Genomic and Clinical Analysis of a Fatal Human Lyssavirus irkut Case: Evidence for a Natural Focus in the Russian Far East
Abstract
:1. Introduction
2. Materials and Methods
3. Case Description
4. Results
5. Genomic and Phylogenetic Analysis
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shchelkanov, M.Y.; Tabakaeva, T.V.; Lyubchenko, E.N.; Korotkova, I.P.; Shchelkanov, E.M.; Pankratov, D.V.; Dunaeva, M.N.; Surovy, A.L.; Kuznetsova, T.A.; Tsybulsky, A.V.; et al. Chiropterans: General Characteristics of the Order; FEFU: Primorskiy Kray, Vladivostok, Russia, 2021; 130p. (In Russian) [Google Scholar] [CrossRef]
- Han, H.; Wen, H.; Zhou, C.; Chen, F.; Luo, L.; Liu, J.; Yu, X. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 2015, 205, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Botvinkin, A.D.; Poleschuk, E.M.; Kuzmin, I.V.; Borisova, T.I.; Gazaryan, S.V.; Yager, P.; Rupprecht, C.E. Novel lyssaviruses isolated from bats in Russia. Emerg. Infect. Dis. 2003, 9, 1623–1625. [Google Scholar] [CrossRef] [PubMed]
- Corrales-Aguilar, E.; Schwemmle, M. (Eds.) Bats and Viruses: Current Research and Future Trends; Caister Academic Press: Poole, UK, 2020. [Google Scholar]
- Taxonomy, V. The ICTV Report on Virus Classification and Taxon Nomenclature. Subfamily: Alpharhabdovirinae. Genus: Lyssavirus. Available online: https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/w/rhabdoviridae/795/genus-lyssavirus (accessed on 20 May 2025).
- Kuzmin, I.V.; Wu, X.; Tordo, N.; Rupprecht, C.E. Complete genomes of Aravan, Khujand, Irkut and West Caucasian bat viruses, with special attention to the polymerase gene and non-coding regions. Virus Res. 2008, 136, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Marston, D.A.; McElhinney, L.M.; Johnson, N.; Muller, T.; Conzelmann, K.K.; Tordo, N.; Fooks, A.R. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3′ non-translated region. J. Gen. Virol. 2007, 88, 1302–1314. [Google Scholar] [CrossRef]
- Badrane, H.; Tordo, N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol. 2001, 75, 8096–8104. [Google Scholar] [CrossRef]
- Calisher, C.H.; Ellison, J.A. The other rabies viruses: The emergence and importance of lyssaviruses from bats and other vertebrates. Travel Med. Infect. Dis. 2012, 10, 69–79. [Google Scholar] [CrossRef]
- WHO. Rabies Information System. Available online: https://www.who-rabies-bulletin.org/node/53 (accessed on 8 January 2024).
- Evans, J.S.; Horton, D.L.; Easton, A.J.; Fooks, A.R.; Banyard, A.C. Rabies virus vaccines: Is there a need for a pan-lyssavirus vaccine? Vaccine 2012, 30, 7447–7454. [Google Scholar] [CrossRef]
- Singh, K.; Rupprecht, C.E.; Bleck, T.P. Rabies (Rhabdoviruses). In Principles Practice of Infectious Diseases; Bennett, J.E., Dolin, R., Blaser, M.J., Douglas, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1984–1994. [Google Scholar]
- Roine, R.O.; Hillbom, M.; Valle, M.; Haltia, M.; Ketonen, L.; Neuvonen, E.; Lumio, J.; Lähdevirta, J. Fatal encephalitis caused by a bat-borne rabies-related virus. Clinical findings. Brain 1988, 111, 1505–1516. [Google Scholar] [CrossRef]
- Selimov, M.A.; Tatarov, A.G.; Botvinkin, A.D.; Klueva, E.V.; Kulikova, L.G.; Khismatullina, N.A. Rabies-related Yuli virus; identification with a panel of monoclonal antibodies. Acta Virol. 1989, 33, 542–546. Available online: https://elibrary.ru/xplirs (accessed on 1 May 2023).
- Regnault, B.; Evrard, B.; Plu, I.; Dacheux, L.; Troadec, E.; Cozette, P.; Chretien, D.; Duchesne, M.; Vallat, J.M.; Jamet, A.; et al. First case of lethal encephalitis in Western Europe due to European bat lyssavirus type 1. Clin. Infect. Dis. 2022, 74, 461–466. [Google Scholar] [CrossRef]
- Botvinkin, A.D.; Selnikova, O.P.; Antonova, L.A.; Moiseeva, A.B.; Nesterenko, E.Y. Human rabies case caused from a bat bite in Ukraine. Rabies Bull. Eur. 2005, 29, 5–7. Available online: https://elibrary.ru/tnndix (accessed on 20 May 2025).
- Kuzmin, I.V.; Hughes, G.J.; Botvinkin, A.D.; Orciari, L.A.; Rupprecht, C.E. Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirus genotype definition. Virus Res. 2005, 111, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Leonova, G.N.; Somova, L.M.; Belikov, S.I.; Kondratov, I.G.; Plekhova, N.G.; Krylova, N.V.; Pavlenko, E.V.; Tiunov, M.P.; Tkachev, S.E. The fatal case of Lyssavirus encephalitis in the Russian Far East. In Encephalitis; Tkachev, S., Ed.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Poleshchuk, E.M.; Tagakova, D.N.; Sidorov, G.N.; Orlova, T.S.; Gordeiko, N.S.; Kaisarov, A.Z. Lethal cases of lyssavirus encephalitis in humans after contact with bats in the Russian Far East in 2019–2021. Probl. Virol. 2023, 68, 45–58. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Zhao, J.; Zhang, F.; Hu, R. Isolation of Irkut virus from a Murina leucogaster bat in China. PLoS Negl. Trop. Dis. 2013, 7, e2097. [Google Scholar] [CrossRef]
- Shchelkanov, M.Y.; Deviatkin, A.A.; Ananiev, V.Y.; Frolov, E.V.; Dombrovskaya, I.E.; Dedkov, V.G.; Ardashev, A.V.; Kolomeetc, S.A.; Korotkova, I.P.; Lyubchenko, E.N.; et al. Isolation and complete genome sequencing of rabies virus strain isolated from brown bear (Ursus arctos) that attacked a human in Primorsky krai (November, 2014). Probl. Virol. 2016, 61, 180–186. [Google Scholar] [CrossRef]
- Lvov, D.K.; White, D.O.; Fenner, F.J. (Eds.) Medical Virology; Medical Information Agency: Moscow, Russia, 2008; 656p, ISBN 5-89481-564-9. (In Russian) [Google Scholar]
- Lvov, D.K.; Shchelkanov, M.Y.; Alkhovsky, S.V.; Deryabin, P.G. Zoonotic Viruses of Northern Eurasia. Taxonomy and Ecology; Academic Press: Cambridge, MA, USA, 2015; 452p, Available online: https://www.elsevier.com/books/zoonotic-viruses-of-northern-eurasia/lvov/978-0-12-801742-5 (accessed on 24 May 2025).
- Krasilshchikova, M.S.; Belozertseva, I.V. (Eds.) Directive 2010/63/EU of the European Parliament of the Council on the Protection of Animals Used for Scientific Purposes; St. Petersburg, Russia, 2012; 48p, Available online: https://norecopa.no/legislation/eu-directive-201063/ (accessed on 24 May 2025). (In Russian)
- Belozercevoi, I.V.; Blinova, D.V.; Krasil’shikovoi, M.S. (Eds.) Guidelines for the Care Use of Laboratory Animals, 8th ed.; IRBIS: Moskva, Russia, 2017; 336p. (In Russian) [Google Scholar]
- Meslin, F.X.; Kaplan, M.M.; Koprowski, H. (Eds.) Laboratory Techniques in Rabies; WHO: Geneva, Switzerland, 1996. Available online: https://apps.who.int/iris/handle/10665/38286 (accessed on 8 January 2024).
- Sarkisov, D.S.; Perova, Y.L. (Eds.) Microscopic Technique Guide; Medicine: Moscow, Russia, 1996; 549p. [Google Scholar]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 4 May 2023).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. Molecular Evolutionary Genetics Analysis Version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Marston, D.A.; Banyard, A.C.; McElhinney, L.M.; Freuling, C.M.; Finke, S.; de Lamballerie, X.; Müller, T.; Fooks, A.R. The lyssavirus host-specificity conundrum-rabies virus-the exception not the rule. Cur. Opin. Virol. 2018, 28, 68–73. [Google Scholar] [CrossRef]
- Tiunov, M.P.; Kruskop, S.V.; Orlova, M.V. Bats of the Russian Far East and Their Ectoparasites; Pero Publisher: Moscow, Russia, 2021; 191p. [Google Scholar]
- Chen, T.; Miao, F.M.; Liu, Y.; Zhang, S.F.; Zhang, F.; Li, N.; Hu, R.L. Possible transmission of Irkut virus from dogs to humans. Biomed. Environ. Sci. 2018, 31, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Boland, T.A.; McGuone, D.; Jindal, J.; Rocha, M.; Cumming, M.; Rupprecht, C.E.; Barbosa, T.F.; de Novaes Oliveira, R.; Chu, C.J.; Cole, A.J.; et al. Phylogenetic and epidemiologic evidence of multiyear incubation in human rabies. Ann. Neurol. 2014, 75, 155–160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klein, A.; Eggerbauer, E.; Potratz, M.; Zaeck, L.M.; Calvelage, S.; Finke, S.; Müller, T.; Freuling, C.M. Comparative pathogenesis of different phylogroup I bat lyssaviruses in a standardized mouse model. PLoS Negl. Trop. Dis. 2022, 16, e0009845. [Google Scholar] [CrossRef]
- Dean, D.J.; Abelseth, M.K.; Atanasiu, P. The fluorescent antibody test. In Laboratory Techniques in Rabies; Meslin, F.X., Kaplan, M.M., Koprowski, H., Eds.; WHO: Geneva, Switzerland, 1996; pp. 88–93. [Google Scholar]
- Dedkov, V.G.; Lukashev, A.N.; Deviatkin, A.A.; Kuleshov, K.V.; Safonova, M.V.; Poleshchuk, E.M.; Drexler, J.F.; Shipulin, G.A. Retrospective diagnosis of two rabies cases in humans by high throughput sequencing. J. Clin. Virol. 2016, 78, 74–81. [Google Scholar] [CrossRef]
- De Benedictis, P.; De Battisti, C.; Dacheux, L.; Marciano, S.; Ormelli, S.; Salomoni, A.; Caenazzo, S.T.; Lepelletier, A.; Bourhy, H.; Capua, I.; et al. Lyssavirus detection and typing using pyrosequencing. J. Clin. Microbiol. 2011, 49, 1932–1938. [Google Scholar] [CrossRef]
- Deviatkin, A.A.; Lukashev, A.N.; Poleshchuk, E.M.; Dedkov, V.G.; Tkachev, S.E.; Sidorov, G.N.; Karganova, G.G.; Gavrilo, M.V.; Galkina, I.V.; Shchelkanov, M.Y.; et al. The phylodynamics of the rabies virus in the Russian Federation. PLoS ONE 2017, 12, e0171855. [Google Scholar] [CrossRef]
- Banyard, A.C.; Fooks, A.R. Rabies and Other Lyssaviruses (Rhabdoviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 738–746. ISBN 9780128145166. [Google Scholar] [CrossRef]
- Lafon, M.; Bourhy, H.; Sureau, P. Immunity against the European bat rabies (Duvenhage) virus induced by rabies vaccines: An experimental study in mice. Vaccine 1988, 6, 362–368. [Google Scholar] [CrossRef]
- Brookes, S.; Parsons, G.; Johnson, N.; McElhinney, L.; Fooks, A. Rabies human diploid cell vaccine elicits cross-neutralizing and cross-protecting immune responses against European and Australian bat lyssaviruses. Vaccine 2005, 23, 4101–4109. [Google Scholar] [CrossRef]
- Malerczyk, C.; Selhorst, T.; Tordo, N.; Moore, S.; Müller, T. Antibodies induced by vaccination with purified chick embryo cell culture vaccine (PCECV) cross-neutralize non-classical bat lyssavirus strains. Vaccine 2009, 27, 5320–5325. [Google Scholar] [CrossRef]
- Hanlon, C.A.; Kuzmin, I.V.; Blanton, J.D.; Weldon, W.C.; Manangan, J.S.; Rupprecht, C.E. Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Res. 2005, 111, 44–54. [Google Scholar] [CrossRef]
- Shi, C.; Sun, P.; Yang, P.; Liu, L.; Tian, L.; Liu, W.; Wang, M.; Zheng, X.; Zheng, W. Research progress on neutralizing epitopes and antibodies for the Rabies virus. Infect. Med. 2022, 1, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Marissen, W.E.; Kramer, R.A.; Rice, A.; Weldon, W.C.; Niezgoda, M.; Faber, M.; Slootstra, J.W.; Meloen, R.H.; Clijsters-van der Horst, M.; Visser, T.J.; et al. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: Fine mapping and escape mutant analysis. J. Virol. 2005, 79, 4672–4678. [Google Scholar] [CrossRef] [PubMed]
- Coertse, J.; Viljoen, N.; Weyer, J.; Markotter, W. Comparative Neutralization Activity of Commercial Rabies Immunoglobulin against Diverse Lyssaviruses. Vaccines 2023, 11, 1255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dorfmeier, C.L.; Shen, S.; Tzvetkov, E.P.; McGettigan, J.P. Reinvestigating the role of IgM in rabies virus postexposure vaccination. J. Virol. 2013, 87, 9217–9222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Clinical Indicator | Value for the Sampling Data | Norm | ||
---|---|---|---|---|
09/08/2021 | 10/08/2021 | 12/08/2021 | ||
WBC (white blood cells), 109/L | 8.9 | 19.54 | 12.6 | 4.0–9.0 |
RBC (red blood cells), 1012/L | 4.9 | 4.98 | 5.2 | 3.5–5.5 |
HGB (hemoglobin), g/L | 166 | 154 | 163 | 110–160 |
MCV (mean corpuscular volume), fL | 93 | 87.6 | 86.6 | 80.0–100.0 |
HCT (hematocrit), % | 45.2 | 43.6 | 45.1 | 37.0–54.0 |
MCHC (mean corpuscular hemoglobin concentration), g/L | 377 | 353 | 361 | 320–360 |
MCH (mean corpuscular hemoglobin), pg | 34.2 | 30.9 | 31.3 | 27.0–34.0 |
PLT (platelet), 109/L | 197 | 192 | 185 | 150–400 |
MPV (mean platelet volume), fL | 11.1 | 11.0 | 10.8 | 6.5–12.0 |
P-LCR (platelet larger cell ratio), % | 34.3 | 33.3 | 30.3 | 11.0–45.0 |
NEU (neutrophils), 109/L | 5.7 | 14.61 | 10.5 | 2.0–7.0 |
NEU (neutrophils), % | 65 | 74.7 | 82 | 50–70 |
LYM (lymphocytes), 109/L | 1.7 | 1.4 | 1.25 | 0.8–4.0 |
LYM (lymphocytes), % | 18.7 | 11.1 | 9.9 | 20.0–40.0 |
MON (monocytes), 109/L | N/A | 2.76 | 0.9 | 0.12–1.20 |
MON (monocytes), % | N/A | 14.1 | 7.1 | 3.0–12.0 |
EO (eosinophils), 109/L | N/A | 0.0 | 0.01 | 0.02–0.5 |
EO (eosinophils), % | N/A | 0.0 | 0.1 | 0.5–5.0 |
BASO (basophils),109/L | N/A | 0.01 | 0.02 | 0.00–0.10 |
BASO (basophils), % | N/A | 0.1 | 0.2 | 0.0–1.0 |
MXD (monocytes–basophils–eosinophils mixed), 109/L | 1.5 | N/A | N/A | 0.09–0.6 |
MXD (monocytes–basophils–eosinophils), % | 16.3 | N/A | N/A | 3.0–11.0 |
RDW-SD (red cell distribution width—standard deviation), fL | N/A | 40.8 | 39.8 | 39.9–52.2 |
RDW-CDCV (red cell distribution width—coefficient of variation), % | N/A | 13.1 | 12.7 | 12.2–14.6 |
PDW (platelet distribution width), fL | N/A | 12.3 | 12.1 | 9.8–15.2 |
Na+, mM | 151.3 | 146.0 | 144.0 | 136–145 |
K+, mM | 3.0 | 3.5 | 3.9 | 3.5–5.1 |
RNA SARS-CoV-2, swab, RT-PCR | Negative | N/A | N/A | Negative |
DNA Mycobacterium tuberculosis/bovis, CSF, PCR | N/A | N/A | Negative | Negative |
DNA Simplexvirus humanalpha {1, 2}, CSF, PCR | N/A | N/A | Negative | Negative |
DNA Cytomegalovirus humanbeta 5, CSF, PCR | N/A | N/A | Negative | Negative |
RNA Enterovirus sp., CSF, RT-PCR | N/A | N/A | Negative | Negative |
RNA Orthoflavivirus encephalitidis, CSF, RT-PCR | N/A | N/A | Negative | Negative |
RNA Mamastrovirus sp., stool, RT-PCR | N/A | N/A | Negative | Negative |
Sequence Similarity (%) | |||||||
---|---|---|---|---|---|---|---|
GenBank ID | Lyssavirus Species Member/Strain | Complete Genome, Nucleotide Similarity (%) | Gene (Nucleotide/Amino Acid) | ||||
N | P | M | G | L | |||
EF614260 | IRKV/L. irkut/Ref | 91 | 92/99 | 91/95 | 92/99 | 92/98 | 91/100 |
JX442979 | IRKV/L. irkut/THChina12 | 99.1 | 99/100 | 99/99 | 99/100 | 99/100 | 99/100 |
FJ905105 | IRKV/L. irkut/Ozernoe | 98.7 | 99/100 | 99/99 | 99/100 | 99/100 | 98/100 |
MW551946 | EBLV-1/L. hamburg/01humFRA | 74 | 79/92 | 71/70 | 81/94 | 66/80 | 76/96 |
MF472709 | TWBLV/L. formosa/YL/2017 | 71 | 81/91 | 67/64 | 78/94 | 74/68 | 75/95 |
NC_025385 | KHUV/L. khujand/Khujand | 71 | 76/88 | 67/39 | 77/91 | 70/77 | 73/95 |
NC_020810 | DUVV/L. duvenhage/86132SA | 71 | 77/90 | 67/64 | 79/92 | 71/74 | 75/95 |
NC_025251 | BBLV/L. bokeloh/21961 | 71 | 76/89 | 69/40 | 78/89 | 71/75 | 72/95 |
NC_020808 | ARAV/L. aravan/Kyrgyzstan | 71 | 76/90 | 65/39 | 77/93 | 71/77 | 73/95 |
NC_009528 | EBLV-2/L. helsinki/RV1333 | 71 | 76/87 | 67/40 | 77/87 | 7176 | 73/94 |
KY688155 | EBLV-2/L. helsinki/RV3370 | 71 | 76/87 | 67/40 | 77/87 | 71/76 | 73/94 |
NC_031988 | GBLV/L. gannoruwa/RV3266 | 69 | 74/88 | 64/36 | 75/86 | 69/74 | 72/94 |
OK135146 | RABV/L. rabies/18008LIB | 69 | 75/87 | 64/36 | 76/87 | 68/70 | 71/94 |
OK135148 | RABV/L. rabies/18018LIB | 69 | 75/87 | 64/35 | 75/87 | 68/70 | 71/93 |
OP642459 | RABV/L. rabies/Vnukovo-32 | 68 | 75/87 | 64/37 | 75/82 | 68/68 | 71/93 |
Virus/Strain | Antigenic site (Amino Acids) | |||||
---|---|---|---|---|---|---|
I (226–231) | IIa (198–200) | IIb (34–42) | III (330–338) | IV (263–264) | a (342–343) | |
RABV (L. rabies/Vnukovo-32) | KLCGVL | KRA | GCTNLSGFS | KSVRTWNEI | FH | KG |
IRKV (L. irkut/FE-681) | KLCGMA | KKA | GCTTLTAFD | KSIREWKEI | FH | KG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klyuchnikova, E.; Gladkikh, A.; Iunikhina, O.; Sbarzaglia, V.; Drobot, E.; Popova, M.; Lyapun, I.; Arbuzova, T.; Galkina, I.; Sharova, A.; et al. Genomic and Clinical Analysis of a Fatal Human Lyssavirus irkut Case: Evidence for a Natural Focus in the Russian Far East. Viruses 2025, 17, 769. https://doi.org/10.3390/v17060769
Klyuchnikova E, Gladkikh A, Iunikhina O, Sbarzaglia V, Drobot E, Popova M, Lyapun I, Arbuzova T, Galkina I, Sharova A, et al. Genomic and Clinical Analysis of a Fatal Human Lyssavirus irkut Case: Evidence for a Natural Focus in the Russian Far East. Viruses. 2025; 17(6):769. https://doi.org/10.3390/v17060769
Chicago/Turabian StyleKlyuchnikova, Ekaterina, Anna Gladkikh, Olga Iunikhina, Valeriya Sbarzaglia, Elena Drobot, Margarita Popova, Irina Lyapun, Tatiana Arbuzova, Irina Galkina, Alena Sharova, and et al. 2025. "Genomic and Clinical Analysis of a Fatal Human Lyssavirus irkut Case: Evidence for a Natural Focus in the Russian Far East" Viruses 17, no. 6: 769. https://doi.org/10.3390/v17060769
APA StyleKlyuchnikova, E., Gladkikh, A., Iunikhina, O., Sbarzaglia, V., Drobot, E., Popova, M., Lyapun, I., Arbuzova, T., Galkina, I., Sharova, A., Abramova, S., Tsyganova, N., Pugacheva, E., Ramsay, E., Poleshchuk, E., Somova, L., Tagakova, D., Pankratov, D., Sidorov, G., ... Shchelkanov, M. (2025). Genomic and Clinical Analysis of a Fatal Human Lyssavirus irkut Case: Evidence for a Natural Focus in the Russian Far East. Viruses, 17(6), 769. https://doi.org/10.3390/v17060769