Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus
Abstract
:1. Mechanism of mRNA Translation in Eukaryotes
2. Regulation of Translation by the Innate Immune Response
3. Viral Mechanisms for Evasion of ISG-Mediated Repression of Translation
4. Structure of Viral mRNAs
5. IRES Structure and the Mechanism of IRES-Mediated Initiation of Translation
6. eIF4E-Independent Initiation Mediated by an Alternative Cap-Binding Complex
7. Conclusions
Funding
Conflicts of Interest
References
- Jackson, R.J.; Hellen, C.U.T.; Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell. Biol. 2010, 11, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Hellen, C.U.T. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb. Perspect. Biol. 2018, 10, a032656. [Google Scholar] [CrossRef] [PubMed]
- Smart, A.; Gilmer, O.; Caliskan, N. Translation inhibition mediated by interferon-stimulated genes during viral infections. Viruses 2024, 16, 1097. [Google Scholar] [CrossRef] [PubMed]
- Mears, H.V.; Sweeney, T.R. Better together: The role of IFIT protein-protein interactions in the antiviral response. J. Gen. Virol. 2018, 99, 1463–1477. [Google Scholar] [CrossRef]
- Ventoso, I.; Berlanga, J.J.; Toribio, R.; Díaz-López, I. Translational control of alphavirus-host interactions: Implications in viral evolution, tropism and antiviral response. Viruses 2024, 16, 205. [Google Scholar] [CrossRef]
- Cesaro, T.; Michiels, T. Inhibition of PKR by viruses. Front. Microbiol. 2021, 12, 757238. [Google Scholar] [CrossRef]
- Megawati, D.; Stroup, J.N.; Park, C.; Clarkson, T.; Tazi, L.; Brennan, G.; Rothenburg, S. Tanapox virus and Yaba monkey tumor virus K3 orthologs inhibit primate protein kinase R in a species-specific fashion. Viruses 2024, 16, 1095. [Google Scholar] [CrossRef]
- Li, Y.; Renner, D.M.; Comar, C.E.; Whelan, J.N.; Reyes, H.M.; Cardenas-Diaz, F.L.; Truitt, R.; Tan, L.H.; Dong, B.; Alysandratos, K.D.; et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proc. Natl. Acad. Sci. USA 2021, 118, e2022643118. [Google Scholar] [CrossRef]
- Dolliver, S.M.; Galbraith, C.; Khaperskyy, D.A. Human betacoronavirus OC43 interferes with the integrated stress response pathway in infected cells. Viruses 2024, 16, 212. [Google Scholar] [CrossRef]
- Wang, X.; Xuan, Y.; Han, Y.; Ding, X.; Ye, K.; Yang, F.; Gao, P.; Goff, S.P.; Gao, G. Regulation of HIV-1 Gag-Pol expression by Shiftless, an inhibitor of programmed-1 ribosomal frameshifting. Cell 2019, 176, 625–635.e14. [Google Scholar] [CrossRef]
- Jäger, N.; Ayyub, S.A.; Peske, F.; Liedtke, D.; Bohne, J.; Hoffmann, M.; Rodnina, M.V.; Pöhlmann, S. The inhibition of Gag-Pol expression by the restriction factor Shiftless is dispensable for the restriction of HIV-1 infection. Viruses 2024, 16, 583. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.A.; Dinman, J.D. Shiftless Is a novel member of the ribosome stress surveillance machinery that has evolved to play a role in innate immunity and cancer surveillance. Viruses 2023, 15, 2296. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.; Fox, P.L. Host-like RNA elements regulate virus translation. Viruses 2024, 16, 468. [Google Scholar] [CrossRef]
- Zinoviev, A.; Hellen, C.U.T.; Pestova, T.V. Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs. Mol. Cell 2015, 57, 1059–1073. [Google Scholar] [CrossRef]
- Sherlock, M.E.; Langeberg, C.J.; Segar, K.E.; Kieft, J.S. A conserved class of viral RNA structures regulates translation reinitiation through dynamic ribosome interactions. Cell Rep. 2025, 44, 115236. [Google Scholar] [CrossRef]
- Jan, E.; Mohr, I.; Walsh, D. A cap-to-tail guide to mRNA translation strategies in virus-infected cells. Annu. Rev. Virol. 2016, 3, 283–307. [Google Scholar] [CrossRef]
- Truniger, V.; Miras, M.; Aranda, M.A. Structural and functional diversity of plant virus 3’-cap-independent translation enhancers (3’-CITEs). Front. Plant Sci. 2017, 8, 2047. [Google Scholar] [CrossRef]
- Arhab, Y.; Bulakhov, A.G.; Pestova, T.V.; Hellen, C.U.T. Dissemination of internal ribosomal entry sites (IRES) between viruses by horizontal gene transfer. Viruses 2020, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chapagain, S.; Chien, J.; Pereira, H.S.; Patel, T.R.; Inoue-Nagata, A.K.; Jan, E. Factor-dependent internal ribosome entry site and -1 programmed frameshifting signal in the Bemisia-associated dicistrovirus 2. Viruses 2024, 16, 695. [Google Scholar] [CrossRef]
- Abedeera, S.M.; Davila-Calderon, J.; Haddad, C.; Henry, B.; King, J.; Penumutchu, S.; Tolbert, B.S. The repurposing of cellular proteins during Enterovirus A71 infection. Viruses 2023, 16, 75. [Google Scholar] [CrossRef]
- Arhab, Y.; Pestova, T.V.; Hellen, C.U.T. Translation of overlapping open reading frames promoted by type 2 IRESs in avian calicivirus genomes. Viruses 2024, 16, 1413. [Google Scholar] [CrossRef] [PubMed]
- de Breyne, S.; Ohlmann, T. Focus on translation initiation of the HIV-1 mRNAs. Int. J. Mol. Sci. 2018, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Boris-Lawrie, K.; Liebau, J.; Hayir, A.; Heng, X. Emerging roles of m7G-Cap hypermethylation and nuclear cap-binding proteins in bypassing suppression of eIF4E-dependent translation. Viruses 2025, 17, 372. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellen, C.U.T. Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus. Viruses 2025, 17, 766. https://doi.org/10.3390/v17060766
Hellen CUT. Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus. Viruses. 2025; 17(6):766. https://doi.org/10.3390/v17060766
Chicago/Turabian StyleHellen, Christopher U. T. 2025. "Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus" Viruses 17, no. 6: 766. https://doi.org/10.3390/v17060766
APA StyleHellen, C. U. T. (2025). Viral Strategies and Cellular Countermeasures That Regulate mRNA Access to the Translation Apparatus. Viruses, 17(6), 766. https://doi.org/10.3390/v17060766