamon, L.F.; Davies, M.J. Kinetic Assessment of Michael Addition Reactions of Alpha, Beta-Unsaturated Carbonyl Compounds to Amino Acid and Protein Thiols. Free Radic. Biol. Med. 2021, 169, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brück, W.; Gold, R.; Lund, B.T.; Oreja-Guevara, C.; Prat, A.; Spencer, C.M.; Steinman, L.; Tintoré, M.; Vollmer, T.L.; Weber, M.S.; et al. Therapeutic Decisions in Multiple Sclerosis: Moving Beyond Efficacy. JAMA Neurol. 2013, 70, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Palte, M.J.; Wehr, A.; Tawa, M.; Perkin, K.; Leigh-Pemberton, R.; Hanna, J.; Miller, C.; Penner, N. Improving the Gastrointestinal Tolerability of Fumaric Acid Esters: Early Findings on Gastrointestinal Events with Diroximel Fumarate in Patients with Relapsing-Remitting Multiple Sclerosis from the Phase 3, Open-Label EVOLVE-MS-1 Study. Adv. Ther. 2019, 36, 3154–3165. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Ak, M.; Mrowietz, U. Reactivity of Dimethyl Fumarate and Methylhydrogen Fumarate towards Glutathione and N-Acetyl-l-Cysteine—Preparation of S-Substituted Thiosuccinic Acid Esters. Bioorg. Med. Chem. 2007, 15, 333–342. [Google Scholar] [CrossRef]
- European Medicines Agency. Tecfidera, INN-Dimethyl Fumarate; EMA: Amsterdam, The Netherlands, 2022; Available online: https://www.ema.europa.eu/en/documents/assessment-report/tecfidera-epar-public-assessment-report_en.pdf (accessed on 13 November 2025).
- Angene Safety Data Sheet Monomethyl Fumarate. Available online: https://angenechemical.com/sds/2756-87-8.pdf (accessed on 17 November 2025).
- Cheng, J.; Xiao, Y.; Jiang, P. Fumarate Integrates Metabolism and Immunity in Diseases. Trends Endocrinol. Metab. 2025, 36, 985–999. [Google Scholar] [CrossRef]
- Prestera, T.; Talalay, P.; Alam, J.; Ahn, Y.I.; Lee, P.J.; Choi, A.M.K. Parallel Induction of Heme Oxygenase-1 and Chemoprotective Phase 2 Enzymes by Electrophiles and Antioxidants: Regulation by Upstream Antioxidant-Responsive Elements (ARE). Mol. Med. 1995, 1, 827–837. [Google Scholar] [CrossRef]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 Represses Nuclear Activation of Antioxidant Responsive Elements by Nrf2 Through Binding to the Amino-Terminal Neh2 Domain. Genes Dev. 1999, 13, 76–86. [Google Scholar] [CrossRef]
- Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; et al. An Nrf2/Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes Through Antioxidant Response Elements. Biochem. Biophys. Res. Commun. 1997, 236, 313–322. [Google Scholar] [CrossRef]
- Izumi, Y.; Koyama, Y. Nrf2-Independent Anti-Inflammatory Effects of Dimethyl Fumarate: Challenges and Prospects in Developing Electrophilic Nrf2 Activators for Neurodegenerative Diseases. Antioxidants 2024, 13, 1527. [Google Scholar] [CrossRef]
- Thomas, S.D.; Jha, N.K.; Sadek, B.; Ojha, S. Repurposing Dimethyl Fumarate for Cardiovascular Diseases: Pharmacological Effects, Molecular Mechanisms, and Therapeutic Promise. Pharmaceuticals 2022, 15, 497. [Google Scholar] [CrossRef]
- Weisenseel, P. Dimethyl Fumarate in Psoriasis Therapy. EMJ Dermatol. 2019, 7, 2–6. [Google Scholar] [CrossRef]
- Serri, C.; Piccioni, M.; Guarino, V.; Santonicola, P.; Cruz-Maya, I.; Crispi, S.; Di Cagno, M.P.; Ferraro, L.; Dalpiaz, A.; Botti, G.; et al. Hyaluronic Acid-Based Hybrid Nanoparticles as Promising Carriers for the Intranasal Administration of Dimethyl Fumarate. Int. J. Nanomed. 2025, 20, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, F.S.; Wang, L.; Sprague, T.N.; Lategan, T.W.; Berkovich, R.R. Comparative Pharmacokinetics and Bioavailability of Monomethyl Fumarate Following a Single Oral Dose of Bafiertam® (Monomethyl Fumarate) vs. Vumerity® (Diroximel Fumarate). Mult. Scler. Relat. Disord. 2023, 70, 104500. [Google Scholar] [CrossRef]
- European Medicines Agency Riulvy. European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/riulvy (accessed on 8 November 2025).
- Mrowietz, U.; Kircik, L.; Reich, K.; Munjal, S.; Shenoy, S.; Lebwohl, M. Tepilamide Fumarate (PPC-06) Extended Release Tablets in Patients with Moderate-to-Severe Plaque Psoriasis: Safety and Efficacy Results from the Randomized, Double-Blind, Placebo-Controlled AFFIRM Study. J. Clin. Aesthetic Dermatol. 2022, 15, 53–58. [Google Scholar]
- He, Y.; Gong, G.; Quijas, G.; Lee, S.M.-Y.; Chaudhuri, R.K.; Bojanowski, K. Comparative Activity of Dimethyl Fumarate Derivative IDMF in Three Models Relevant to Multiple Sclerosis and Psoriasis. FEBS Open Bio 2025, 15, 754–762. [Google Scholar] [CrossRef]
- Biogen GmbH. Einstellung der Produktion und des Vertriebs von Fumaderm® Initial Und Fumaderm®; Biogen: München, Germany, 2024; Available online: https://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Zulassung/amInformationen/Lieferengpaesse/info_Dimethylfumarat_Ethylhydrogenfumarat_10241206.pdf?__blob=publicationFile (accessed on 13 November 2025).
- Biogen GmbH. Fumaderm® Initial Fumaderm®; Biogen: München, Germany, 2020; Available online: https://www.biogen.de/content/dam/corporate/europe/germany/de-de/medicines/Fumaderm-Fachinfo.pdf (accessed on 13 November 2025).
- European Medicines Agency. Skilarence, INN-Dimethyl Fumarate; EMA: Amsterdam, The Netherlands, 2022; Available online: https://www.ema.europa.eu/en/documents/product-information/skilarence-epar-product-information_en.pdf (accessed on 13 November 2025).
- European Medicines Agency. Vumerity, INN-Diroximel Fumarate; EMA: Amsterdam, The Netherlands, 2021; Available online: https://www.ema.europa.eu/en/documents/product-information/vumerity-epar-product-information_en.pdf (accessed on 13 November 2025).
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research. VUMERITY® (Diroximel Fumarate); U.S. Food and Drug Administration, Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211855s000lbl.pdf (accessed on 13 November 2025).
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research. BAFIERTAM® (Monomethyl Fumarate); U.S. Food and Drug Administration, Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/210296s000lbl.pdf (accessed on 13 November 2025).
- Lategan, T.W.; Wang, L.; Sprague, T.N.; Rousseau, F.S. Pharmacokinetics and Bioavailability of Monomethyl Fumarate Following a Single Oral Dose of BafiertamTM (Monomethyl Fumarate) or Tecfidera® (Dimethyl Fumarate). CNS Drugs 2021, 35, 567–574. [Google Scholar] [CrossRef]
- Hosokawa, M. Structure and Catalytic Properties of Carboxylesterase Isozymes Involved in Metabolic Activation of Prodrugs. Molecules 2008, 13, 412–431. [Google Scholar] [CrossRef]
- Di Consiglio, E.; Darney, K.; Buratti, F.M.; Turco, L.; Vichi, S.; Testai, E.; Lautz, L.S.; Dorne, J.L.C.M. Human Variability in Carboxylesterases and Carboxylesterase-Related Uncertainty Factors for Chemical Risk Assessment. Toxicol. Lett. 2021, 350, 162–170. [Google Scholar] [CrossRef]
- Gillard, G.O.; Collette, B.; Anderson, J.; Chao, J.; Scannevin, R.H.; Huss, D.J.; Fontenot, J.D. DMF, but Not Other Fumarates, Inhibits NF-κB Activity in Vitro in an Nrf2-Independent Manner. J. Neuroimmunol. 2015, 283, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Linker, R.A.; Lee, D.-H.; Ryan, S.; Van Dam, A.M.; Conrad, R.; Bista, P.; Zeng, W.; Hronowsky, X.; Buko, A.; Chollate, S.; et al. Fumaric Acid Esters Exert Neuroprotective Effects in Neuroinflammation via Activation of the Nrf2 Antioxidant Pathway. Brain 2011, 134, 678–692. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.M.; Dringen, R. Fumaric Acid Diesters Deprive Cultured Primary Astrocytes Rapidly of Glutathione. Neurochem. Int. 2010, 57, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Junnotula, V.; Licea-Perez, H. LC-MS/MS Quantification of Dimethyl Fumarate and Methyl Hydrogen Fumarate in Rat Blood Using Tiopronin as Trapping Reagent. Anal. Methods 2016, 8, 6420–6427. [Google Scholar] [CrossRef]
- Lehmann, J.C.U.; Listopad, J.J.; Rentzsch, C.U.; Igney, F.H.; Von Bonin, A.; Hennekes, H.H.; Asadullah, K.; Docke, W.-D.F. Dimethylfumarate Induces Immunosuppression via Glutathione Depletion and Subsequent Induction of Heme Oxygenase 1. J. Investig. Dermatol. 2007, 127, 835–845. [Google Scholar] [CrossRef]
- Kluknavsky, M.; Balis, P.; Liskova, S.; Micurova, A.; Skratek, M.; Manka, J.; Bernatova, I. Dimethyl Fumarate Prevents the Development of Chronic Social Stress-Induced Hypertension in Borderline Hypertensive Rats. Antioxidants 2024, 13, 947. [Google Scholar] [CrossRef]
- Balak, D.M. Fumaric Acid Esters in the Management of Psoriasis. Psoriasis 2015, 5, 9. [Google Scholar] [CrossRef]
- Scannevin, R.H.; Chollate, S.; Jung, M.; Shackett, M.; Patel, H.; Bista, P.; Zeng, W.; Ryan, S.; Yamamoto, M.; Lukashev, M.; et al. Fumarates Promote Cytoprotection of Central Nervous System Cells Against Oxidative Stress via the Nuclear Factor (Erythroid-Derived 2)-Like 2 Pathway. J. Pharmacol. Exp. Ther. 2012, 341, 274–284. [Google Scholar] [CrossRef]
- Nibbering, P.H.; Thio, B.; Zomerdijk, T.P.L.; Bezemer, A.C.; Beijersbergen, R.L.; Van Furth, R. Effects of Monomethylfumarate on Human Granulocytes. J. Investig. Dermatol. 1993, 101, 37–42. [Google Scholar] [CrossRef][Green Version]
- Ottenhoff, T.H.M.; Spierings, E.; Nibbering, P.H.; De Jong, R. Modulation of Protective and Pathological Immunity in Mycobacterial Infections. Int. Arch. Allergy Immunol. 1997, 113, 400–408. [Google Scholar] [CrossRef]
- Rostami-Yazdi, M.; Clement, B.; Mrowietz, U. Pharmacokinetics of Anti-Psoriatic Fumaric Acid Esters in Psoriasis Patients. Arch. Dermatol. Res. 2010, 302, 531–538. [Google Scholar] [CrossRef]
- Litjens, N.H.R.; Burggraaf, J.; Van Strijen, E.; Van Gulpen, C.; Mattie, H.; Schoemaker, R.C.; Van Dissel, J.T.; Thio, H.B.; Nibbering, P.H. Pharmacokinetics of Oral Fumarates in Healthy Subjects. Br. J. Clin. Pharmacol. 2004, 58, 429–432. [Google Scholar] [CrossRef]
- Venci, J.V.; Gandhi, M.A. Dimethyl Fumarate (Tecfidera): A New Oral Agent for Multiple Sclerosis. Ann. Pharmacother. 2013, 47, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Mrowietz, U.; Morrison, P.J.; Suhrkamp, I.; Kumanova, M.; Clement, B. The Pharmacokinetics of Fumaric Acid Esters Reveal Their In Vivo Effects. Trends Pharmacol. Sci. 2018, 39, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Peng, C.-C.; Dawson, K.; Stecher, S.; Woodworth, J.; Prakash, C. Metabolism, Pharmacokinetics and Excretion of [14C]Dimethyl Fumarate in Healthy Volunteers: An Example of Xenobiotic Biotransformation Following Endogenous Metabolic Pathways. Xenobiotica 2023, 53, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Manuel, A.M.; Frizzell, N. Adipocyte Protein Modification by Krebs Cycle Intermediates and Fumarate Ester-Derived Succination. Amino Acids 2013, 45, 1243–1247. [Google Scholar] [CrossRef]
- Treumer, F.; Zhu, K.; Gläser, R.; Mrowietz, U. Dimethylfumarate Is a Potent Inducer of Apoptosis in Human T Cells. J. Investig. Dermatol. 2003, 121, 1383–1388. [Google Scholar] [CrossRef]
- Lima, A.D.R.; Ferrari, B.B.; Pradella, F.; Carvalho, R.M.; Rivero, S.L.S.; Quintiliano, R.P.S.; Souza, M.A.; Brunetti, N.S.; Marques, A.M.; Santos, I.P.; et al. Dimethyl Fumarate Modulates the Regulatory T Cell Response in the Mesenteric Lymph Nodes of Mice with Experimental Autoimmune Encephalomyelitis. Front. Immunol. 2024, 15, 1391949. [Google Scholar] [CrossRef]
- Rostami-Yazdi, M.; Clement, B.; Schmidt, T.J.; Schinor, D.; Mrowietz, U. Detection of Metabolites of Fumaric Acid Esters in Human Urine: Implications for Their Mode of Action. J. Investig. Dermatol. 2009, 129, 231–234. [Google Scholar] [CrossRef]
- Dello Russo, C.; Scott, K.A.; Pirmohamed, M. Dimethyl Fumarate Induced Lymphopenia in Multiple Sclerosis: A Review of the Literature. Pharmacol. Ther. 2021, 219, 107710. [Google Scholar] [CrossRef]
- Jadeja, R.N.; Powell, F.L.; Martin, P.M.; Jadeja, R.N.; Powell, F.L.; Martin, P.M. Repurposing Fumaric Acid Esters to Treat Conditions of Oxidative Stress and Inflammation: A Promising Emerging Approach with Broad Potential. In Drug Repurposing—Hypothesis, Molecular Aspects and Therapeutic Applications; IntechOpen: London, UK, 2020; ISBN 978-1-83968-521-7. [Google Scholar]
- Ewe, K.; Press, A.G.; Bollen, S.; Schuhn, I. Gastric Emptying of Indigestible Tablets in Relation to Composition and Time of Ingestion of Meals Studied by Metal Detector. Dig. Dis. Sci. 1991, 36, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.A.; Hammad, S.F.; Amer, M.M.; Kamal, A.H. Stability Indicating RP-HPLC Method for Determination of Dimethyl Fumarate in Presence of Its Main Degradation Products: Application to Degradation Kinetics. J. Sep. Sci. 2021, 44, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Jain, H.K.; Gunjal, A.A. Stability Indicating RP-HPLC Assay Method for Estimation of Dimethyl Fumarate in Bulk and Capsules. Int. J. Appl. Pharm. 2017, 9, 121. [Google Scholar] [CrossRef][Green Version]
- Elamin, E.E.; Masclee, A.A.; Dekker, J.; Jonkers, D.M. Ethanol Metabolism and Its Effects on the Intestinal Epithelial Barrier. Nutr. Rev. 2013, 71, 483–499. [Google Scholar] [CrossRef]
- Builder, J.; Landecker, K.; Whitecross, D.; Piper, D.W. Aspirin Esterase of Gastric Mucosal Origin. Gastroenterology 1977, 73, 15–18. [Google Scholar] [CrossRef]
- Guslandi, M. Effects of Ethanol on the Gastric Mucosa. Dig. Dis. 1987, 5, 21–32. [Google Scholar] [CrossRef]
- Bomprezzi, R. Dimethyl Fumarate in the Treatment of Relapsing–Remitting Multiple Sclerosis: An Overview. Ther. Adv. Neurol. Disord. 2015, 8, 20. [Google Scholar] [CrossRef]
- Min, J.; Cohan, S.; Alvarez, E.; Sloane, J.; Phillips, J.T.; van der Walt, A.; Koulinska, I.; Fang, F.; Miller, C.; Chan, A. Real-World Characterization of Dimethyl Fumarate-Related Gastrointestinal Events in Multiple Sclerosis: Management Strategies to Improve Persistence on Treatment and Patient Outcomes. Neurol. Ther. 2019, 8, 109–119. [Google Scholar] [CrossRef]
- Lahaie, R.G.; Bouchard, S.; Poitras, P.; Vandenbroucke-Menu, F.; Halac, U.; Hammel, P.; James, P.D. The Pancreas. In The Digestive System: From Basic Sciences to Clinical Practice; Poitras, P., Bilodeau, M., Bouin, M., Ghia, J.-E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 173–203. ISBN 978-3-030-98381-9. [Google Scholar]
- Pajor, A.M. Molecular Properties of the SLC13 Family of Dicarboxylate and Sulfate Transporters. Pflüg. Arch. 2006, 451, 597–605. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, Y.; Gu, F.; Xu, X.; Wu, S.; Jin, Z.; Wang, L.; Gao, K.; Zhu, C.; Yang, X.; et al. Niacin Improves Intestinal Health through Up-Regulation of AQPs Expression Induced by GPR109A. Int. J. Mol. Sci. 2022, 23, 8332. [Google Scholar] [CrossRef]
- Xu, R.-C.; Miao, W.-T.; Xu, J.-Y.; Xu, W.-X.; Liu, M.-R.; Ding, S.-T.; Jian, Y.-X.; Lei, Y.-H.; Yan, N.; Liu, H.-D. Neuroprotective Effects of Sodium Butyrate and Monomethyl Fumarate Treatment Through GPR109A Modulation and Intestinal Barrier Restoration on PD Mice. Nutrients 2022, 14, 4163. [Google Scholar] [CrossRef] [PubMed]
- Younis, N.K.; Alfarttoosi, K.H.; Sanghvi, G.; Roopashree, R.; Kashyap, A.; Krithiga, T.; Taher, W.M.; Alwan, M.; Jawad, M.J.; Al-Nuaimi, A.M.A. The Role of Gut Microbiota in Modulating Immune Signaling Pathways in Autoimmune Diseases. NeuroMol. Med. 2025, 27, 65. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Ohura, K. The Role of Intestinal Carboxylesterase in the Oral Absorption of Prodrugs. Curr. Drug Metab. 2010, 11, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gao, M.; Beck, M.W. Human Carboxylesterases and Fluorescent Probes to Image Their Activity in Live Cells. RSC Med. Chem. 2021, 12, 1142–1153. [Google Scholar] [CrossRef]
- Wang, D.; Zou, L.; Jin, Q.; Hou, J.; Ge, G.; Yang, L. Human Carboxylesterases: A Comprehensive Review. Acta Pharm. Sin. B 2018, 8, 699–712. [Google Scholar] [CrossRef]
- Sanghani, S.P.; Sanghani, P.C.; Schiel, M.A.; Bosron, W.F. Human Carboxylesterases: An Update on CES1, CES2 and CES3. Protein Pept. Lett. 2009, 16, 1207–1214. [Google Scholar] [CrossRef]
- Bencharit, S.; Edwards, C.C.; Morton, C.L.; Howard-Williams, E.L.; Kuhn, P.; Potter, P.M.; Redinbo, M.R. Multisite Promiscuity in the Processing of Endogenous Substrates by Human Carboxylesterase 1. J. Mol. Biol. 2006, 363, 201–214. [Google Scholar] [CrossRef]
- Imai, T.; Taketani, M.; Shii, M.; Hosokawa, M.; Chiba, K. Substrate Specificity of Carboxylesterase Isozymes and Their Contribution to Hydrolase Activity in Human Liver and Small Intestine. Drug Metab. Dispos. 2006, 34, 1734–1741. [Google Scholar] [CrossRef]
- Ribone, S.R.; Estrin, D.A.; Quevedo, M.A. Exploring Human Carboxylesterases 1 and 2 Selectivity of Two Families of Substrates at an Atomistic Level. Biochim. Biophys. Acta BBA Proteins Proteom. 2025, 1873, 141069. [Google Scholar] [CrossRef]
- Imai, T.; Imoto, M.; Sakamoto, H.; Hashimoto, M. Identification of Esterases Expressed in Caco-2 Cells and Effects of Their Hydrolyzing Activity in Predicting Human Intestinal Absorption. Drug Metab. Dispos. 2005, 33, 1185–1190. [Google Scholar] [CrossRef]
- Ohura, K.; Nishiyama, H.; Saco, S.; Kurokawa, K.; Imai, T. Establishment and Characterization of a Novel Caco-2 Subclone with a Similar Low Expression Level of Human Carboxylesterase 1 to Human Small Intestine. Drug Metab. Dispos. 2016, 44, 1890–1898. [Google Scholar] [CrossRef]
- Bastian, F.; Parmentier, G.; Roux, J.; Moretti, S.; Laudet, V.; Robinson-Rechavi, M. Bgee: Integrating and Comparing Heterogeneous Transcriptome Data Among Species. In Data Integration in the Life Sciences; Bairoch, A., Cohen-Boulakia, S., Froidevaux, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5109, pp. 124–131. ISBN 978-3-540-69827-2. [Google Scholar]
- CES1-ENSSSCG00000039985. Available online: https://www.bgee.org/gene/ENSSSCG00000039985 (accessed on 22 October 2025).
- Bojanowski, K.; Ibeji, C.U.; Singh, P.; Swindell, W.R.; Chaudhuri, R.K. A Sensitization-Free Dimethyl Fumarate Prodrug, Isosorbide Di-(Methyl Fumarate), Provides a Topical Treatment Candidate for Psoriasis. JID Innov. 2021, 1, 100040. [Google Scholar] [CrossRef]
- Zhu, Q.-G.; Hu, J.-H.; Liu, J.-Y.; Lu, S.-W.; Liu, Y.-X.; Wang, J. Stereoselective Characteristics and Mechanisms of Epidermal Carboxylesterase Metabolism Observed in HaCaT Keratinocytes. Biol. Pharm. Bull. 2007, 30, 532–536. [Google Scholar] [CrossRef]
- Li, B.; Sedlacek, M.; Manoharan, I.; Boopathy, R.; Duysen, E.G.; Masson, P.; Lockridge, O. Butyrylcholinesterase, Paraoxonase, and Albumin Esterase, but Not Carboxylesterase, Are Present in Human Plasma. Biochem. Pharmacol. 2005, 70, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, D.; Zou, L.; Xiao, M.; Zhang, Y.; Li, Z.; Yang, L.; Ge, G.; Zuo, Z. Rapid Bioluminescence Assay for Monitoring Rat CES1 Activity and Its Alteration by Traditional Chinese Medicines. J. Pharm. Anal. 2020, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Sanghani, S.P.; Davis, W.I.; Dumaual, N.G.; Mahrenholz, A.; Bosron, W.F. Identification of Microsomal Rat Liver Carboxylesterases and Their Activity with Retinyl Palmitate. Eur. J. Biochem. 2002, 269, 4387–4398. [Google Scholar] [CrossRef]
- Na, K.; Lee, E.-Y.; Lee, H.-J.; Kim, K.-Y.; Lee, H.; Jeong, S.-K.; Jeong, A.-S.; Cho, S.Y.; Kim, S.A.; Song, S.Y.; et al. Human Plasma Carboxylesterase 1, a Novel Serologic Biomarker Candidate for Hepatocellular Carcinoma. Proteomics 2009, 9, 3989–3999. [Google Scholar] [CrossRef]
- Shi, J.; Xiao, J.; Wang, X.; Jung, S.M.; Bleske, B.E.; Markowitz, J.S.; Patrick, K.S.; Zhu, H.-J. Plasma Carboxylesterase 1 Predicts Methylphenidate Exposure: A Proof-of-Concept Study Using Plasma Protein Biomarker for Hepatic Drug Metabolism. Clin. Pharmacol. Ther. 2022, 111, 878–885. [Google Scholar] [CrossRef]
- CES1-ENSG00000198848. Available online: https://www.bgee.org/gene/ENSG00000198848 (accessed on 22 October 2025).
- Piroli, G.G.; Manuel, A.M.; Patel, T.; Walla, M.D.; Shi, L.; Lanci, S.A.; Wang, J.; Galloway, A.; Ortinski, P.I.; Smith, D.S.; et al. Identification of Novel Protein Targets of Dimethyl Fumarate Modification in Neurons and Astrocytes Reveals Actions Independent of Nrf2 Stabilization. Mol. Cell. Proteom. 2019, 18, 504–519. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, Y.; Ma, C.-Y.; Xu, X.-M.; Zhang, Y.-Q.; Wang, C.-G.; Jin, J.; Shen, X.; Gao, J.-L.; Li, N.; et al. Dimethyl Fumarate Induces Necroptosis in Colon Cancer Cells through GSH Depletion/ROS Increase/MAPKs Activation Pathway. Br. J. Pharmacol. 2015, 172, 3929–3943. [Google Scholar] [CrossRef]
- Varshney, P.; Saini, P. An Overview of DRF in the Treatment of Multiple Sclerosis. Res. J. Pharm. Technol. 2020, 13, 2992. [Google Scholar] [CrossRef]
- Allan, M.; Grant, L. A Retrospective Analysis of Real-World Discontinuation Rates with Delayed-Release Dimethyl Fumarate in Patients with Relapsing–Remitting Multiple Sclerosis. Neurol. Ther. 2020, 9, 85–92. [Google Scholar] [CrossRef]
- Singer, B.A.; Arnold, D.L.; Drulovic, J.; Freedman, M.S.; Gold, R.; Gudesblatt, M.; Jasinska, E.; LaGanke, C.C.; Naismith, R.T.; Negroski, D.; et al. Diroximel Fumarate in Patients with Relapsing–Remitting Multiple Sclerosis: Final Safety and Efficacy Results from the Phase 3 EVOLVE-MS-1 Study. Mult. Scler. J. 2023, 29, 1795–1807. [Google Scholar] [CrossRef]
- Hoffmann, J.H.O.; Schaekel, K.; Hartl, D.; Enk, A.H.; Hadaschik, E.N. Dimethyl Fumarate Modulates Neutrophil Extracellular Trap Formation in a Glutathione- and Superoxide-dependent Manner. Br. J. Dermatol. 2018, 178, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Dorokhov, Y.L.; Shindyapina, A.V.; Sheshukova, E.V.; Komarova, T.V. Metabolic Methanol: Molecular Pathways and Physiological Roles. Physiol. Rev. 2015, 95, 603–644. [Google Scholar] [CrossRef]
- Hovda, K.E.; McMartin, K.; Jacobsen, D. Methanol and Formaldehyde. In Critical Care Toxicology; Springer: Cham, Switzerland, 2017; pp. 1769–1786. ISBN 978-3-319-17900-1. [Google Scholar]
- Skrzydlewska, E. Toxicological and Metabolic Consequences of Methanol Poisoning. Toxicol. Mech. Methods 2003, 13, 277–293. [Google Scholar] [CrossRef] [PubMed]
- ADH5-ENSG00000197894. Available online: https://www.bgee.org/gene/ENSG00000197894 (accessed on 22 October 2025).
- Kim, T.; Brinker, A.; Croteau, D.; Lee, P.R.; Baldassari, L.E.; Pimentel-Maldonado, D.; Stevens, J.; Phipps, C.; Hughes, A.; Lyons, E.; et al. Severe Gastrointestinal Adverse Reactions Including Perforation, Ulceration, Hemorrhage, and Obstruction: A Fumaric Acid Ester Class New Safety Risk. Mult. Scler. J. 2025, 31, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Rwere, F.; White, J.R.; Hell, R.C.R.; Yu, X.; Zeng, X.; McNeil, L.; Zhou, K.N.; Angst, M.S.; Chen, C.-H.; Mochly-Rosen, D.; et al. Uncovering Newly Identified Aldehyde Dehydrogenase 2 Genetic Variants That Lead to Acetaldehyde Accumulation After an Alcohol Challenge. J. Transl. Med. 2024, 22, 697. [Google Scholar] [CrossRef]
- Wilkin, J.K.; Fortner, G. Ethnic Contact Urticaria to Alcohol. Contact Dermat. 1985, 12, 118–120. [Google Scholar] [CrossRef]
- Harada, S.; Agarwal, D.P.; Goedde, H.W. Aldehyde Dehydrogenase Deficiency as Cause of Facial Flushing Reaction to Alcohol in Japanese. Lancet 1981, 318, 982. [Google Scholar] [CrossRef]
- Tenney, L.; Pham, V.N.; Brewer, T.F.; Chang, J.C. A Mitochondrial-Targeted Activity-Based Sensing Probe for Ratiometric Imaging of Formaldehyde Reveals Key Regulators of the Mitochondrial One-Carbon Pool. Chem. Sci. 2024, 15, 8080–8088. [Google Scholar] [CrossRef]
- Pfister, A.K. Extracorporeal Dialysis for Methanol Intoxication. JAMA J. Am. Med. Assoc. 1966, 197, 1041. [Google Scholar] [CrossRef]
- Paik, J. Diroximel Fumarate in Relapsing Forms of Multiple Sclerosis: A Profile of Its Use. CNS Drugs 2021, 35, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Li, H.; Fan, S.; Wang, K.; Cui, Z.; Zhao, X.; Sun, X.; Lin, M.; Li, J.; Gao, Y.; et al. Dimethyl Fumarate Promotes the Degradation of HNF1B and Suppresses the Progression of Clear Cell Renal Cell Carcinoma. Cell Death Dis. 2025, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Camelo, S. Repurposing Dimethyl Fumarate Targeting Nrf2 to Slow Down the Growth of Areas of Geographic Atrophy. Int. J. Mol. Sci. 2025, 26, 6112. [Google Scholar] [CrossRef]
- Vandermeeren, M.; Janssens, S.; Wouters, H.; Borghmans, I.; Borgers, M.; Beyaert, R.; Geysen, J. Dimethylfumarate Is an Inhibitor of Cytokine-Induced Nuclear Translocation of NF-Kappa B1, but Not RelA in Normal Human Dermal Fibroblast Cells. J. Invest. Dermatol. 2001, 116, 124–130. [Google Scholar] [CrossRef]
- Saidu, N.E.B.; Kavian, N.; Leroy, K.; Jacob, C.; Nicco, C.; Batteux, F.; Alexandre, J. Dimethyl Fumarate, a Two-Edged Drug: Current Status and Future Directions. Med. Res. Rev. 2019, 39, 1923–1952. [Google Scholar] [CrossRef]
- Dwivedi, D.K.; Jena, G.; Kumar, V. Dimethyl Fumarate Protects Thioacetamide-Induced Liver Damage in Rats: Studies on Nrf2, NLRP3, and NF-κB. J. Biochem. Mol. Toxicol. 2020, 34, e22476. [Google Scholar] [CrossRef]
- Zhang, J.; Su, D.; Liu, Q.; Yuan, Q.; Ouyang, Z.; Wei, Y.; Xiao, C.; Li, L.; Yang, C.; Jiang, W.; et al. Gasdermin D-Mediated Microglial Pyroptosis Exacerbates Neurotoxicity of Aflatoxins B1 and M1 in Mouse Primary Microglia and Neuronal Cultures. NeuroToxicology 2022, 91, 305–320. [Google Scholar] [CrossRef]
- Guo, Z.; Su, Z.; Wei, Y.; Zhang, X.; Hong, X. Pyroptosis in Glioma: Current Management and Future Application. Immunol. Rev. 2024, 321, 152–168. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y.; Zhou, R. NLRP3 Inflammasome in Neuroinflammation and Central Nervous System Diseases. Cell. Mol. Immunol. 2025, 22, 341–355. [Google Scholar] [CrossRef]
- Elbaz, E.M.; Abdel Rahman, A.A.S.; El-Gazar, A.A.; Ali, B.M. Protective Effect of Dimethyl Fumarate Against Ethanol-Provoked Gastric Ulcers in Rats via Regulation of HMGB1/TLR4/NF-κB, and PPARγ/SIRT1/Nrf2 Pathways: Involvement of miR-34a-5p. Arch. Biochem. Biophys. 2024, 759, 110103. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhu, C.; Jiang, R.; Duan, J.; Hua, H.; Wang, Y.; Wang, M. Dimethyl Fumarate Improves Sepsis-Induced Acute Lung Injury by Inhibiting STING-Mediated Ferroptosis. J. Bioenerg. Biomembr. 2025, 57, 261–273. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Yin, M.; Shen, Y.; Guo, X.; Xu, Y.; Cheng, D.; Gui, D. Dimethyl Fumarate Ameliorated Pyroptosis in Contrast-Induced Acute Renal Injury by Regulating Endoplasmic Reticulum Stress and JAK2-STAT3 Pathway. Ren. Fail. 2025, 47, 2504633. [Google Scholar] [CrossRef] [PubMed]
- Salvadè, M.; Gardoni, F. Drug Repurposing of Dimethyl Fumarate in Parkinson’s Disease: A Promising Disease-Modifying Strategy. Eur. Rev. Med. Pharmacol. Sci. 2025, 29, 443–451. [Google Scholar] [CrossRef]
- Sun, X.; Suo, X.; Xia, X.; Yu, C.; Dou, Y. Dimethyl Fumarate Is a Potential Therapeutic Option for Alzheimer’s Disease. J. Alzheimers Dis. 2022, 85, 443–456. [Google Scholar] [CrossRef]
- Manai, F.; Govoni, S.; Amadio, M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022, 11, 4061. [Google Scholar] [CrossRef]
- Martinez, A.N.; Tortelote, G.G.; Pascale, C.L.; Ekanem, U.-O.I.; Leite, A.P.d.O.; McCormack, I.G.; Dumont, A.S. Dimethyl Fumarate Mediates Sustained Vascular Smooth Muscle Cell Remodeling in a Mouse Model of Cerebral Aneurysm. Antioxidants 2024, 13, 773. [Google Scholar] [CrossRef]
- Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Patel, M.; Savsani, H.; Patel, A.; Ranvir, R.; Jain, M. Repurposing Dimethyl Fumarate for Gastric Ulcer and Ulcerative Colitis: Evidence of Local Efficacy without Systemic Side Effect. Med. Drug Discov. 2022, 16, 100142. [Google Scholar] [CrossRef]
- Kourakis, S.; Timpani, C.A.; Bagaric, R.M.; Qi, B.; Ali, B.A.; Boyer, R.; Spiesberger, G.; Kandhari, N.; Yan, X.; Kuang, J.; et al. Repurposed Nrf2 Activator Dimethyl Fumarate Rescues Muscle Inflammation and Fibrosis in an Aggravated Mdx Mouse Model of Duchenne Muscular Dystrophy. Redox Biol. 2025, 84, 103676. [Google Scholar] [CrossRef]
- Engin, S.; Barut, E.N.; Yaşar, Y.K.; Ay, İ.; Sezen, S.F. Dimethyl Fumarate Improves Diabetic Erectile Dysfunction in Rats via Nrf2-Mediated Suppression of Penile Endothelial Oxidative Stress. Reprod. Sci. 2025, 32, 3025–3037. [Google Scholar] [CrossRef]
- Cattani-Cavalieri, I.; da Maia Valença, H.; Moraes, J.A.; Brito-Gitirana, L.; Romana-Souza, B.; Schmidt, M.; Valença, S.S. Dimethyl Fumarate Attenuates Lung Inflammation and Oxidative Stress Induced by Chronic Exposure to Diesel Exhaust Particles in Mice. Int. J. Mol. Sci. 2020, 21, 9658. [Google Scholar] [CrossRef]
- Stojanovic, B.; Jovanovic, I.; Dimitrijevic Stojanovic, M.; Stojanovic, B.S.; Kovacevic, V.; Radosavljevic, I.; Jovanovic, D.; Miletic Kovacevic, M.; Zornic, N.; Arsic, A.A.; et al. Oxidative Stress-Driven Cellular Senescence: Mechanistic Crosstalk and Therapeutic Horizons. Antioxidants 2025, 14, 987. [Google Scholar] [CrossRef]
- Sekine, H.; Akaike, T.; Motohashi, H. Oxygen Needs Sulfur, Sulfur Needs Oxygen: A Relationship of Interdependence. EMBO J. 2025, 44, 3307–3326. [Google Scholar] [CrossRef]
- Sporn, M.B.; Liby, K.T. NRF2 and Cancer: The Good, the Bad and the Importance of Context. Nat. Rev. Cancer 2012, 12, 564–571. [Google Scholar] [CrossRef]


| Parameter/Process | DMF | MMF | References |
|---|---|---|---|
| Polarity | Non-polar | Polar | [28] |
| Water solubility | 1.6 mg/mL | 20 mg/mL | [28] |
| Membrane permeability | Higher (~10-times) | Lower | [23] |
| Spontaneous hydrolysis (pH ≥ 7.4) | Higher | Much lower | [29,30] |
| Susceptibility to CES hydrolysis | Yes | Poor | [30,31] |
| Michael addition | Higher rate | Lower rate | [32,33,34] |
| Methanol release | Yes | No | [35,36] |
| HCAR2 agonist | No | Yes | [16,17] |
| Cellular GSH depletion | Higher (~30-times) | Lower | [37] |
| Acute oral toxicity (rat) | LD50 > 2.63 g/kg | LD50 > 11.5 g/kg | [38,39] |
| Drug | Approval | Dosage Forms and Strengths | Dosing | References |
|---|---|---|---|---|
| Fumaderm® (DMF, MEF salts) | BfArM (1994); discontinued in 2024 | Gastro-resistant tablets: 120 mg DMF and 95 mg MEF salts | 1 or 2 tablets up to 3 times a day (max. 720 mg of DMF daily), orally | [52,53] |
| Tecfidera® (DMF) | FDA (2013) EMA (2014) | Delayed-release capsules: 120 mg or 240 mg | Starting dose: 120 mg capsule twice a day, orally Maintenance dose: 240 mg capsule twice a day, orally | [20,54] |
| Skilarence® (DMF) | EMA (2017) | Gastro-resistant tablets: 120 mg | 1 or 2 tablets up to 3 times a day (max. 720 mg daily), orally | [38] |
| Vumerity® (Diroximel fumarate) | FDA (2019) EMA (2021) | Delayed-release capsules: 231 mg | 1 or 2 tablets twice a day (924 mg daily), orally | [55,56] |
| Bafiertam™ (MMF) | FDA (2020) | Delayed-release capsules: 95 mg | Starting dose: 95 mg twice a day, orally Maintenance dose: 190 mg (two 95 mg capsules) twice a day, orally | [57] |
| Riulvy (Tegomil fumarate) | EMA (2025) | Gastro-resistant hard capsules: 174.2 mg or 348.4 mg | Starting dose: 174.2 mg capsule once daily, Maintenance dose: 348 mg capsule twice daily, orally | [49] |
| Tepilamide fumarate | Phase IIb clinical study NCT03421197 | Extended-release tablets: 400 mg or 600 mg | 400 mg tablet once or twice daily, 600 mg tablet twice daily, orally | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopincova, J.; Bernatova, I. Dimethyl Fumarate vs. Monomethyl Fumarate: Unresolved Pharmacologic Issues. Pharmaceutics 2025, 17, 1506. https://doi.org/10.3390/pharmaceutics17121506
Kopincova J, Bernatova I. Dimethyl Fumarate vs. Monomethyl Fumarate: Unresolved Pharmacologic Issues. Pharmaceutics. 2025; 17(12):1506. https://doi.org/10.3390/pharmaceutics17121506
Chicago/Turabian StyleKopincova, Jana, and Iveta Bernatova. 2025. "Dimethyl Fumarate vs. Monomethyl Fumarate: Unresolved Pharmacologic Issues" Pharmaceutics 17, no. 12: 1506. https://doi.org/10.3390/pharmaceutics17121506
APA StyleKopincova, J., & Bernatova, I. (2025). Dimethyl Fumarate vs. Monomethyl Fumarate: Unresolved Pharmacologic Issues. Pharmaceutics, 17(12), 1506. https://doi.org/10.3390/pharmaceutics17121506

