Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Examined Substances
2.3. Cell Viability Assay
2.4. Pulsed Electric Fields (PEF) Treatment
2.5. Flow Cytometry Study
2.6. Immunocytochemical (ICC) Staining
2.7. Confocal Laser Scanning Microscopy (CLSM) Study
2.8. Living Cell Tomographic Microscopy
2.9. Statistical Analysis
3. Results
3.1. Cytotoxicity of the Examined Substances and IC50 Determination
3.2. Effect of Pulsed Electric Fields (PEF) on Cancer Viability
3.3. Caspase-12 Expression
3.4. Fluorescence Staining of Actin
3.5. Efficiency of Microsecond Electroporation (µEP) and Nanosecond Electroporation (nsEP)
3.6. Digital Holographic Microscopy (DGM) Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coburn, S.B.; Bray, F.; Sherman, M.E.; Trabert, B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int. J. Cancer 2017, 140, 2451–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Yan, H.; Chavan, D.; Yuan, Z.; Yang, X.; Zhang, Y.; Song, K.; Kong, B. Effective treatment of a patient with stage IV ovarian cancer: A case report. Oncol. Lett. 2018, 15, 588–591. [Google Scholar] [PubMed]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Mungenast, F.; Thalhammer, T. Estrogen Biosynthesis and Action in Ovarian Cancer. Front. Endocrinol. 2014, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiliotis, J.D.; Iavazzo, C.; Kopanakis, N.D.; Christopoulou, A. Secondary debulking for ovarian carcinoma relapse: The R-R dilemma—Is the prognosis different for residual or recurrent disease? J. Turk. Ger. Gynecol. Assoc. 2019, 20, 213–217. [Google Scholar] [CrossRef]
- Kusakari, T.; Kariya, M.; Mandai, M.; Tsuruta, Y.; Hamid, A.A.; Fukuhara, K.; Nanbu, K.; Takakura, K.; Fujii, S. C-erbB-2 or mutant Ha-ras induced malignant transformation of immortalized human ovarian surface epithelial cells in vitro. Br. J. Cancer 2003, 89, 2293–2298. [Google Scholar] [CrossRef] [Green Version]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Cheung, L.W.T.; Wong, A.S.T.; Leung, P.C.K. Estrogen Regulates Snail and Slug in the Down-Regulation of E-Cadherin and Induces Metastatic Potential of Ovarian Cancer Cells through Estrogen Receptor α. Mol. Endocrinol. 2008, 22, 2085–2098. [Google Scholar] [CrossRef]
- Vrtačnik, P.; Ostanek, B.; Mencej-Bedrač, S.; Marc, J. The many faces of estrogen signaling. Biochem. Med. 2014, 24, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Dahlman-Wright, K.; Gustafsson, J.Å. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 557–568. [Google Scholar] [CrossRef]
- Zielniok, K.; Małgorzta, G.; Motyl, T. Molekularne aspekty działania 17β-estradiolu i progesteronu w komórkowych szlakach sygnałowych. Postepy Hig. Med. Dosw. 2014, 68, 777–792. [Google Scholar] [CrossRef] [PubMed]
- Saczko, J.; Michel, O.; Chwiłkowska, A.; Sawicka, E.; Mączyńska, J.; Kulbacka, J. Estrogen Receptors in Cell Membranes: Regulation and Signaling; Springer International Publisher: Berlin/Heidelberg, Germany, 2017; pp. 73–92. [Google Scholar]
- Qian, H.; Xuan, J.; Liu, Y.; Shi, G. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors. J. Immunol. Res. 2016, 2016, 128702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, E.; Samuel, S.M.; Sadiq, Z.; Kubatka, P.; Liskova, A.; Benacka, J.; Pazinka, P.; Kruzliak, P.; Büsselberg, D. Anti-Cancer Agents in Proliferation and Cell Death: The Calcium Connection. Int. J. Mol. Sci. 2019, 20, 3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Switalska, M.; Strzadała, L. Non-genomic action of estrogens. Postpy Hig. Med. Doświadczalnej 2007, 61, 541–547. [Google Scholar]
- Santen, R.J. The oestrogen paradox: A hypothesis. Breast Cancer Res. 2007, 9, 1–5. [Google Scholar] [CrossRef]
- Coelingh Bennink, H.J.T.; Verhoeven, C.; Dutman, A.E.; Thijssen, J. The use of high-dose estrogens for the treatment of breast cancer. Maturitas 2017, 95, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaschke, C.C.; Gehl, J.; Johannesen, H.; Fischer, B.M.; Kjaer, A.; Lomholt, A.F.; Wessel, I. Calcium electroporation for recurrent head and neck cancer: A clinical phase I study. Laryngoscope 2019, 4, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiełbik, A.; Szlasa, W.; Saczko, J.; Kulbacka, J. Electroporation-Based Treatments in Urology. Cancers 2020, 12, 2208. [Google Scholar] [CrossRef]
- Esmaeili, N.; Friebe, M. Electrochemotherapy: A Review of Current Status, Alternative IGP Approaches, and Future Perspectives. J. Healthc. Eng. 2019, 2019, 2784516. [Google Scholar] [CrossRef]
- Kulbacka, J. Nanosecond pulsed electric fields (nsPEFs) impact and enhanced Photofrin II® delivery in photodynamic reaction in cancer and normal cells. Photodiagn. Photodyn. Ther. 2015, 12, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Hanna, H.; Denzi, A.; Liberti, M.; Andre, F.M.; Mir, L.M. Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.C.; Smith, K.C.; Esser, A.T.; Son, R.S.; Gowrishankar, T.R. A brief overview of electroporation pulse strength–duration space: A region where additional intracellular effects are expected. Bioelectrochemistry 2012, 87, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarmush, M.L.; Golberg, A.; Serša, G.; Kotnik, T.; Miklavčič, D. Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef] [Green Version]
- Jaroszeski, M.J.; Dang, V.; Pottinger, C.; Hickey, J.; Gilbert, R.; Heller, R. Toxicity of anticancer agents mediated by electroporation in vitro. Anti-Cancer Drugs 2000, 11, 201–208. [Google Scholar] [CrossRef]
- Mir, L.M. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 2001, 53, 1–10. [Google Scholar] [CrossRef]
- Sersa, G.; Stabuc, B.; Cemazar, M.; Miklavcic, D.; Rudolf, Z. Electrochemotherapy with cisplatin: Clinical experience in malignant melanoma patients. Clin. Cancer Res. 2000, 6, 863–867. [Google Scholar]
- Sersa, G.; Miklavcic, D.; Cemazar, M.; Rudolf, Z.; Pucihar, G.; Snoj, M. Electrochemotherapy in treatment of tumours. Eur. J. Surg. Oncol. 2008, 34, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Probst, U.; Fuhrmann, I.; Beyer, L.; Wiggermann, P. Electrochemotherapy as a New Modality in Interventional Oncology: A Review. Technol. Cancer Res. Treat. 2018, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Partridge, B.R.; O’Brien, T.J.; Lorenzo, M.F.; Coutermarsh-Ott, S.L.; Barry, S.L.; Stadler, K.; Muro, N.; Meyerhoeffer, M.; Allen, I.C.; Davalos, R.V.; et al. High-Frequency Irreversible Electroporation for Treatment of Primary Liver Cancer: A Proof-of-Principle Study in Canine Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2020, 31, 482–491.e4. [Google Scholar] [CrossRef]
- Marty, M.; Sersa, G.; Garbay, J.R.; Gehl, J.; Collins, C.G.; Snoj, M.; Billard, V.; Geertsen, P.F.; Larkin, J.O.; Miklavcic, D.; et al. Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur. J. Cancer Suppl. 2006, 4, 3–13. [Google Scholar] [CrossRef]
- Frandsen, S.K.; Gehl, J. A Review on Differences in Effects on Normal and Malignant Cells and Tissues to Electroporation-Based Therapies: A Focus on Calcium Electroporation. Technol. Cancer Res. Treat. 2018, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kiełbik, A.; Szlasa, W.; Michel, O.; Szewczyk, A.; Tarek, M.; Saczko, J.; Kulbacka, J. In Vitro Study of Calcium Microsecond Electroporation of Prostate Adenocarcinoma Cells. Molecules 2020, 25, 5406. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, S.K.; Gissel, H.; Hojman, P.; Tramm, T.; Eriksen, J.; Gehl, J. Direct Therapeutic Applications of Calcium Electroporation to Effectively Induce Tumor Necrosis. Cancer Res. 2012, 72, 1336–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Paduch, R.; Klatka, M.; Klatka, J. Types of cell death. Pomeranian J. Life Sci. 2015, 61, 411–418. [Google Scholar]
- Zhang, Q.; Liu, J.; Chen, S.; Liu, J.; Liu, L.; Liu, G.; Wang, F.; Jiang, W.; Zhang, C.; Wang, S.; et al. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress. Apoptosis 2016, 21, 432–442. [Google Scholar] [CrossRef]
- Almasi, S.; El Hiani, Y. Exploring the therapeutic potential of membrane transport proteins: Focus on cancer and chemoresistance. Cancers 2020, 12, 1624. [Google Scholar] [CrossRef]
- Dai, L.; Li, C.; Shedden, K.A.; Misek, D.E.; Lubman, D.M. Comparative proteomic study of two closely related ovarian endometrioid adenocarcinoma cell lines using cIEF fractionation and pathway analysis. Electrophoresis 2009, 30, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Gilloteaux, J.; Lau, H.L.; Gourari, I.; Neal, D.; Jamison, J.M.; Summers, J.L. Apatone® induces endometrioid ovarian carcinoma (MDAH 2774) cells to undergo karyolysis and cell death by autoschizis: A potent and safe anticancer treatment. Transl. Res. Anat. 2015, 1, 25–39. [Google Scholar] [CrossRef]
- Falk, H.; Lambaa, S.; Johannesen, H.H.; Wooler, G.; Venzo, A.; Gehl, J. Electrochemotherapy and calcium electroporation inducing a systemic immune response with local and distant remission of tumors in a patient with malignant melanoma—A case report. Acta Oncol. 2017, 56, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Perrone, A.M.; Galuppi, A.; Pirovano, C.; Borghese, G.; Covarelli, P.; De Terlizzi, F.; Ferioli, M.; Cara, S.; Morganti, A.G.; De Iaco, P. Palliative Electrochemotherapy in Vulvar Carcinoma: Preliminary Results of the ELECHTRA (Electrochemotherapy Vulvar Cancer) Multicenter Study. Cancers 2019, 11, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.H.; Zhao, Y.J.; Li, Y.; Dai, C.F.; Jobe, S.O.; Yang, X.S.; Li, X.F.; Patankar, M.S.; Magness, R.R.; Zheng, J. Estradiol 17β and Its Metabolites Stimulate Cell Proliferation and Antagonize Ascorbic Acid-Suppressed Cell Proliferation in Human Ovarian Cancer Cells. Reprod. Sci. 2014, 21, 102–111. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, A.J.M.; Macleod, K.G.; Burns, D.J.; Smyth, J.F.; Langdon, S.P. Estrogen receptor-α mediates gene expression changes and growth response in ovarian cancer cells exposed to estrogen. Endocr. Relat. Cancer 2005, 12, 851–866. [Google Scholar] [CrossRef] [Green Version]
- Keith Bechtel, M.; Bonavida, B. Inhibitory Effects of 17β-Estradiol and Progesterone on Ovarian Carcinoma Cell Proliferation: A Potential Role for Inducible Nitric Oxide Synthase. Gynecol. Oncol. 2001, 82, 127–138. [Google Scholar] [CrossRef]
- Baird, D.T.; Fraser, I.A.N.S.; Baird, D.T.; Fraser, I.S. Concentration of oestrone and oestradiol in follicular fluid and ovarian venous blood of women. Clin. Endocrinol. 1974, 4, 259–266. [Google Scholar] [CrossRef]
- Chan, K.K.L.; Siu, M.K.Y.; Jiang, Y.X.; Wang, J.J.; Wang, Y.; Leung, T.H.Y.; Liu, S.S.; Cheung, A.N.Y.; Ngan, H.Y.S. Differential expression of estrogen receptor subtypes and variants in ovarian cancer: Effects on cell invasion, proliferation and prognosis. BMC Cancer 2017, 17, 1–11. [Google Scholar] [CrossRef]
- Matsumura, S.; Ohta, T.; Yamanouchi, K.; Liu, Z.; Sudo, T.; Kojimahara, T.; Seino, M.; Narumi, M.; Tsutsumi, S.; Takahashi, T.; et al. Activation of estrogen receptor α by estradiol and cisplatin induces platinum-resistance in ovarian cancer cells. Cancer Biol. Ther. 2017, 18, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Treeck, O.; Pfeiler, G.; Mitter, D.; Lattrich, C.; Piendl, G.; Ortmann, O. Estrogen receptor β1 exerts antitumoral effects on SK-OV-3 ovarian cancer cells. J. Endocrinol. 2007, 193, 421–433. [Google Scholar] [CrossRef]
- Taube, M.; Höckenström, T.; Isaksson, M.; Lindgren, P.R.; Bäckström, T. Effects of sex steroids on survival and receptor expression in ovarian epithelial tumour cells. Int. J. Oncol. 2003, 22, 1257–1262. [Google Scholar] [CrossRef]
- Maleki, J.; Nourbakhsh, M.; Shabani, M.; Korani, M.; Nourazarian, S.M.; Dahaghi, M.R.O.; Moghadasi, M.H. 17β-Estradiol Stimulates Generation of Reactive Species Oxygen and Nitric Oxide in Ovarian Adenocarcinoma Cells (OVCAR 3). Iran. J. Cancer Prev. 2015, 8, e2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapkal, A.U.; Nashine, S.; Mansoor, S.; Sharma, V.R. Original Article Protective Effects of 17 β-Estradiol on Benzo (e) pyrene [B (e) P]-induced Toxicity in ARPE-19 cells. J. Ophthalmic Vis. Res. 2018, 13, 13–20. [Google Scholar]
- Guo, Y.S.; Sun, Z.; Ma, J.; Cui, W.; Gao, B.; Zhang, H.Y.; Han, Y.H.; Hu, H.M.; Wang, L.; Fan, J.; et al. 17β-Estradiol inhibits ER stress-induced apoptosis through promotion of TFII-I-dependent Grp78 induction in osteoblasts. Lab. Investig. 2014, 94, 906–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saczko, J.; Kamińska, I.; Kotulska, M.; Bar, J.; Choromańska, A.; Rembiałkowska, N.; Biezuńska-Kusiak, K.; Rossowska, J.; Nowakowska, D.; Kulbacka, J. Combination of therapy with 5-fluorouracil and cisplatin with electroporation in human ovarian carcinoma model in vitro. Biomed. Pharmacother. 2014, 68, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Mi, Y.; Hu, X.; Li, C.; Sun, C.; Tang, J.; Wu, X. Experiment and mechanism research of SKOV3 cancer cell apoptosis induced by nanosecond pulsed electric field. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1044–1047. [Google Scholar]
Cisplatin [µM] | CaCl2 [mM] | |
---|---|---|
IC50 for 24 h | ||
Not pre-incubated with E2 | 727.47 | 20.03 |
Pre-incubated with E2 | 129.53 | 13.29 |
IC50 for 72 h | ||
Not pre-incubated with E2 | 9.567 | 16.637 |
Pre-incubated with E2 | 6.072 | 8.503 |
Not Pre-Incubated with E2 | Pre-Incubated with E2 | |||
---|---|---|---|---|
Percentage of Stained Cells | The Intensity of Staining | Percentage of Stained Cells | The Intensity of Staining | |
cisplatin | ||||
5 µM | 74% | + | 81.5% | ++ |
25 µM | 80% | + | 90% | ++ |
CaCl2 | ||||
1 mM | 44.5% | +/− | 90.5% | ++ |
1.5 mM | 95% | ++ | 92% | ++/+++ |
Not Pre-Incubated with E2 | Pre-Incubated with E2 | |
---|---|---|
Control | 1.52 | 1.56 |
Control + Yo-Pro-1TM | 5.32 | 4.97 |
EP 1.3 kV/cm (ESOPE) | 677.19 | 403.98 |
nsEP 37.5 kV/cm (10 ns, 200 ps) | 23.07 | 6.24 |
nsEP 50 kV/cm (10 ns, 200 ps) | 256.7 | 171.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łapińska, Z.; Dębiński, M.; Szewczyk, A.; Choromańska, A.; Kulbacka, J.; Saczko, J. Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics 2021, 13, 19. https://doi.org/10.3390/pharmaceutics13010019
Łapińska Z, Dębiński M, Szewczyk A, Choromańska A, Kulbacka J, Saczko J. Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics. 2021; 13(1):19. https://doi.org/10.3390/pharmaceutics13010019
Chicago/Turabian StyleŁapińska, Zofia, Michał Dębiński, Anna Szewczyk, Anna Choromańska, Julita Kulbacka, and Jolanta Saczko. 2021. "Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer" Pharmaceutics 13, no. 1: 19. https://doi.org/10.3390/pharmaceutics13010019
APA StyleŁapińska, Z., Dębiński, M., Szewczyk, A., Choromańska, A., Kulbacka, J., & Saczko, J. (2021). Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics, 13(1), 19. https://doi.org/10.3390/pharmaceutics13010019