Impact of Different Mucoadhesive Polymeric Nanoparticles Loaded in Thermosensitive Hydrogels on Transcorneal Administration of 5-Fluorouracil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of Sulphobutyl Chitosan (SB-Ch)
2.3. Preparation of Medicated NP
2.4. Preparation of Thermosensitive Hydrogels (TSOH) Containing NP Medicated with 5-FU
2.5. Dynamic Dialysis Studies
2.6. Interrupted-Dialysis Studies
2.7. Studies of 5-FU Release from NP-Containing TSOH
2.8. Confocal Microscopy and Image Analysis
2.9. Micro-Rheological Characterization of NP Mucoadhesive Properties
2.10. In Vivo Studies
2.11. Data Treatment
3. Results and Discussion
3.1. Synthesis of Sulphobutyl Chitosan (SB-Ch)
3.2. Characteristics of Medicated NP
3.3. Dynamic Dialysis Studies
3.4. 5-FU Release from NP
3.5. Drug Release from NP-Containing TSOH
3.6. Confocal Microscopy and Image Analysis
3.7. Micro-Rheological Characterization of NP Mucoadhesive Properties
3.8. In Vivo Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Üstündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.I.; Eğrilmez, S.; Özer, Ö.; Ertan, G. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci. 2014, 63, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Di Colo, G.; Zambito, Y.; Zaino, C. Polymeric enhancers of mucosal epithelia permeability: Synthesis, transepithelial penetration-enhancing properties, mechanism of action, safety issues. J. Pharm. Sci. 2008, 97, 1652–1680. [Google Scholar] [CrossRef] [PubMed]
- Zambito, Y.; Di Colo, G. Chitosan and its derivatives as intraocular penetration enhancers. J. Drug Deliv. Sci. Technol. 2010, 20, 45–52. [Google Scholar] [CrossRef]
- Zambito, Y.; Di Colo, G. Thiolated quaternary ammonium–chitosan conjugates for enhanced precorneal retention, transcorneal permeation and intraocular absorption of dexamethasone. Eur. J. Pharm. Biopharm. 2010, 75, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Reist, M.; Chenite, A.; Felt-Baeyens, O.; Mayer, J.M.; Gurny, R. Pseudo-thermosetting chitosan hydrogels for biomedical application. Int. J. Pharm. 2005, 288, 197–206. [Google Scholar] [CrossRef]
- Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann, C.D.; Selmani, A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000, 21, 2155–2161. [Google Scholar] [CrossRef]
- Wang, Q.; Zuo, Z.; Cheung CK, C.; Leung, S.S.Y. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int. J. Pharm. 2019, 559, 86–101. [Google Scholar] [CrossRef]
- Ruel-Gariepy, E.; Leroux, J.C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426. [Google Scholar] [CrossRef]
- Fabiano, A.; Chetoni, P.; Zambito, Y. Mucoadhesive nano-sized supramolecular assemblies for improved pre-corneal drug residence time. Drug Dev. Ind. Pharm. 2015, 41, 2069–2076. [Google Scholar] [CrossRef]
- Bonferoni, M.C.; Sandri, G.; Dellera, E.; Rossi, S.; Ferrari, F.; Zambito, Y.; Caramella, C. Palmitoyl glycol chitosan micelles for corneal delivery of cyclosporine. J. Biomed. Nanotechnol. 2016, 12, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Diebold, Y.; Jarrín, M.; Saez, V.; Carvalho, E.L.; Orea, M.; Calonge, M.; Alonso, M.J. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007, 28, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Fabiano, A.; Bizzarri, R.; Zambito, Y. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil. Int. J. Nanomed. 2017, 12, 633. [Google Scholar] [CrossRef] [PubMed]
- Morsi, N.; Ghorab, D.; Refai, H.; Teba, H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situgel for prolonged ocular delivery. Int. J. Pharm. 2016, 506, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Ban, J.; Zhang, Y.; Du, Y.; Wen, Y.; Huang, X.; Xie, Q.; Shen, L.; Zhang, S.; Deng, H.; et al. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone. Nanomedicine 2018, 13, 1239–1253. [Google Scholar] [CrossRef]
- Nagarwal, R.C.; Kumar, R.; Pandit, J.K. Chitosan coated sodium alginate–chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur. J. Pharm. Sci. 2012, 47, 678–685. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-Based Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469. [Google Scholar] [CrossRef]
- Dimassi, S.; Tabary, N.; Chai, F.; Blanchemain, N.; Martel, B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr. Polym. 2018, 202, 382–396. [Google Scholar] [CrossRef]
- Zambito, Y.; Felice, F.; Fabiano, A.; Di Stefano, R.; Di Colo, G. Mucoadhesive nanoparticles made of thiolated quaternary chitosan crosslinked with hyaluronan. Carbohydr. Polym. 2013, 92, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Fabiano, A.; Piras, A.M.; Uccello-Barretta, G.; Balzano, F.; Cesari, A.; Testai, L.; Zambito, Y. Impact of mucoadhesive polymeric nanoparticulate systems on oral bioavailability of a macromolecular model drug. Eur. J. Pharm. Biopharm. 2018, 130, 281–289. [Google Scholar] [CrossRef]
- Felice, F.; Zambito, Y.; Belardinelli, E.; D’Onofrio, C.; Fabiano, A.; Balbarini, A.; Di Stefano, R. Delivery of natural polyphenols by polymeric nanoparticles improves the resistance of endothelial progenitor cells to oxidative stress. Eur. J. Pharm. Sci. 2013, 50, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.S.; Wang, Y.Z.; Lin, J.J.; Lien, W.F. Preparation and properties of sulfopropyl chitosan derivatives with various sulfonation degree. J. Appl. Polym. 2010, 116, 1686–1693. [Google Scholar] [CrossRef]
- Di Colo, G.; Zambito, Y.; Zaino, C.; Sansò, M. Selected polysaccharides at comparison for their mucoadhesiveness and effect on precorneal residence of different drugs in the rabbit model. Drug Dev. Ind. Pharm. 2009, 35, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Uccello-Barretta, G.; Nazzi, S.; Balzano, F.; Di Colo, G.; Zambito, Y.; Zaino, C.; Benvenuti, M. Enhanced affinity of ketotifen toward tamarind seed polysaccharide in comparison with hydroxyethylcellulose and hyaluronic acid: A nuclear magnetic resonance investigation. Bioorg. Med. Chem. 2008, 16, 7371–7376. [Google Scholar] [CrossRef]
- Zambito, Y.; Pedreschi, E.; Di Colo, G. Is dialysis a reliable method for studying drug release from nanoparticulate systems?—A case study. Int. J. Pharm. 2012, 434, 28–34. [Google Scholar] [CrossRef]
- Dodero, A.; Williams, R.; Gagliardi, S.; Vicini, S.; Alloisio, M.; Castellano, M. A micro-rheological and rheological study of biopolymers solutions: Hyaluronic acid. Carbohydr. Polym. 2019, 203, 349–355. [Google Scholar] [CrossRef]
- Ceulemans, J.; Vermeire, A.; Adriaens, E.; Remon, J.P.; Ludwig, A. Evaluation of a mucoadhesive tablet for ocular use. J. Control. Release 2001, 77, 333–344. [Google Scholar] [CrossRef]
- Lallemand, F.; Furrer, P.; Felt-Baeyens, O.; Gex-Fabry, M.; Dumont, J.M.; Besseghir, K.; Gurny, R. A novel water-soluble cyclosporine a prodrug: Ocular tolerance and in vivo kinetics. Int. J. Pharm. 2005, 295, 7–14. [Google Scholar] [CrossRef]
- Schoenwald, R.D.; Harris, R.G.; Turner, D.; Knowles, W.; Chien, D.S. Ophthalmic bioequivalence of steroid/antibiotic combination formulations. Biopharm. Drug Dispos. 1987, 8, 527–548. [Google Scholar] [CrossRef]
- Fabiano, A.; Zambito, Y.; Bernkop-Schnürch, A. About the impact of water movement on the permeation behaviour of nanoparticles in mucus. Int. J. Pharm. 2017, 517, 279–285. [Google Scholar] [CrossRef]
- Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev. 2018, 124, 3–15. [Google Scholar] [CrossRef] [PubMed]
NP Type | Nanoparticle Size, nm (Polydispersity Index) | ζ, mV | EE% |
---|---|---|---|
NP quaternary ammonium-Ch conjugate (QA-Ch) | 294.3 ± 60.6 (0.4 ± 0.2) | +9.1 ± 0.4 | 18.4 ± 4.0 |
NP QA-Ch-S-pro | 340.7 ± 100.1 (0.3 ± 0.1) | +9.5 ± 0.1 | 18.3 ± 0.2 |
NP SB-Ch | 390.6 ± 50.3 (0.2 ± 0.1) | −3.5 ± 0.1 | 15.6 ± 1.0 |
Formulation | Modulus of Straight-Line Slope ± SD (h−1) | r2 | Interaction a % |
---|---|---|---|
Control | 0.44 ± 0.04 | 0.97 | - |
QA-Ch | 0.23 ± 0.03 | 0.94 | 47.7 |
NP QA-Ch | 0.37 ± 0.03 | 0.98 | 15.9 |
QA-Ch-S-pro | 0.28 ± 0.04 | 0.93 | 36.4 |
NP QA-Ch-S-pro | 0.37 ± 0.03 | 0.98 | 15.9 |
SB-Ch | 0.29 ± 0.06 | 0.90 | 34.1 |
NP SB-Ch | 0.41 ± 0.06 | 0.93 | 6.8 |
Formulation | Slope of √t Plot (%/√h) | Cumulative Release at 5 h (%) |
---|---|---|
Ch NP+TSOH a | 3.34 ± 0.32 | 59.50 ± 0.90 |
QA-Ch NP+TSOH | 3.14 ± 0.39 | 52.23 ± 1.07 |
QA-Ch-S-pro NP+TSOH | 3.64 ± 3.12 | 65.93 ± 5.70 |
SB-Ch NP+TSOH | 2.43 ± 0.21 * | 37.00 ± 3.82 * |
Entry | Particle (Status) | Mean Size ± SE (µm) |
---|---|---|
1 | SB-Ch NP (sol) | 0.27 ± 0.02 |
2 | SB-Ch NP (gel) | 0.33 ± 0.02 |
3 | QA-Ch NP (gel) | 0.70 ± 0.07; 0.29 ± 0.01 |
4 | QA-Ch-S-pro NP (gel) | 4.26 ± 1.67; 0.61 ± 0.15 |
Formulation | AUC0–10, μg h/mL | AUCrel |
---|---|---|
Control a | 0.62 ± 0.1 | - |
TSOH a | 2.32 ± 0.26 * | 3.7 |
Ch NP+TSOH a | 2.23 ± 0.39 * | 3.6 |
QA-Ch NP+TSOH | 3.30 ± 0.52 *,** | 5.3 |
SB-Ch NP+TSOH | 3.34 ± 0.53 *,** | 5.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiano, A.; Piras, A.M.; Guazzelli, L.; Storti, B.; Bizzarri, R.; Zambito, Y. Impact of Different Mucoadhesive Polymeric Nanoparticles Loaded in Thermosensitive Hydrogels on Transcorneal Administration of 5-Fluorouracil. Pharmaceutics 2019, 11, 623. https://doi.org/10.3390/pharmaceutics11120623
Fabiano A, Piras AM, Guazzelli L, Storti B, Bizzarri R, Zambito Y. Impact of Different Mucoadhesive Polymeric Nanoparticles Loaded in Thermosensitive Hydrogels on Transcorneal Administration of 5-Fluorouracil. Pharmaceutics. 2019; 11(12):623. https://doi.org/10.3390/pharmaceutics11120623
Chicago/Turabian StyleFabiano, Angela, Anna Maria Piras, Lorenzo Guazzelli, Barbara Storti, Ranieri Bizzarri, and Ylenia Zambito. 2019. "Impact of Different Mucoadhesive Polymeric Nanoparticles Loaded in Thermosensitive Hydrogels on Transcorneal Administration of 5-Fluorouracil" Pharmaceutics 11, no. 12: 623. https://doi.org/10.3390/pharmaceutics11120623
APA StyleFabiano, A., Piras, A. M., Guazzelli, L., Storti, B., Bizzarri, R., & Zambito, Y. (2019). Impact of Different Mucoadhesive Polymeric Nanoparticles Loaded in Thermosensitive Hydrogels on Transcorneal Administration of 5-Fluorouracil. Pharmaceutics, 11(12), 623. https://doi.org/10.3390/pharmaceutics11120623