Niosomal Formulation of a Lipoyl-Carnosine Derivative Targeting TRPA1 Channels in Brain
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Neuronal Activity Tests
3.2. Preparation of Niosomes
3.3. Analytical Method for ADM_09 Determination
3.4. Niosomes Characterization
3.5. Determination of Drug Entrapment
3.6. StabilityStudies
3.7. In-Vitro Release Studies
3.8. hCMEC/D3 Cell Culture
3.9. MTT Assay
3.10. LDH Assay
3.11. hCMEC/D3 Cell Culture for Transwell Permeability Studies
3.12. Statistical Analysis
4. Results and Discussion
4.1. Neuronal Tests
4.2. Formulation of ADM_09
4.3. Stability Studies
4.4. In-Vitro Release Studies
4.5. MTT and LDH Assays
4.6. BBB Permeability Studies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zygmunt, P.M.; Högestätt, E.D. Mammalian Transien Recetpro Potential (TRP) Cation Channels; Nilius, B., Flockerzi, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 1. [Google Scholar] [CrossRef]
- Viana, F. TRPA1 channels: Molecular sentinels of cellular stress and tissue damage. J. Physiol. 2016, 594, 4151–4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julius, D. TRP channels and pain. Annu. Rev. Cell. Dev. Biol. 2013, 29, 355–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheradpezhouh, E.; Choy, J.M.C.; Daria, V.R.; Arabzadeh, E. TRPA1 expression and its functional activation inrodent cortex. Open Biol. 2017, 7, 160314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Ma, D.; Grubband, B.D.; Wang, M. ROS/TRPA1/CGRP signaling mediates cortical spreading depression. J. Headache Pain 2019, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wang, Y.; Xu, Y.; Ma, D.; Wang, M. The transient receptor potential ankyrin type 1 plays a critical role in cortical spreading depression. Neuroscience 2018, 382, 23–34. [Google Scholar] [CrossRef]
- Moskowitz, M.A. Genes, proteases, cortical spreading depression and migraine: Impact on pathophysiology and treatment. Funct. Neurol. 2007, 22, 133–136. [Google Scholar]
- Karatas, H.; Erdener, S.E.; Gursoy-Ozdemir, Y.; Lule, S.; Eren-Kocak, E.; Sen, Z.D.; Dalkara, T. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 2013, 339, 1092–1095. [Google Scholar] [CrossRef]
- Wang, Y.; Tye, A.E.; Zhao, J.; Ma, D.; Raddant, A.C.; Bu, F.; Spector, B.L.; Winslow, N.K.; Wang, M.; Russo, A.F. Induction of calcitonin gene-related peptide expression in rats by cortical spreading depression. Cephalalgia 2019, 39, 333–341. [Google Scholar] [CrossRef]
- Kuo, Y.; Wang, C. Chapter 19: Colloidal drug delivery system for brain-targeting therapy. In Colloid and Interface Science in Pharmaceutical Research and Development; Ohshima, H., Makino, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 389–410. [Google Scholar] [CrossRef]
- Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull. 2011, 34, 945–953. [Google Scholar] [CrossRef] [Green Version]
- Ingallina, C.; Rinaldi, F.; Bogni, A.; Ponti, J.; Passeri, D.; Reggente, M.; Rossi, M.; Kinsner-Ovaskainen, A.; Mehn, D.; Rossi, F.; et al. Niosomal approach to brain delivery: Development, characterization and in vitro toxicological studies. Int. J. Pharm. 2016, 511, 969–982. [Google Scholar] [CrossRef]
- Elezaby, R.S.; Gad, H.A.; Metwally, A.A.; Geneidi, A.S.; Awad, G.A. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J. Control. Rel. 2017, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, M.; Porkoláb, G.; Kiss, L.; Pilbat, A.M.; Veszelka, S. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier. Eur. J. Pharm. Sci. 2018, 123, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Bragagni, M.; Mennini, N.; Ghelardini, C.; Mura, P. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J. Pharm. Pharm. Sci. 2012, 15, 184–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragagni, M.; Mennini, N.; Furlanetto, S.; Orlandini, S.; Ghelardini, C.; Mura, P.A. Development and characterization of functionalized niosomes for brain targeting of dynorphin-B. Eur. J. Pharm. Biopharm. 2014, 87, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Nativi, C.; Gualdani, R.; Dragoni, E.; Di Cesare Mannelli, L.; Sostegni, S.; Norcini, M.; Gabrielli, G.; La Marca, G.; Richichi, B.; Francesconi, O.; et al. A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci. Rep. 2013, 3, 2005. [Google Scholar] [CrossRef] [Green Version]
- Fragai, M.; Comito, G.; Di Cesare Mannelli, L.; Gualdani, R.; Calderone, V.; Louka, A.; Richichi, B.; Francesconi, O.; Angeli, A.; Nocentini, A.; et al. Lipoyl-Homotaurine Derivative (ADM_12) Reverts Oxaliplatin-induced Neuropathy and Reduces Cancer Cells Malignancy by Inhibiting Carbonic Anhydrase IX (CAIX). J. Med. Chem. 2017, 60, 9003–9011. [Google Scholar] [CrossRef]
- Cantini, F.; Calderone, V.; Di Cesare Mannelli, L.; Korsak, M.; Gonnelli, L.; Francesconi, O.; Ghelardini, C.; Banci, L.; Nativi, C. Interaction of halfoxa-/half cis-platincomplex with human superoxide dismutase and induced reduction of neurotoxicity. ACS Med. Chem. Lett. 2018, 9, 1094–1098. [Google Scholar] [CrossRef]
- Gualdani, R.; Ceruti, S.; Magni, G.; Merli, D.; Di Cesare Mannelli, L.; Francesconi, O.; Richichi, B.; la Marca, G.; Ghelardini, C.; Moncelli, M.; et al. A Lipoic-based TRPA1/TRPV1 Antagonist to Treat Orofacial Pain. ACS Chem. Neurosci. 2015, 6, 380–385. [Google Scholar] [CrossRef]
- Demartini, C.; Greco, R.; Zanaboni, A.M.; Francesconi, O.; Nativi, C.; Tassorelli, C.; Deseure, K. Antagonism of transient receptor potential ankyrin type-1 channels as a potential target for the treatment of trigeminal neuropathic pain: Study in an animal model. Int. J. Mol. Sci. 2018, 19, 3320. [Google Scholar] [CrossRef] [Green Version]
- Demartini, C.; Tassorelli, C.; Zanaboni, A.M.; Tonsi, G.; Francesconi, O.; Nativi, C.; Greco, R. The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: Evaluation in an animal model. J. Headache Pain 2017, 18, 94. [Google Scholar] [CrossRef]
- Gullo, F.; Manfredi, I.; Lecchi, M.; Casari, G.; Wanke, E.; Becchetti, A. Multi-electrode array study of neuronal cultures expressing nicotinic β2-V287L subunits, linked to autosomal dominant nocturnal frontal lobe epilepsy. An in-vitro model of spontaneous epilepsy. Front. Neural Circuits 2014, 8, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullo, F.; Maffezzoli, A.; Dossi, E.; Wanke, E. Short latency cross- and autocorrelation identify clusters of interacting neurons recorded from multi-electrode arrays. J. Neurosci. Methods 2009, 181, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Becchetti, A.; Gullo, F.; Bruno, G.; Dossi, E.; Wanke, E. Exact distinction of excitatory and inhibitory neurons in neural networks: A study with GFP-GAD67 neurons optically and electrophysiologically recognized on multielectrode arrays. Front. Neural Circuits 2012, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, B.; Bhavya, T.; Ashok Kumar, A. Reverse phase hplc method development and validation for the simultaneous quantitative estimation of alpha lipoic acid and allopurinol in tablets. Int. J. Pharm. Pharm. Sci. 2014, 6, 307–312. [Google Scholar]
- Ducci, M.; Niccolini, A.; Pacchini, S.; Della Longa, A.; Buoncristiani, P.; Martelli, F. HPLC mobile phases comparison for carnosine, anserine, L-histidine and 3-methyl-L-histidine detection. Ann. Dellafacoltà Di Med. Di Pisa Italy 2004, 57, 171–179. [Google Scholar]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). ICH Harmonised Tripartite Guideline: Q1A(R2) Stability Testing of New Drug Substances and Products; ICH: Geneva, Switzerland, 2003; pp. 1–24. [Google Scholar]
- Graverini, G.; Piazzini, V.; Landucci, E.; Pantano, D.; Nardiello, P.; Casamenti, F.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces 2018, 161, 302–313. [Google Scholar] [CrossRef]
- Piazzini, V.; Landucci, E.; Graverini, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M. Stealth and Cationic Nanoliposomes as Drug Delivery Systems to Increase Andrographolide BBB Permeability. Pharmaceutics 2018, 10, E128. [Google Scholar] [CrossRef] [Green Version]
- Landucci, E.; Lattanzi, R.; Gerace, E.; Scartabelli, T.; Balboni, G.; Negri, L.; Pellegrini-Giampietro, D.E. Prokineticins are neuroprotective in models of cerebral ischemia and ischemic tolerance in vitro. Neuropharmacology 2016, 108, 39–48. [Google Scholar] [CrossRef]
- Martins, D.; Tavares, I.; Morgado, C. “Hotheaded”: The role OF TRPV1 in brain functions. Neuropharmacology 2014, 85, 151–157. [Google Scholar] [CrossRef]
- Schulze, A.; Oehler, B.; Urban, N.; Schaefer, M.; Hill, K. Apomorphine Is a Bimodal Modulator of TRPA1 Channels. Mol. Pharm. 2013, 83, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Mateo, C.; Avermann, M.; Gentet, L.J.; Zhang, F.; Deisseroth, K.; Petersen, C.C.H. In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition. Curr. Biol. 2011, 21, 1593–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djilan, I.; Madi, F.; Nouar, L.; Haiahem, S.; Rahim, M.; Khatmi, D.E.; Bouhadiba, A. Theoretical investigation to characterize the inclusion complex of α-lipoic acid and β-cyclodextrin. C. R. Chim. 2015, 18, 170–177. [Google Scholar] [CrossRef]
- Ikuta, N.; Terao, N.; Matsugo, S. Chapter 12—Stabilized R-α-Lipoic Acid by Encapsulation Using Cyclodextrins. In Impact of Nanoscience in the Food Industry Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 351–366. [Google Scholar] [CrossRef]
- Machado, N.D.; Silva, F.O.; de Rossi, R.H.; Fernandez, M.A. Cyclodextrin modified niosomes to encapsulate hydrophilic compounds. RSC Adv. 2018, 8, 29909–29916. [Google Scholar] [CrossRef] [Green Version]
- Marazioti, A.; Papadia, K.; Kannavou, M.; Spella, M.; Basta, A.; de Lastic, A.L.; Rodi, M.; Mouzaki, A.; Samiotaki, M.; Panayotou, G.; et al. Cellular Vesicles: New insights in engineeringmethods, interaction with cells and potential for brain targeting. J. Pharmacol. Exp. Ther. 2019. [Google Scholar] [CrossRef]
- Voigt, N.; Henrich-Noack, P.; Kockentiedt, S.; Hintz, W.; Tomas, J.; Sabel, B.A. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. Eur. J. Pharm. Biopharm. 2014, 87, 19–29. [Google Scholar] [CrossRef]
- Dufes, C.; Gaillard, F.; Uchegbu, I.F.; Schatzlein, A.G.; Olivier, J.C.; Muller, J.M. Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int. J. Pharm. 2004, 285, 77–85. [Google Scholar] [CrossRef] [Green Version]
Preparation Method | p.s. (nm ± s.d.) | PDI ± s.d. | ζ.pot. (mV ± s.d.) |
---|---|---|---|
TLE-P | 135.37 ± 2.22 | 0.21 ± 0.01 | −15.57 ± 0.35 |
TLE-V | 235.97 ± 5.33 | 0.35 ± 0.07 | −22.57 ± 0.81 |
TLE-F | 131.17 ± 4.22 | 0.20 ± 0.02 | −16.40 ± 0.60 |
Batch | Span 60 | Span 40 | CHL | CHE | SOL | HPβCD | p.s. (nm ± s.d.) | PDI ± s.d. | ζ.pot. (mV ± s.d.) |
---|---|---|---|---|---|---|---|---|---|
0 | 8.00 | 5.73 | 5.33 | 135.37 ± 2.22 | 0.21 ± 0.01 | −15.57 ± 0.35 | |||
1 | 5.73 | 9.53 | 3.81 | 418.47 ± 6.29 | 0.31 ± 0.04 | −22.40 ± 1.32 | |||
2 | 11.43 | 4.75 | 2.86 | 362.97 ± 2.22 | 0.32 ± 0.04 | −27.30 ± 2.38 | |||
3 | 13.34 | 2.86 | 2.86 | 301.70 ± 4.11 | 0.25 ± 0.02 | −21.30 ± 1.78 | |||
4 | 8.00 | 227.07 ± 3.63 | 0.29 ± 0.01 | −18.77 ± 0.78 | |||||
5 | 5.73 | 214.37 ± 6.28 | 0.32 ± 0.04 | −21.10 ± 1.15 | |||||
6 | 8.00 | 5.73 | 189.93 ± 3.76 | 0.26 ± 0.01 | −20.43 ± 0.64 | ||||
7 | 8.00 | 5.73 | 5.33 | 4.88 | 159.17 ± 0.55 | 0.19 ± 0.01 | −19.40 ± 2.31 |
Batch | DL% | EE% | p.s. (nm ± s.d.) | PDI ± s.d. | ζ.pot. (mV ± s.d.) |
---|---|---|---|---|---|
0.1 | 0.17 | 27.07 | 192.33 ± 8.69 | 0.27 ± 0.02 | −16.60 ± 0.60 |
6.1 | 0.06 | 3.64 | 227.70 ± 2.21 | 0.26 ± 0.01 | −19.90 ± 0.26 |
7.1 | 0.02 | 2.50 | 224.67 ± 1.81 | 0.26 ± 0.03 | −20.70 ± 0.95 |
Time (min) | NIO | NIO ADM_09 | ||
---|---|---|---|---|
p.s. (nm ± s.d.) | PDI ± s.d. | p.s. (nm ± s.d.) | PDI ± s.d. | |
0 | 145.37 ± 2.22 | 0.31 ± 0.01 | 202.12 ± 4.23 | 0.37 ± 0.02 |
30 | 146.41 ± 0.42 | 0.32 ± 0.01 | 212.31 ± 5.29 | 0.41 ± 0.12 |
60 | 145.35 ± 1.73 | 0.32 ± 0.01 | 215.58 ± 3.15 | 0.37 ± 0.18 |
90 | 144.24 ± 3.61 | 0.34 ± 0.05 | 216.23 ± 6.19 | 0.36 ± 0.21 |
120 | 141.68 ± 2.71 | 0.39 ± 0.07 | 208.41 ± 4.12 | 0.32 ± 0.09 |
150 | 143.67 ± 3.72 | 0.37 ± 0.07 | 225.33 ± 2.89 | 0.35 ± 0.19 |
180 | 148.65 ± 3.09 | 0.33 ± 0.04 | 219.19 ± 5.74 | 0.38 ± 0.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maestrelli, F.; Landucci, E.; De Luca, E.; Nerli, G.; Bergonzi, M.C.; Piazzini, V.; Pellegrini-Giampietro, D.E.; Gullo, F.; Becchetti, A.; Tadini-Buoninsegni, F.; et al. Niosomal Formulation of a Lipoyl-Carnosine Derivative Targeting TRPA1 Channels in Brain. Pharmaceutics 2019, 11, 669. https://doi.org/10.3390/pharmaceutics11120669
Maestrelli F, Landucci E, De Luca E, Nerli G, Bergonzi MC, Piazzini V, Pellegrini-Giampietro DE, Gullo F, Becchetti A, Tadini-Buoninsegni F, et al. Niosomal Formulation of a Lipoyl-Carnosine Derivative Targeting TRPA1 Channels in Brain. Pharmaceutics. 2019; 11(12):669. https://doi.org/10.3390/pharmaceutics11120669
Chicago/Turabian StyleMaestrelli, Francesca, Elisa Landucci, Enrico De Luca, Giulia Nerli, Maria Camilla Bergonzi, Vieri Piazzini, Domenico E. Pellegrini-Giampietro, Francesca Gullo, Andrea Becchetti, Francesco Tadini-Buoninsegni, and et al. 2019. "Niosomal Formulation of a Lipoyl-Carnosine Derivative Targeting TRPA1 Channels in Brain" Pharmaceutics 11, no. 12: 669. https://doi.org/10.3390/pharmaceutics11120669