Feline Coronavirus in Northern Vietnam: Genetic Detection and Characterization Reveal Predominance of Type I Viruses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Samples
2.3. Total RNA Extraction and cDNA Synthesis
2.4. PCR, Nested PCR, and Nucleotide Sequencing
Name of Primers | Nucleotide Sequence (5′–3′) | PCR Product (bp) | References |
---|---|---|---|
FCoV-P205 | GGC AAC CCG ATG TTT AAA ACT GG | 223 | [16] |
FCoV-P211 | CAC TAG ATC CAG ACG TTA GCT C | ||
Iffs | GTT TCA ACC TAG AAA GCC TCA GAT | Type I: 376 Type II: 283 | [15] |
Icfs | GCC TAG TAT TAT ACC TGA CTA | ||
Iubs | CCA CAC ATA CCA AGG CC | ||
nIffles | CCT AGA AAG CCT CAG ATG AGT G | Type I: 360 Type II: 218 | |
nIcfs | CAG ACC AAA CTG GAC TGT AC | ||
nIubs | CCA AGG CCA TTT TAC ATA | ||
FCoV-Mut-F5 | CAA TAT TAC AAT GGC ATA ATG G | 598 | [12] |
FCoV-Mut-R5 | CCC TCG AGT CCC GCA GAA ACC ATA CCT A | ||
FCoV-Mut-F6 | GGC ATA ATG GTT TTA CCT GGT G | 142 | |
FCoV-Mut-R6 | TAA TTA AGC CTC GCC TGC ACT T | ||
FCoV-Mut-F7 | GGC AGA GAT GGA TCT ATT TTT GTT A | 1.582 | |
FCoV-Mut-R7 | ATA ATC ATC ATC AAC AGT GCC | ||
FCoV-Mut-F8 | GCA CAA GCA GCT GTG ATT A | 156 | |
FCoV-Mut-R8 | GTA ATA GAA TTG TGG CAT |
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Detection of FCoV Genome in Field Samples Using PCR
3.2. FCoV Typing, Genetic, and Phylogenetic Analysis
3.3. Detection of Mutation Sites 23,531 and 23,537 and Key Restriction Site Detection of Furin Protein in the S1/S2 Region of FCoV
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Li, Y.; Huang, J.; Fu, N.; Song, X.; Sha, X.; Zhang, B. Prevalence and molecular characteristics of feline coronavirus in southwest China from 2017 to 2020. J. Gen. Virol. 2021, 102, 001654. [Google Scholar] [CrossRef] [PubMed]
- Tuanthap, S.; Chiteafea, N.; Rattanasrisomporn, J.; Choowongkomon, K. Comparative sequence analysis of the accessory and nucleocapsid genes of feline coronavirus strains isolated from cats diagnosed with effusive feline infectious peritonitis. Arch. Virol. 2021, 166, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015, 1282, 1–23. [Google Scholar] [PubMed]
- Shiba, N.; Maeda, K.; Kato, H.; Mochizuki, M.; Iwata, H. Differentiation of feline coronavirus type I and II infections by virus neutralization test. Vet. Microbiol. 2007, 124, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.S.; Porter, E.; Matthews, D.; Kipar, A.; Tasker, S.; Helps, C.R.; Siddell, S.G. Genotyping coronaviruses associated with feline infectious peritonitis. J. Gen. Virol. 2015, 96, 1358–1368. [Google Scholar] [CrossRef]
- Herrewegh, A.A.; Smeenk, I.; Horzinek, M.C.; Rottier, P.J.; de Groot, R.J. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J. Virol. 1998, 72, 4508–4514. [Google Scholar] [CrossRef]
- Benetka, V.; Kubber-Heiss, A.; Kolodziejek, J.; Nowotny, N.; Hofmann-Parisot, M.; Mostl, K. Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet. Microbiol. 2004, 99, 31–42. [Google Scholar] [CrossRef]
- Pearson, M.; LaVoy, A.; Evans, S.; Vilander, A.; Webb, C.; Graham, B.; Musselman, E.; LeCureux, J.; VandeWoude, S.; Dean, G.A. Mucosal immune response to Feline enteric coronavirus infection. Viruses 2019, 11, 906. [Google Scholar] [CrossRef]
- Sykes, J.E. Feline coronavirus infection. In Greene’s Canine and Feline Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2014; pp. 195–208. [Google Scholar]
- Kummrow, M.; Meli, M.L.; Haessig, M.; Goenczi, E.; Poland, A.; Pedersen, N.C.; Hofmann-Lehmann, R.; Lutz, H. Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland. Clin. Diagn. Lab. Immunol. 2005, 12, 1209–1215. [Google Scholar] [CrossRef]
- Masters, P.S.; Perlman, S. Coronaviridae. Fields Virol. 2013, 1, 825–858. [Google Scholar]
- Chang, H.W.; Egberink, H.F.; Halpin, R.; Spiro, D.J.; Rottier, P.J. Spike protein fusion peptide and feline coronavirus virulence. Emerg. Infect. Dis. 2012, 18, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.; Tasker, S.; Day, M.J.; Harley, R.; Kipar, A.; Siddell, S.G.; Helps, C.R. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis. Vet. Res. 2014, 45, 49. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, H.; Liu, J.; Yin, Y.; Cao, S.; Yan, R.; Ren, Y.; Zhou, D.; Li, Q.; Li, J.; Liao, X.; et al. Epidemiology and comparative analyses of the S gene on feline coronavirus in central China. Pathogens 2022, 11, 460. [Google Scholar] [CrossRef]
- Addie, D.D.; Schaap, I.A.T.; Nicolson, L.; Jarrett, O. Persistence and transmission of natural type I feline coronavirus infection. J. Gen. Virol. 2003, 84, 2735–2744. [Google Scholar] [CrossRef]
- Vennema, H. Genetic drift and genetic shift during feline coronavirus evolution. Vet. Microbiol. 1999, 69, 139–141. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Licitra, B.N.; Millet, J.K.; Regan, A.D.; Hamilton, B.S.; Rinaldi, V.D.; Duhamel, G.E.; Whittaker, G.R. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerg. Infect. Dis. 2013, 19, 1066–1073. [Google Scholar] [CrossRef]
- Vennema, H.; Poland, A.; Foley, J.; Pedersen, N.C. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 1998, 243, 150–157. [Google Scholar] [CrossRef]
- Pedersen, N.C. A review of feline infectious peritonitis virus infection: 1963-2008. J. Feline Med. Surg. 2009, 11, 225–258. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.C.; Perron, M.; Bannasch, M.; Montgomery, E.; Murakami, E.; Liepnieks, M.; Liu, H. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J. Feline Med. Surg. 2019, 21, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.G.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N.C. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet. Microbiol. 2018, 219, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.C. An update on feline infectious peritonitis: Diagnostics and therapeutics. Vet. J. 2014, 201, 133–141. [Google Scholar] [CrossRef] [PubMed]
- McKay, L.A.; Meachem, M.; Snead, E.; Brannen, T.; Mutlow, N.; Ruelle, L.; Davies, J.L.; van der Meer, F. Prevalence and mutation analysis of the spike protein in feline enteric coronavirus and feline infectious peritonitis detected in household and shelter cats in western Canada. Can. J. Vet. Res. 2020, 84, 18–23. [Google Scholar]
- Luo, Y.C.; Liu, I.L.; Chen, Y.T.; Chen, H.W. Detection of feline coronavirus in feline effusions by immunofluorescence staining and reverse transcription polymerase chain reaction. Pathogens 2020, 9, 698. [Google Scholar] [CrossRef]
- Klein-Richers, U.; Hartmann, K.; Hofmann-Lehmann, R.; Unterer, S.; Bergmann, M.; Rieger, A.; Leutenegger, C.; Pantchev, N.; Balzer, J.; Felten, S. Prevalence of feline coronavirus shedding in German catteries and associated risk factors. Viruses 2020, 12, 1000. [Google Scholar] [CrossRef]
- Li, C.; Liu, Q.; Kong, F.; Guo, D.; Zhai, J.; Su, M.; Sun, D. Circulation and genetic diversity of feline coronavirus type I and II from clinically healthy and FIP-suspected cats in China. Transbound. Emerg. Dis. 2019, 66, 763–775. [Google Scholar] [CrossRef]
- Amer, A.; Siti, S.A.; Abdul, R.O.; Mohd, H.B.; Faruku, B.; Saeed, S.; Tengku, A.T.I. Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia. Virol. J. 2012, 9, 278. [Google Scholar] [CrossRef]
- An, D.J.; Jeoung, H.Y.; Jeong, W.; Park, J.Y.; Lee, M.H.; Park, B.K. Prevalence of Korean cats with natural feline coronavirus infections. Virol. J. 2011, 8, 455. [Google Scholar] [CrossRef]
- Duarte, A.; Veiga, I.; Tavares, L. Genetic diversity and phylogenetic analysis of feline coronavirus sequences from Portugal. Vet. Microbiol. 2009, 138, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Worthing, K.A.; Wigney, D.I.; Dhand, N.K.; Fawcett, A.; McDonagh, P.; Malik, R.; Norris, J.M. Risk factors for feline infectious peritonitis in Australian cats. J. Feline Med. Surg. 2012, 14, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Arshad, S.S.; Hair-Bejo, M.; Omar, A.R.; Zeenathul, N.A.; Hafidz, M.A. Prevalence of feline coronavirus in two cat populations in Malaysia. J. Feline Med. Surg. 2009, 11, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Addie, D.; Belak, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Hosie, M.J.; Lloret, A.; Lutz, H.; et al. Feline infectious peritonitis. ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009, 11, 594–604. [Google Scholar] [CrossRef]
- Moyadee, W.; Jaroensong, T.; Roytrakul, S.; Boonkaewwan, C.; Rattanasrisomporn, J. Characteristic clinical signs and blood parameters in cats with Feline Infectious Peritonitis. Agric. Nat. Resour. 2019, 53, 433–438. [Google Scholar]
- Rapichai, W.; Saejung, W.; Khumtong, K.; Boonkaewwan, C.; Tuanthap, S.; Lieberzeit, P.A.; Choowongkomon, K.; Rattanasrisomporn, J. Development of colorimetric reverse transcription loop-mediated isothermal amplification assay for detecting feline coronavirus. Animals 2022, 12, 2075. [Google Scholar] [CrossRef]
- Moyadee, W.; Chiteafea, N.; Supansa Tuanthap, S.; Choowongkomon, K.; Roytrakul, S.; Rungsuriyawiboon, O.; Boonkaewwan, C.; Tansakul, N.; Rattanasrisomporn, A.; Rattanasrisomporn, J. The first study on clinicopathological changes in cats with feline infectious peritonitis with and without retrovirus coinfection. Vet. World 2023, 16, 820–827. [Google Scholar] [CrossRef]
- Tizard, I.R. Vaccination against coronaviruses in domestic animals. Vaccine 2020, 38, 5123–5130. [Google Scholar] [CrossRef]
No. | GenBank Accession Number | Strain | Location | Host | Year | Type |
---|---|---|---|---|---|---|
1 | MW316841.1 | SMU-CDF12 | China | Feline | 2020 | I |
2 | MT181987.1 | BL12 | China | Feline | 2021 | I |
3 | MW316847.1 | SMU-CDF97 | China | Feline | 2020 | I |
4 | MT181985.1 | BL23 | China | Feline | 2021 | I |
5 | MW316840.1 | SMU-CQ86 | China | Feline | 2018 | I |
6 | MW316833.1 | SMU-CD10 | China | Feline | 2017 | I |
7 | MW815659.1 | DY0615 | China | Feline | 2020 | I |
8 | MW815658.1 | LS0612 | China | Feline | 2020 | I |
9 | OK340213.1 | SWU-SSX10 | China | Canine | 2021 | I |
10 | MW316835.1 | SMU-CD32 | China | Feline | 2018 | I |
11 | MT112935.1 | SH1802 | China | Feline | 2018 | I |
12 | MT112937.1 | SH1809 | China | Feline | 2018 | I |
13 | KY292377.1 | HLJ/DQ/2006/01 | China | Feline | 2016 | I |
14 | MT112944.1 | SH1951 | China | Feline | 2019 | I |
15 | KY566209.1 | HLJ/HRB/2016/10 | China | Feline | 2016 | I |
16 | MW316839.1 | SMU-CD77 | China | Feline | 2018 | I |
17 | MW316836.1 | SMU-CQ53 | China | Feline | 2018 | I |
18 | OQ351918.1 | F21071412-2 | China | Feline | 2017 | I |
19 | MW815661.1 | CD0521 | China | Feline | 2020 | I |
20 | MW815657.1 | CD0524 | China | Feline | 2020 | I |
21 | ON595854.1 | FPV-2 | Australia | Feline | 2017 | I |
22 | MT250349.1 | MIBaFc@12 | Italy | Feline | 2012 | I |
23 | MT250353.1 | UV1aFn@13 | Italy | Feline | 2013 | I |
24 | MT250377.1 | VGCaFn@14 | Italy | Feline | 2014 | I |
25 | MW225992.1 | 90/18-21 | Italy | Feline | 2018 | I |
26 | OP542206.1 | FM3 | USA | Feline | 2020 | I |
27 | HG325840.1 | Cat-30 | France | Feline | 2013 | I |
28 | KJ665881.1 | FIPV15F | Germany | Feline | 2005 | I |
29 | KJ665876.1 | FIPV14F | Germany | Feline | 2005 | I |
30 | HG325837.1 | Cat-163 | France | Feline | 2013 | I |
31 | MW815655.1 | CD0617 | China | Feline | 2020 | I |
32 | MF357035.1 | NTUVP001 | Taiwan | Feline | 2015 | I |
33 | MF357053.1 | NTUVP035 | Taiwan | Feline | 2016 | I |
34 | FJ938062.1 | UU9 | The Netherlands | Feline | 2009 | I |
35 | JQ304392.1 | FECV614 | The Netherlands | Feline | 2012 | I |
36 | JQ304320.1 | fecesFIPV684 | The Netherlands | Feline | 2012 | I |
37 | JQ304430.1 | FECV875 | The Netherlands | Feline | 2012 | I |
38 | JQ304316.1 | fecesFIPV622 | The Netherlands | Feline | 2012 | I |
39 | JQ304324.1 | FECV11 | The Netherlands | Feline | 2012 | I |
40 | JQ304360.1 | FECV351 | The Netherlands | Feline | 2012 | I |
41 | JQ304438.1 | FIPV321 | The Netherlands | Feline | 2012 | I |
42 | JQ304390.1 | FECV593 | The Netherlands | Feline | 2012 | I |
43 | JQ304336.1 | FECV179 | The Netherlands | Feline | 2012 | I |
44 | JQ304322.1 | fecesFIPV810 | The Netherlands | Feline | 2012 | I |
45 | JQ304415.1 | FECV765 | The Netherlands | Feline | 2012 | I |
46 | JQ304367.1 | FECV407 | The Netherlands | Feline | 2012 | I |
47 | MT250354.1 | MIDaEs@13 | Italy | Feline | 2013 | I |
48 | MW225986.1 | 140/17 | Italy | Feline | 2017 | I |
49 | MW225987.1 | 18 | Italy | Feline | 2018 | I |
50 | MW225970.1 | Aramis | Italy | Feline | 2019 | I |
51 | MW225974.1 | Beatricia | Italy | Feline | 2019 | I |
52 | DQ286389.1 | DF-2 | USA | Feline | 2007 | II |
53 | GQ152141.1 | NTU156/P | Taiwan | Feline | 2007 | II |
54 | JN634064.1 | WSU 79-1683 | USA | Feline | 2012 | II |
55 | MT239439.1 | ZJU1617 | China | Feline | 2016 | II |
No. | Province/City | No. of Tested Sample | No. of Gene-Positive Samples (%) |
---|---|---|---|
1 | Hanoi | 64 | 8 (12.50) a,b |
2 | Bacgiang | 35 | 6 (17.14) a |
3 | Hungyen | 48 | 4 (8.33) a,b |
4 | Hanam | 19 | 1 (5.26) b |
Total | 166 | 19 (11.45) |
Criteria | No. of Tested Samples | No. of Gene-Positive Samples (%) | |
---|---|---|---|
Breed | Native cats | 36 | 6 (16.67) |
Exotic, cross-breed cats | 130 | 13 (10.00) | |
Age (Months) | <6 | 24 | 2 (8.33) |
6–12 | 42 | 6 (14.29) | |
>12 | 100 | 11 (11.00) | |
Gender | Male | 93 | 13 (13.98) |
Female | 73 | 6 (8.22) | |
Health status | Healthy | 46 | 9 (19.57) |
Diarrheal clinical signs | 15 | 3 (20.00) | |
Non-diarrheal clinical signs | 105 | 7 (6.67) |
Strain Name | Nucleotide Identity (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
VNUA-10 | VNUA-16 | VNUA-22 | VNUA-34 | VNUA-19 | VNUA-41 | VNUA-51 | VNUA-66 | VNUA-119 | |
VNUA-10 | 100 | ||||||||
VNUA-16 | 91.66 | 100 | |||||||
VNUA-22 | 92.50 | 97.50 | 100 | ||||||
VNUA-34 | 91.66 | 98.33 | 99.16 | 100 | |||||
VNUA-19 | 91.66 | 92.50 | 93.33 | 92.50 | 100 | ||||
VNUA-41 | 90.83 | 92.50 | 95.00 | 94.16 | 96.66 | 100 | |||
VNUA-51 | 88.33 | 88.33 | 90.83 | 90.00 | 95.00 | 94.16 | 100 | ||
VNUA-66 | 91.66 | 95.00 | 95.83 | 95.00 | 96.66 | 96.66 | 92.50 | 100 | |
VNUA-119 | 90.83 | 92.50 | 93.33 | 92.50 | 95.83 | 95.83 | 91.66 | 97.50 | 100 |
No. | Strain Name | Virus with the Highest Nucleotide Identity | |||
---|---|---|---|---|---|
Country | Strain Name | Year | % | ||
1 | Feline/Vietnam/FCoV/VNUA-10 | The Netherlands | FECV351 | 2012 | 93.75 |
2 | Feline/Vietnam/FCoV/VNUA-16 | The Netherlands | FIP321 | 2012 | 96.80 |
3 | Feline/Vietnam/FCoV/VNUA-22 | The Netherlands | FIP321 | 2012 | 97.87 |
4 | Feline/Vietnam/FCoV/VNUA-34 | The Netherlands | FIP321 | 2012 | 96.80 |
5 | Feline/Vietnam/FCoV/VNUA-19 | The Netherlands | FECV875 | 2012 | 96.25 |
6 | Feline/Vietnam/FCoV/VNUA-41 | The Netherlands | FECV407 | 2012 | 97.50 |
7 | Feline/Vietnam/FCoV/VNUA-51 | China | CD0617 | 2020 | 93.51 |
8 | Feline/Vietnam/FCoV/VNUA-66 | China | LS0612 | 2020 | 97.11 |
9 | Feline/Vietnam/FCoV/VNUA-119 | China | CD0521 | 2020 | 97.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.V.; Rapichai, W.; Rattanasrisomporn, A.; Rattanasrisomporn, J. Feline Coronavirus in Northern Vietnam: Genetic Detection and Characterization Reveal Predominance of Type I Viruses. Viruses 2025, 17, 188. https://doi.org/10.3390/v17020188
Dong HV, Rapichai W, Rattanasrisomporn A, Rattanasrisomporn J. Feline Coronavirus in Northern Vietnam: Genetic Detection and Characterization Reveal Predominance of Type I Viruses. Viruses. 2025; 17(2):188. https://doi.org/10.3390/v17020188
Chicago/Turabian StyleDong, Hieu Van, Witsanu Rapichai, Amonpun Rattanasrisomporn, and Jatuporn Rattanasrisomporn. 2025. "Feline Coronavirus in Northern Vietnam: Genetic Detection and Characterization Reveal Predominance of Type I Viruses" Viruses 17, no. 2: 188. https://doi.org/10.3390/v17020188
APA StyleDong, H. V., Rapichai, W., Rattanasrisomporn, A., & Rattanasrisomporn, J. (2025). Feline Coronavirus in Northern Vietnam: Genetic Detection and Characterization Reveal Predominance of Type I Viruses. Viruses, 17(2), 188. https://doi.org/10.3390/v17020188