Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = TRPA1 antagonist

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5379 KiB  
Article
Fructose-1,6-Bisphosphate Reduces Chronic Constriction Injury Neuropathic Pain in Mice by Targeting Dorsal Root Ganglia Nociceptive Neuron Activation
by Amanda Martins Dionisio, Paula de Azevedo Oliveira Milanez, Ana Carla Zarpelon-Schutz, Sandra Satie Mizokami, Mariana Marques Bertozzi, Kelly Megumi Yaekashi, Doumit Camilios-Neto, Sergio Marques Borghi, Rubia Casagrande and Waldiceu A. Verri
Pharmaceuticals 2025, 18(5), 660; https://doi.org/10.3390/ph18050660 - 30 Apr 2025
Viewed by 648
Abstract
Background/Objectives: Fructose-1,6-bisphosphate (FBP) is an intermediate product of the glycolytic pathway with analgesic effect in acute inflammatory pain model via the production of adenosine. However, whether FBP is active in neuropathic pain is unknown. Therefore, we reason that it would be suitable to [...] Read more.
Background/Objectives: Fructose-1,6-bisphosphate (FBP) is an intermediate product of the glycolytic pathway with analgesic effect in acute inflammatory pain model via the production of adenosine. However, whether FBP is active in neuropathic pain is unknown. Therefore, we reason that it would be suitable to investigate the analgesic effect and mechanism of action of FBP in a model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain in mice. Methods: After CCI induction, mice received FBP, adenosine, A1 and/or A2A receptor antagonists, and/or inhibitors of the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)/ATP sensitive K channels (KATP) signaling pathway. Results: FBP (up to 85%) and adenosine (up to 84%) inhibited the mechanical hyperalgesia (electronic aesthesiometer) induced by CCI with similar profiles. FBP analgesia was dependent on adenosine because adenosine A1 and A2A receptors antagonists diminished FPB activity (100% and 79%, respectively). FBP analgesia was also dependent on activating the NO/cGMP/PKG/KATP signaling pathway. Furthermore, FBP treatment increased the production of NO in cultured dorsal root ganglia (DRG) neurons (100% increase), whereas neuronal nitric oxide synthase (nNOS) inhibition decreased (up to 70%) the analgesic effect of FBP. We also observed that FBP reduced the calcium levels of transient receptor potential ankyrin 1 (TRPA1)+ DRG neurons (85%) and paw-flinching triggered by TRPA1 activation (38%). Conclusions: FBP reduced neuropathic pain by reducing DRG neuron activation. The mechanisms involved the activation of adenosine A1 and A2A receptors to trigger the analgesic NO/cGMP/PKG/KATP signaling pathway and reducing TRPA1+ DRG neuron activity. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neuropathic Pain)
Show Figures

Figure 1

18 pages, 3519 KiB  
Article
PAR2 Participates in the Development of Cough Hypersensitivity in Guinea Pigs by Regulating TRPA1 Through PKC
by Yiqing Zhu, Tongyangzi Zhang, Haodong Bai, Wanzhen Li, Shengyuan Wang, Xianghuai Xu and Li Yu
Biomolecules 2025, 15(2), 208; https://doi.org/10.3390/biom15020208 - 1 Feb 2025
Viewed by 1067
Abstract
Objective: This study was conducted to validate the involvement of the PAR2-PKC-TRPA1 pathway in cough hypersensitivity (CHS) development. Methods: Guinea pigs were divided into a blank control, a citric acid-induced enhanced cough model, and drug intervention groups. The effects of the drugs on [...] Read more.
Objective: This study was conducted to validate the involvement of the PAR2-PKC-TRPA1 pathway in cough hypersensitivity (CHS) development. Methods: Guinea pigs were divided into a blank control, a citric acid-induced enhanced cough model, and drug intervention groups. The effects of the drugs on capsaicin-induced cough responsiveness in a cough model were observed. The effects of individual and combined treatments (including PAR2 agonists, TRPA1 agonists, PAR2 antagonists, TRPA1 antagonists, PKC agonists, and PKC antagonists) on PAR2, phospho-PKC (pPKC), and TRPA1 expression in bronchial tissues and the vagus ganglion (jugular and nodose) in the cough model and control groups were assessed. Additionally, whole-cell patch-clamp recordings were conducted to evaluate the effects of the drugs on vagus ganglion neuron electrophysiological activity. Results: ① Both PAR2 antagonists and TRPA1 antagonists significantly reduced cough frequency in guinea pigs with a cough, and the PAR2 antagonist inhibited coughing induced by the TRPA1 agonist. ② Western blotting and multiplex immunohistochemistry (mIHC) indicated that PAR2, pPKCα, PKCα, and TRPA1 expression in bronchial and vagus ganglion tissues was elevated in the cough model compared with the control, with TRPA1 expression being regulated by PAR2 and PKC being involved in this regulatory process. ③ Whole-cell patch-clamp recordings demonstrated that TRPA1 agonists induced an inward current in nodose ganglion neurons, which was further amplified by PAR2 agonists; this amplification effect was blocked by PKC antagonist. Additionally, PAR2 antagonists inhibited the inward current induced by TRPA1 agonists. ④ At various concentrations, including the optimal antitussive concentration, PAR2 antagonists did not significantly affect pulse amplitude, arterial oxygen saturation, heart rate, body temperature, or respiratory rate in guinea pigs. Conclusion: PAR2 regulates TRPA1 through PKC in cough syndrome (CHS) pathogenesis, making targeting PAR2 a safe and effective therapeutic strategy for CHS. Full article
(This article belongs to the Special Issue TRP Channels in Cardiovascular and Inflammatory Disease)
Show Figures

Figure 1

25 pages, 7088 KiB  
Article
Discovery of Dual TRPA1 and TRPV1 Antagonists as Novel Therapeutic Agents for Pain
by Nayeon Do, Dongxu Zuo, Miri Kim, Minseok Kim, Hee-Jin Ha, Peter M. Blumberg, Jihyae Ann, Sun Wook Hwang and Jeewoo Lee
Pharmaceuticals 2024, 17(9), 1209; https://doi.org/10.3390/ph17091209 - 13 Sep 2024
Cited by 5 | Viewed by 3341
Abstract
Pain management remains a major challenge in medicine, highlighting the need for the development of new therapeutic agents. The transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are ion channels that play key roles in pain perception. Targeting both TRPA1 and [...] Read more.
Pain management remains a major challenge in medicine, highlighting the need for the development of new therapeutic agents. The transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are ion channels that play key roles in pain perception. Targeting both TRPA1 and TRPV1 simultaneously with dual antagonists offers a promising approach to pain relief. In this study, we investigated a series of hybrid analogs of TRPA1 and TRPV1 antagonists to discover novel therapeutic agents for pain. Among these compounds synthesized by a condensation reaction forming 1,2,4-oxadiazole between the A- and C-regions, compound 50 exhibited substantial dual-acting antagonism to TRPA1 and TRPV1 with IC50 values of 1.42, 2.84, 2.13, and 5.02 μM for hTRPA1, mTRPA1, hTRPV1, and rTRPV1, respectively. In the formalin test, compound 50 demonstrated dose-dependent analgesic activity with an ED50 of 85.9 mg/kg in phase 1 and 21.6 mg/kg in phase 2, respectively, and was able to inhibit pain behavior completely at a dose of 100 mg/kg. This study presents the discovery and characterization of a novel dual TRPA1/TRPV1 antagonist, highlighting its potential as a therapeutic agent for pain management. Full article
(This article belongs to the Special Issue Multitargeted Compounds: A Promising Approach in Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 2338 KiB  
Article
Design of Novel TRPA1 Agonists Based on Structure of Natural Vasodilator Carvacrol—In Vitro and In Silico Studies
by Đorđe Đukanović, Relja Suručić, Milica Gajić Bojić, Saša M. Trailović, Ranko Škrbić and Žarko Gagić
Pharmaceutics 2024, 16(7), 951; https://doi.org/10.3390/pharmaceutics16070951 - 18 Jul 2024
Cited by 1 | Viewed by 1694
Abstract
Considering the escalating global prevalence and the huge therapeutic demand for the treatment of hypertension, there is a persistent need to identify novel target sites for vasodilator action. This study aimed to investigate the role of TRPA1 channels in carvacrol-induced vasodilation and to [...] Read more.
Considering the escalating global prevalence and the huge therapeutic demand for the treatment of hypertension, there is a persistent need to identify novel target sites for vasodilator action. This study aimed to investigate the role of TRPA1 channels in carvacrol-induced vasodilation and to design novel compounds based on carvacrol structure with improved activities. In an isolated tissue bath experiment, it was shown that 1 µM of the selective TRPA1 antagonist A967079 significantly (p < 0.001) reduced vasodilation induced by 3 mM of carvacrol. A reliable 3D-QSAR model with good statistical parameters was created (R2 = 0.83; Q2 = 0.59 and Rpred2 = 0.84) using 29 TRPA1 agonists. Obtained results from this model were used for the design of novel TRPA1 activators, and to predict their activity against TRPA1. Predicted pEC50 activities of these molecules range between 4.996 to 5.235 compared to experimental pEC50 of 4.77 for carvacrol. Molecular docking studies showed that designed molecules interact with similar amino acid residues of the TRPA1 channel as carvacrol, with eight compounds showing lower binding energies. In conclusion, carvacrol-induced vasodilation is partly mediated by the activation of TRPA1 channels. Combining different in silico approaches pointed out that the molecule D27 (2-[2-(hydroxymethyl)-4-methylphenyl]acetamide) is the best candidate for further synthesis and experimental evaluation in in vitro conditions. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

16 pages, 325 KiB  
Review
Latest Insights into the In Vivo Studies in Murine Regarding the Role of TRP Channels in Wound Healing—A Review
by Alexandra Grigore, Oana Andreia Coman, Horia Păunescu, Mihnea Costescu and Ion Fulga
Int. J. Mol. Sci. 2024, 25(12), 6753; https://doi.org/10.3390/ijms25126753 - 19 Jun 2024
Cited by 2 | Viewed by 1951
Abstract
Wound healing involves physical, chemical and immunological processes. Transient receptor potential (TRP) and other ion channels are implicated in epidermal re-epithelization. Ion movement across ion channels can induce transmembrane potential that leads to transepithelial potential (TEP) changes. TEP is present in epidermis surrounding [...] Read more.
Wound healing involves physical, chemical and immunological processes. Transient receptor potential (TRP) and other ion channels are implicated in epidermal re-epithelization. Ion movement across ion channels can induce transmembrane potential that leads to transepithelial potential (TEP) changes. TEP is present in epidermis surrounding the lesion decreases and induces an endogenous direct current generating an epithelial electric field (EF) that could be implicated in wound re-epithelialization. TRP channels are involved in the activation of immune cells during mainly the inflammatory phase of wound healing. The aim of the study was to review the mechanisms of ion channel involvement in wound healing in in vivo experiments in murine (mice, rats) and how can this process be influenced. This review used the latest results published in scientific journals over the last year and this year to date (1 January 2023–31 December 3000) in order to include the in-press articles. Some types of TRP channels, such as TRPV1, TRPV3 and TRPA1, are expressed in immune cells and can be activated by inflammatory mediators. The most beneficial effects in wound healing are produced using agonists of TRPV1, TRPV4 and TRPA1 channels or by inhibiting with antagonists, antisense oligonucleotides or knocking down TRPV3 and TRPM8 channels. Full article
13 pages, 7794 KiB  
Article
Transient Receptor Potential Ankyrin 1 Ion Channel Is Expressed in Osteosarcoma and Its Activation Reduces Viability
by Lina Hudhud, Katalin Rozmer, Angéla Kecskés, Krisztina Pohóczky, Noémi Bencze, Krisztina Buzás, Éva Szőke and Zsuzsanna Helyes
Int. J. Mol. Sci. 2024, 25(7), 3760; https://doi.org/10.3390/ijms25073760 - 28 Mar 2024
Cited by 7 | Viewed by 1886
Abstract
Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased [...] Read more.
Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives. Full article
Show Figures

Figure 1

16 pages, 5995 KiB  
Article
TRPA1 Contributes to FGFR2c Signaling and to Its Oncogenic Outcomes in Pancreatic Ductal Adenocarcinoma-Derived Cell Lines
by Vanessa Mancini, Salvatore Raffa, Alessandra Fiorio Pla, Deborah French, Maria Rosaria Torrisi, Danilo Ranieri and Francesca Belleudi
Cancers 2024, 16(3), 609; https://doi.org/10.3390/cancers16030609 - 31 Jan 2024
Cited by 2 | Viewed by 1883
Abstract
Fibroblast growth factor receptor (FGFR) signaling is a key modulator of cellular processes dysregulated in cancer. We recently found that the high expression of the mesenchymal FGFR2c variant in human pancreatic ductal adenocarcinoma (PDAC)-derived cells triggers the PKCε-mediated improvement of EMT and of [...] Read more.
Fibroblast growth factor receptor (FGFR) signaling is a key modulator of cellular processes dysregulated in cancer. We recently found that the high expression of the mesenchymal FGFR2c variant in human pancreatic ductal adenocarcinoma (PDAC)-derived cells triggers the PKCε-mediated improvement of EMT and of MCL-1/SRC-dependent cell invasion. Since other membrane proteins can affect the receptor tyrosine kinase signaling, including transient receptor potential channels (TRPs), in this work, we investigated the role of TRPs in the FGFR2c/PKCε oncogenic axis. Our results highlighted that either the FGFR2c/PKCε axis shut-off obtained by shRNA or its sustained activation via ligand stimulation induces TRPA1 downregulation, suggesting a channel/receptor dependence. Indeed, biochemical molecular and immunofluorescence approaches demonstrated that the transient depletion of TRPA1 by siRNA was sufficient to attenuate FGFR2c downstream signaling pathways, as well as the consequent enhancement of EMT. Moreover, the biochemical check of MCL1/SRC signaling and the in vitro assay of cellular motility suggested that TRPA1 also contributes to the FGFR2c-induced enhancement of PDAC cell invasiveness. Finally, the use of a selective channel antagonist indicated that the contribution of TRPA1 to the FGFR2c oncogenic potential is independent of its pore function. Thus, TRPA1 could represent a putative candidate for future target therapies in PDAC. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

14 pages, 4892 KiB  
Article
Functional Analysis of TRPA1, TRPM3, and TRPV1 Channels in Human Dermal Arteries and Their Role in Vascular Modulation
by Eduardo Rivera-Mancilla, Linda Al-Hassany, Heleen Marynissen, Dorien Bamps, Ingrid M. Garrelds, Jérôme Cornette, A. H. Jan Danser, Carlos M. Villalón, Jan N. de Hoon and Antoinette MaassenVanDenBrink
Pharmaceuticals 2024, 17(2), 156; https://doi.org/10.3390/ph17020156 - 25 Jan 2024
Cited by 5 | Viewed by 2611
Abstract
Transient receptor potential (TRP) channels are pivotal in modulating vascular functions. In fact, topical application of cinnamaldehyde or capsaicin (TRPA1 and TRPV1 channel agonists, respectively) induces “local” changes in blood flow by releasing vasodilator neuropeptides. We investigated TRP channels’ contributions and the pharmacological [...] Read more.
Transient receptor potential (TRP) channels are pivotal in modulating vascular functions. In fact, topical application of cinnamaldehyde or capsaicin (TRPA1 and TRPV1 channel agonists, respectively) induces “local” changes in blood flow by releasing vasodilator neuropeptides. We investigated TRP channels’ contributions and the pharmacological mechanisms driving vasodilation in human isolated dermal arteries. Ex vivo studies assessed the vascular function of artery segments and analyzed the effects of different compounds. Concentration–response curves to cinnamaldehyde, pregnenolone sulfate (PregS, TRPM3 agonist), and capsaicin were constructed to evaluate the effect of the antagonists HC030031 (TRPA1); isosakuranetin (TRPM3); and capsazepine (TRPV1). Additionally, the antagonists/inhibitors olcegepant (CGRP receptor); L-NAME (nitric oxide synthase); indomethacin (cyclooxygenase); TRAM-34 plus apamin (K+ channels); and MK-801 (NMDA receptors, only for PregS) were used. Moreover, CGRP release was assessed in the organ bath fluid post-agonist-exposure. In dermal arteries, cinnamaldehyde- and capsaicin-induced relaxation remained unchanged after the aforementioned antagonists, while PregS-induced relaxation was significantly inhibited by isosakuranetin, L-NAME and MK-801. Furthermore, there was a significant increase in CGRP levels post-agonist-exposure. In our experimental model, TRPA1 and TRPV1 channels seem not to be involved in cinnamaldehyde- or capsaicin-induced relaxation, respectively, whereas TRPM3 channels contribute to PregS-induced relaxation, possibly via CGRP-independent mechanisms. Full article
Show Figures

Figure 1

12 pages, 3190 KiB  
Article
Functional TRPA1 Channels Regulate CD56dimCD16+ NK Cell Cytotoxicity against Tumor Cells
by Fernanda Scopelliti, Valentina Dimartino, Caterina Cattani and Andrea Cavani
Int. J. Mol. Sci. 2023, 24(19), 14736; https://doi.org/10.3390/ijms241914736 - 29 Sep 2023
Cited by 6 | Viewed by 1866
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channels are expressed on the surface of different cell types, including immune cells. However, TRPA1’s role in the context of innate and adaptive immune responses has not been fully elucidated so far. In this study, we aimed [...] Read more.
Transient receptor potential ankyrin 1 (TRPA1) channels are expressed on the surface of different cell types, including immune cells. However, TRPA1’s role in the context of innate and adaptive immune responses has not been fully elucidated so far. In this study, we aimed at investigating the expression and function of TRPA1 channels on NK cells. Among NK cells, TRPA1 was highly expressed by the CD56dimCD16+ subpopulation, but not by CD56brightCD16 cells, as detected by FACS. TRPA1 activation with the potent ligand allyl isothiocyanate (AITC) induces intracellular calcium flux in CD56dimCD16+ cells, which was prevented by the TRPA1 antagonist HC-030031. AITC treatment increased the membrane around NKp44 and strongly decreased CD16 and CD8 expression, while CD158a, CD159a, NKG2d, NKp46 were substantially unaffected. Importantly, AITC increased the granzyme production and CD107 expression and increased NK cell-mediated cytotoxicity towards the K562 cell line and two different melanoma cell lines. In parallel, TRPA1 activation also plays regulatory roles by affecting the survival of NK cells to limit uncontrolled and prolonged NK cell-mediated cytotoxicity. Our results indicate that the activation of TRPA1 is an important regulatory signal for NK cells, and agonists of TRPA1 could be used to strengthen the tumor response of the immune system. Full article
(This article belongs to the Special Issue TRP Channel)
Show Figures

Figure 1

11 pages, 1812 KiB  
Article
Transient Receptor Potential Ankyrin 1 (TRPA1) Channel Mediates Acrolein Cytotoxicity in Human Lung Cancer Cells
by Akihiko Sakamoto, Yusuke Terui, Kazuei Igarashi and Keiko Kashiwagi
Int. J. Mol. Sci. 2023, 24(14), 11847; https://doi.org/10.3390/ijms241411847 - 24 Jul 2023
Cited by 6 | Viewed by 2106
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective ion channel implicated in thermosensation and inflammatory pain. It has been reported that expression of the TRPA1 channel is induced by cigarette smoke extract. Acrolein found in cigarette smoke is highly toxic and known [...] Read more.
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective ion channel implicated in thermosensation and inflammatory pain. It has been reported that expression of the TRPA1 channel is induced by cigarette smoke extract. Acrolein found in cigarette smoke is highly toxic and known as an agonist of the TRPA1 channel. However, the role of TRPA1 in the cytotoxicity of acrolein remains unclear. Here, we investigated whether the TRPA1 channel is involved in the cytotoxicity of acrolein in human lung cancer A549 cells. The IC50 of acrolein in A549 cells was 25 μM, and acrolein toxicity increased in a concentration- and time-dependent manner. When the effect of acrolein on TRPA1 expression was examined, the expression of TRPA1 in A549 cells was increased by treatment with 50 μM acrolein for 24 h or 500 μM acrolein for 30 min. AP-1, a transcription factor, was activated in the cells treated with 50 μM acrolein for 24 h, while induction of NF-κB and HIF-1α was observed in the cells treated with 500 μM acrolein for 30 min. These results suggest that acrolein induces TRPA1 expression by activating these transcription factors. Overexpression of TRPA1 in A549 cells increased acrolein sensitivity and the level of protein-conjugated acrolein (PC-Acro), while knockdown of TRPA1 in A549 cells or treatment with a TRPA1 antagonist caused tolerance to acrolein. These findings suggest that acrolein induces the TRPA1 channel and that an increase in TRPA1 expression promotes the cytotoxicity of acrolein. Full article
(This article belongs to the Special Issue Polyamines in Aging and Disease)
Show Figures

Figure 1

18 pages, 5947 KiB  
Article
Kinin B2 Receptor Mediates Cisplatin-Induced Painful Peripheral Neuropathy by Intracellular Kinase Pathways and TRPA1 Channel Sensitisation
by Gabriela Becker, Maria Fernanda Pessano Fialho, Evelyne Silva Brum and Sara Marchesan Oliveira
Pharmaceuticals 2023, 16(7), 959; https://doi.org/10.3390/ph16070959 - 4 Jul 2023
Cited by 6 | Viewed by 1822
Abstract
Chemotherapy-induced peripheral neuropathy is a severe clinical problem frequently associated with cisplatin use. Although its pathophysiology is poorly understood, it is known that kinin receptors and the transient receptor potential ankyrin 1 (TRPA1) channel play a significant role in the peripheral neuropathy induced [...] Read more.
Chemotherapy-induced peripheral neuropathy is a severe clinical problem frequently associated with cisplatin use. Although its pathophysiology is poorly understood, it is known that kinin receptors and the transient receptor potential ankyrin 1 (TRPA1) channel play a significant role in the peripheral neuropathy induced by cisplatin in rodents. However, the role of signalling pathways downstream from B2 kinin receptors activation and sensitisation of the TRPA1 channel remains unknown in this model. The cisplatin-induced neuropathy model caused mechanical and cold allodynia in male Swiss mice. Antagonists for kinin B2 and B1 receptors and the TRPA1 channel attenuated the painful parameters. Local sub-nociceptive doses of kinin B2 receptor (bradykinin) and TRPA1 channel (allyl isothiocyanate; AITC) agonists enhanced the painful parameters in cisplatin-treated mice, which their respective antagonists attenuated. Furthermore, we demonstrated the interaction between the kinin B2 receptor and the TRPA1 channel in cisplatin-induced peripheral neuropathy since phospholipase C (PLC) and protein kinase C epsilon (PKCε) inhibitors attenuated the increase in mechanical and cold allodynia evoked by bradykinin and AITC in cisplatin-treated mice. Therefore, regulating the activation of signalling pathways downstream from the kinin B2 receptors activation and TRPA1 channel sensitisation can mitigate the painful peripheral neuropathy decurrent of the oncology treatment with cisplatin. Full article
(This article belongs to the Special Issue Potential Therapeutic Targets for the Treatment of Pathological Pain)
Show Figures

Figure 1

24 pages, 8927 KiB  
Article
Recombinant Production, NMR Solution Structure, and Membrane Interaction of the Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer
by Ekaterina N. Lyukmanova, Pavel A. Mironov, Dmitrii S. Kulbatskii, Mikhail A. Shulepko, Alexander S. Paramonov, Elizaveta M. Chernaya, Yulia A. Logashina, Yaroslav A. Andreev, Mikhail P. Kirpichnikov and Zakhar O. Shenkarev
Toxins 2023, 15(6), 378; https://doi.org/10.3390/toxins15060378 - 3 Jun 2023
Cited by 7 | Viewed by 3766
Abstract
Phα1β (PnTx3–6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. [...] Read more.
Phα1β (PnTx3–6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1β and its 15N-labeled analogue. Spatial structure and dynamics of Phα1β were determined via NMR spectroscopy. The N-terminal domain (Ala1–Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41–Cys52) stapled to ICK by two disulfides exhibits the µs–ms time-scale fluctuations. The Phα1β structure with the disulfide bond patterns Cys1–5, Cys2–7, Cys3–12, Cys4–10, Cys6–11, Cys8–9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1β has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1β significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1β as a gating modifier toxin, probably interacting with S1–S4 gating domains from a membrane-bound state. Full article
(This article belongs to the Special Issue Ion Channels, Venom, and Toxins)
Show Figures

Figure 1

16 pages, 11400 KiB  
Article
Activation of TRPA1 in Bladder Suburothelial Myofibroblasts Counteracts TGF-β1-Induced Fibrotic Changes
by Mengmeng Zhao, Ning Ding, Haoyu Wang, Shulu Zu, Hanwen Liu, Jiliang Wen, Jiaxin Liu, Nan Ge, Wenzhen Wang and Xiulin Zhang
Int. J. Mol. Sci. 2023, 24(11), 9501; https://doi.org/10.3390/ijms24119501 - 30 May 2023
Cited by 7 | Viewed by 2233
Abstract
The activation of the transient receptor potential ankyrin 1 (TRPA1) channel has anti-fibrotic effects in the lung and intestine. Suburothelial myofibroblasts (subu−MyoFBs), a specialized subset of fibroblasts in the bladder, are known to express TRPA1. However, the role of the TRPA1 in the [...] Read more.
The activation of the transient receptor potential ankyrin 1 (TRPA1) channel has anti-fibrotic effects in the lung and intestine. Suburothelial myofibroblasts (subu−MyoFBs), a specialized subset of fibroblasts in the bladder, are known to express TRPA1. However, the role of the TRPA1 in the development of bladder fibrosis remains elusive. In this study, we use the transforming growth factor-β1 (TGF-β1) to induce fibrotic changes in subu−MyoFBs and assess the consequences of TRPA1 activation utilizing RT-qPCR, western blotting, and immunocytochemistry. TGF-β1 stimulation increased α-SMA, collagen type I alpha 1 chain(col1A1), collagen type III (col III), and fibronectin expression, while simultaneously suppressing TRPA1 in cultured human subu−MyoFBs. The activation of TRPA1, with its specific agonist allylisothiocyanate (AITC), inhibited TGF-β1-induced fibrotic changes, and part of these inhibition effects could be reversed by the TRPA1 antagonist, HC030031, or by reducing TRPA1 expression via RNA interference. Furthermore, AITC reduced spinal cord injury-induced fibrotic bladder changes in a rat model. The increased expression of TGF-β1, α-SMA, col1A1 and col III, and fibronectin, and the downregulation of TRPA1, were also detected in the mucosa of fibrotic human bladders. These findings suggest that TRPA1 plays a pivotal role in bladder fibrosis, and the negative cross talk between TRPA1 and TGF-β1 signaling may represent one of the mechanisms underlying fibrotic bladder lesions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 6101 KiB  
Article
Kinin B2 and B1 Receptors Activation Sensitize the TRPA1 Channel Contributing to Anastrozole-Induced Pain Symptoms
by Maria Fernanda Pessano Fialho, Evelyne Silva Brum, Gabriela Becker, Indiara Brusco and Sara Marchesan Oliveira
Pharmaceutics 2023, 15(4), 1136; https://doi.org/10.3390/pharmaceutics15041136 - 3 Apr 2023
Cited by 7 | Viewed by 2445
Abstract
Aromatase inhibitors (AIs) cause symptoms of musculoskeletal pain, and some mechanisms have been proposed to explain them. However, signaling pathways downstream from kinin B2 (B2R) and B1 (B1R) receptor activation and their possible sensitizing of the Transient [...] Read more.
Aromatase inhibitors (AIs) cause symptoms of musculoskeletal pain, and some mechanisms have been proposed to explain them. However, signaling pathways downstream from kinin B2 (B2R) and B1 (B1R) receptor activation and their possible sensitizing of the Transient Receptor Potential Ankyrin 1 (TRPA1) remain unknown. The interaction between the kinin receptor and the TRPA1 channel in male C57BL/6 mice treated with anastrozole (an AI) was evaluated. PLC/PKC and PKA inhibitors were used to evaluate the signaling pathways downstream from B2R and B1R activation and their effect on TRPA1 sensitization. Anastrozole caused mechanical allodynia and muscle strength loss in mice. B2R (Bradykinin), B1R (DABk), or TRPA1 (AITC) agonists induced overt nociceptive behavior and enhanced and prolonged the painful parameters in anastrozole-treated mice. All painful symptoms were reduced by B2R (Icatibant), B1R (DALBk), or TRPA1 (A967079) antagonists. We observed the interaction between B2R, B1R, and the TRPA1 channel in anastrozole-induced musculoskeletal pain, which was dependent on the activation of the PLC/PKC and PKA signaling pathways. TRPA1 seems to be sensitized by mechanisms dependent on the activation of PLC/PKC, and PKA due to kinin receptors stimulation in anastrozole-treated animals. Thus, regulating this signaling pathway could contribute to alleviating AIs-related pain symptoms, patients’ adherence to therapy, and disease control. Full article
Show Figures

Figure 1

21 pages, 3646 KiB  
Article
TRPA1 as Target in Myocardial Infarction
by Clara Hoebart, Attila Kiss, Patrick M. Pilz, Petra L. Szabo, Bruno K. Podesser, Michael J. M. Fischer and Stefan Heber
Int. J. Mol. Sci. 2023, 24(3), 2516; https://doi.org/10.3390/ijms24032516 - 28 Jan 2023
Cited by 8 | Viewed by 2379
Abstract
Transient receptor potential cation channel subfamily A member 1 (TRPA1), an ion channel primarily expressed on sensory neurons, can be activated by substances occurring during myocardial infarction. Aims were to investigate whether activation, inhibition, or absence of TRPA1 affects infarcts and to explore [...] Read more.
Transient receptor potential cation channel subfamily A member 1 (TRPA1), an ion channel primarily expressed on sensory neurons, can be activated by substances occurring during myocardial infarction. Aims were to investigate whether activation, inhibition, or absence of TRPA1 affects infarcts and to explore underlying mechanisms. In the context of myocardial infarction, rats received a TRPA1 agonist, an antagonist, or vehicle at different time points, and infarct size was assessed. Wild type and TRPA1 knockout mice were also compared in this regard. In vitro, sensory neurons were co-cultured with cardiomyocytes and subjected to a model of ischemia-reperfusion. Although there was a difference between TRPA1 activation or inhibition in vivo, no experimental group was different to control animals in infarct size, which also applies to animals lacking TRPA1. In vitro, survival probability of cardiomyocytes challenged by ischemia-reperfusion increased from 32.8% in absence to 45.1% in presence of sensory neurons, which depends, at least partly, on TRPA1. This study raises doubts about whether TRPA1 is a promising target to reduce myocardial damage within a 24 h period. The results are incompatible with relevant enlargements of infarcts by TRPA1 activation or inhibition, which argues against adverse effects when TRPA1 is targeted for other indications. Full article
(This article belongs to the Special Issue Role of Ion Channels in Cardiovascular and Other Human Diseases)
Show Figures

Figure 1

Back to TopTop