Identification of the Tembusu Virus in Mosquitoes in Northern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mosquito Collections
2.2. RNA Extraction and Reverse Transcription
2.3. Detection of Flaviviruses and Alphaviruses Using PCR
2.4. TMUV Envelope Sequencing
2.5. Phylogenic Analysis
3. Results
3.1. Collection of Mosquitoes
3.2. Detection of Flaviviruses and Alphaviruses
3.3. Phylogenetic Analysis of the TMUV Isolates
3.4. Identification of Envelope Amino Acid Modifications Specific to the TMUV Isolates from Nan Province
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamel, R.; Phanitchat, T.; Wichit, S.; Morales Vargas, R.E.; Jaroenpool, J.; Diagne, C.T.; Pompon, J.; Missé, D. New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- US Army Medical Research Unit (Malaya), Institute for Medical Research. Annual Report; Federation of Malaya: Kuala Lumpur, Malaysia, 1957; pp. 100–103.
- Cao, Z.; Zhang, C.; Liu, Y.; Ye, W.; Han, J.; Ma, G.; Zhang, D.; Xu, F.; Gao, X.; Tang, Y.; et al. Tembusu virus in ducks, China. Emerg. Infect. Dis. 2011, 17, 1873–1875. [Google Scholar] [CrossRef] [PubMed]
- Homonnay, Z.G.; Kovács, E.W.; Bányai, K.; Albert, M.; Fehér, E.; Mató, T.; Tatár-Kis, T.; Palya, V. Tembusu-like flavivirus (Perak virus) as the cause of neurological disease outbreaks in young Pekin ducks. Avian Pathol. 2014, 43, 552–560. [Google Scholar] [CrossRef]
- Thontiravong, A.; Ninvilai, P.; Tunterak, W.; Nonthabenjawan, N.; Chaiyavong, S.; Angkabkingkaew, K.; Mungkundar, C.; Phuengpho, W.; Oraveerakul, K.; Amonsin, A. Tembusu-Related Flavivirus in Ducks, Thailand. Emerg. Infect. Dis. 2015, 21, 2164–2167. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.H.; Su, C.L.; Chang, M.C.; Hu, H.C.; Yang, S.L.; Shu, P.Y. Genome Analysis of a Novel Tembusu Virus in Taiwan. Viruses 2020, 12, 567. [Google Scholar] [CrossRef]
- Kono, Y.; Tsukamoto, K.; Abd Hamid, M.; Darus, A.; Lian, T.C.; Sam, L.S.; Yok, C.N.; Di, K.B.; Lim, K.T.; Yamaguchi, S.; et al. Encephalitis and retarded growth of chicks caused by Sitiawan virus, a new isolate belonging to the genus Flavivirus. Am. J. Trop. Med. Hyg. 2000, 63, 94–101. [Google Scholar] [CrossRef]
- Leake, C.J.; Ussery, M.A.; Nisalak, A.; Hoke, C.H.; Andre, R.G.; Burke, D.S. Virus isolations from mosquitoes collected during the 1982 Japanese encephalitis epidemic in northern Thailand. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 831–837. [Google Scholar] [CrossRef]
- Ninvilai, P.; Tunterak, W.; Oraveerakul, K.; Amonsin, A.; Thontiravong, A. Genetic characterization of duck Tembusu virus in Thailand, 2015–2017: Identification of a novel cluster. Transbound. Emerg. Dis. 2019, 66, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- O’Guinn, M.L.; Turell, M.J.; Kengluecha, A.; Jaichapor, B.; Kankaew, P.; Miller, R.S.; Endy, T.P.; Jones, J.W.; Coleman, R.E.; Lee, J.S. Field detection of Tembusu virus in western Thailand by rt-PCR and vector competence determination of select culex mosquitoes for transmission of the virus. Am. J. Trop. Med. Hyg. 2013, 89, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Tunterak, W.; Prakairungnamthip, D.; Ninvilai, P.; Tiawsirisup, S.; Oraveerakul, K.; Sasipreeyajan, J.; Amonsin, A.; Thontiravong, A. Patterns of duck Tembusu virus infection in ducks, Thailand: A serological study. Poult. Sci. 2021, 100, 537–542. [Google Scholar] [CrossRef]
- Ninvilai, P.; Limcharoen, B.; Tunterak, W.; Prakairungnamthip, D.; Oraveerakul, K.; Banlunara, W.; Thontiravong, A. Pathogenesis of Thai duck Tembusu virus in Cherry Valley ducks: The effect of age on susceptibility to infection. Vet. Microbiol. 2020, 243, 108636. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, Y.; Liu, Q.; Wang, Y.; Li, G.; Teng, Q.; Zhang, Y.; Liu, S.; Li, Z. Airborne Transmission of a Novel Tembusu Virus in Ducks. J. Clin. Microbiol. 2015, 53, 2734–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, R.; Surasombatpattana, P.; Wichit, S.; Dauvé, A.; Donato, C.; Pompon, J.; Vijaykrishna, D.; Liegeois, F.; Vargas, R.M.; Luplertlop, N.; et al. Phylogenetic analysis revealed the co-circulation of four dengue virus serotypes in Southern Thailand. PLoS ONE 2019, 14, e0221179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raksakoon, C.; Potiwat, R. Current Arboviral Threats and Their Potential Vectors in Thailand. Pathogens 2021, 10, 80. [Google Scholar] [CrossRef]
- Pandey, B.D.; Karabatsos, N.; Cropp, B.; Tagaki, M.; Tsuda, Y.; Ichinose, A.; Igarashi, A. Identification of a flavivirus isolated from mosquitos in Chiang Mai Thailand. Southeast Asian J. Trop. Med. Public Health 1999, 30, 161–165. [Google Scholar]
- Nitatpattana, N.; Apiwatanason, C.; Nakgoi, K.; Sungvornyothin, S.; Pumchompol, J.; Wanlayaporn, D.; Chaiyo, K.; Siripholvat, V.; Yoksan, S.; Gonzalez, J.-P. Isolation of Tembusu virus from Culex quinquefasciatus in Kanchanaburi Province, Thailand. Southeast Asian J. Trop. Med. Public Health 2017, 48, 546–551. [Google Scholar]
- Pulmanausahakul, R.; Ketsuwan, K.; Jaimipuk, T.; Smith, D.R.; Auewarakul, P.; Songserm, T. Detection of antibodies to duck tembusu virus in human population with or without the history of contact with ducks. Transbound. Emerg. Dis. 2021, 69, 870–873. [Google Scholar] [CrossRef]
- Rattanarithikul, R.; Harbach, R.E.; Harrison, B.A.; Panthusiri, P.; Jones, J.W.; Coleman, R.E. Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian J. Trop. Med. Public Health 2005, 36 (Suppl. S2), 1–97. [Google Scholar]
- Rattanarithikul, R.; Harbach, R.E.; Harrison, B.A.; Panthusiri, P.; Coleman, R.E.; Richardson, J.H. Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian J. Trop. Med. Public Health 2010, 41 (Suppl. S1), 1–225. [Google Scholar]
- Rattanarithikul, R.; Harrison, B.A.; Panthusiri, P.; Peyton, E.L.; Coleman, R.E. Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J. Trop. Med. Public Health 2006, 37 (Suppl. S1), 1–85. [Google Scholar]
- Vina-Rodriguez, A.; Sachse, K.; Ziegler, U.; Chaintoutis, S.C.; Keller, M.; Groschup, M.H.; Eiden, M. A Novel Pan-Flavivirus Detection and Identification Assay Based on RT-qPCR and Microarray. BioMed Res. Int. 2017, 2017, 4248756. [Google Scholar] [CrossRef] [Green Version]
- Giry, C.; Roquebert, B.; Li-Pat-Yuen, G.; Gasque, P.; Jaffar-Bandjee, M.C. Improved detection of genus-specific Alphavirus using a generic TaqMan® assay. BMC Microbiol. 2017, 17, 164. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Mendenhall, I.H.; Manuel, M.; Moorthy, M.; Lee, T.T.M.; Low, D.H.W.; Missé, D.; Gubler, D.J.; Ellis, B.R.; Ooi, E.E.; Pompon, J. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS Negl. Trop. Dis. 2017, 11, e0005667. [Google Scholar] [CrossRef] [Green Version]
- Sumodan, P.K.; Vargas, R.M.; Pothikasikorn, J.; Sumanrote, A.; Lefait-Robin, R.; Dujardin, J.-P. Rubber plantations as a mosquito box amplification in South and Southeast Asia. In Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia; Springer: Singapore, 2015; pp. 155–167. [Google Scholar]
- Tsuda, Y.; Suwonkerd, W.; Chawprom, S.; Prajakwong, S.; Takagi, M. Different spatial distribution of Aedes aegypti and Aedes albopictus along an urban–rural gradient and the relating environmental factors examined in three villages in northern Thailand. J. Am. Mosq. Control Assoc. 2006, 22, 222–228. [Google Scholar] [CrossRef]
- Chareonviriyaphap, T.; Akratanakul, P.; Nettanomsak, S.; Huntamai, S. Larval habitats and distribution patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand. Southeast Asian J. Trop. Med. Public Health 2003, 34, 529–535. [Google Scholar]
- Maquart, P.O.; Chann, L.; Boyer, S. Culex vishnui (Diptera: Culicidae): An Overlooked Vector of Arboviruses in South-East Asia. J. Med. Entomol. 2022, 59, 1144–1153. [Google Scholar] [CrossRef]
- Eisen, L.; Bolling, B.G.; Blair, C.D.; Beaty, B.J.; Moore, C.G. Mosquito species richness, composition, and abundance along habitat-climate-elevation gradients in the northern Colorado Front Range. J. Med. Entomol. 2008, 45, 800–811. [Google Scholar] [CrossRef]
- Fang, Y.; Tambo, E.; Xue, J.B.; Zhang, Y.; Zhou, X.N.; Khater, E.I.M. Detection of DENV-2 and Insect-Specific Flaviviruses in Mosquitoes Collected From Jeddah, Saudi Arabia. Front. Cell. Infect. Microbiol. 2021, 11, 626368. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhang, W.; Xue, J.B.; Zhang, Y. Monitoring Mosquito-Borne Arbovirus in Various Insect Regions in China in 2018. Front. Cell. Infect. Microbiol. 2021, 11, 640993. [Google Scholar] [CrossRef]
- Olmo, R.P.; Todjro, Y.M.H.; Aguiar, E.R.G.R.; de Almeida, J.P.P.; Ferreira, F.V.; Armache, J.N.; de Faria, I.J.S.; Ferreira, A.G.A.; Amadou, S.C.G.; Silva, A.T.S.; et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol. 2023, 8, 135–149. [Google Scholar] [CrossRef]
- Xia, H.; Wang, Y.; Atoni, E.; Zhang, B.; Yuan, Z. Mosquito-Associated Viruses in China. Virol. Sin. 2018, 33, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Agboli, E.; Zahouli, J.B.Z.; Badolo, A.; Jöst, H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021, 13, 891. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, T.; Jiang, Y.; Zhao, T.; Li, C.; Dong, Y.; Xing, D.; Qin, C. Potential Vector Competence of Mosquitoes to Transmit Baiyangdian Virus, a New Tembusu-Related Virus in China. Vector Borne Zoonotic Dis. 2020, 20, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Sanisuriwong, J.; Yurayart, N.; Thontiravong, A.; Tiawsirisup, S. Vector competence of Culex tritaeniorhynchus and Culex quinquefasciatus (Diptera: Culicidae) for duck Tembusu virus transmission. Acta Trop. 2021, 214, 105785. [Google Scholar] [CrossRef] [PubMed]
- Sanisuriwong, J.; Yurayart, N.; Thontiravong, A.; Tiawsirisup, S. Duck Tembusu virus detection and characterization from mosquitoes in duck farms, Thailand. Transbound. Emerg. Dis. 2020, 67, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Shi, Y.; Wang, H.; Li, G.; Li, X.; Wang, B.; Su, X.; Wang, J.; Teng, Q.; Yang, J.; et al. A Single Mutation at Position 156 in the Envelope Protein of Tembusu Virus Is Responsible for Virus Tissue Tropism and Transmissibility in Ducks. J. Virol. 2018, 92, e00427-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Zhang, L.; Cao, Y.; Wang, J.; Yu, Z.; Sun, X.; Liu, F.; Li, Z.; Liu, P.; Su, J. Basic Amino Acid Substitution at Residue 367 of the Envelope Protein of Tembusu Virus Plays a Critical Role in Pathogenesis. J. Virol. 2020, 94, e02011-19. [Google Scholar] [CrossRef]
- Sun, X.; Sun, M.; Zhang, L.; Yu, Z.; Li, J.; Xie, W.; Su, J. Amino Acid Substitutions in NS5 Contribute Differentially to Tembusu Virus Attenuation in Ducklings and Cell Cultures. Viruses 2021, 13, 921. [Google Scholar] [CrossRef]
- Carbaugh, D.L.; Lazear, H.M. Flavivirus Envelope Protein Glycosylation: Impacts on Viral Infection and Pathogenesis. J. Virol. 2020, 94, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, D.; Li, S.; Dong, F.; Zhang, Y.; Lin, Y.; Wang, J.; Zou, Z.; Zheng, A. N-glycosylation of Viral E Protein Is the Determinant for Vector Midgut Invasion by Flaviviruses. mBio 2018, 9, e00046-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Virus | GenBank Accession n° | Year | Country |
---|---|---|---|
Tembusu virus strains | JX477685 | 1955 | Malaysia |
AB110495 | 1992 | Thailand | |
JX477686 | 2000 | Malaysia | |
KC810847 | 2002 | Thailand | |
KC810846 | 2002 | Thailand | |
MF621927 | 2007 | Thailand | |
JX273153 | 2010 | China | |
JF270480 | 2010 | China | |
MN649260 | 2010 | China | |
JF895923 | 2010 | China | |
JF312912 | 2010 | China | |
JF459991 | 2010 | China | |
KX686578 | 2011 | China | |
KF557893 | 2012 | China | |
KF826767 | 2012 | China | |
KX097989 | 2012 | Malaysia | |
AB917090 | 2012 | China | |
KX097990 | 2012 | Malaysia | |
KR061333 | 2013 | Thailand | |
KJ740748 | 2013 | China | |
KF573582 | 2013 | Thailand | |
KX686577 | 2013 | China | |
MH748542 | 2014 | China | |
MN649267 | 2014 | China | |
KU323595 | 2014 | China | |
KP742476 | 2015 | China | |
KX686572 | 2015 | China | |
KT824876 | 2015 | China | |
MN649261 | 2015 | China | |
MK276420 | 2015 | Thailand | |
MH460536 | 2015 | Thailand | |
MK276427 | 2016 | Thailand | |
MK276442 | 2016 | Thailand | |
MN649266 | 2016 | China | |
MK276459 | 2017 | Thailand | |
MK907880 | 2018 | China | |
MK542820 | 2019 | China | |
MN747003 | 2019 | Taiwan | |
Ntaya virus | JX236040 | 2013 | - |
JEV | NC001437 | 1989 | Japan |
WNV | NC009942 | 1999 | USA |
ZIKV | KY766069 | 2013 | French Polynesia |
Usutu virus | AY453411 | 2001 | Austria |
Israel Turkey virus | KC734553 | 2010 | Israel |
Bagaza virus | AY632545 | 2010 | Central African Republic |
P49_TH_2019 * | ON254216 | 2019 | Thailand |
P73_TH_2019 * | OQ543571 | 2019 | Thailand |
Collection Site | Ae. albopictus | Ae. aegypti | Aedes sp. | Cx. quinquefasciatus | Cx brevipalpis | Cx. hutchinsoni | Cx. nigropunctatus | Culex sp. | Cx. vishnui | Cx. tritaeniorhynchus | Armigeres sp. | Arm. kesseli | Arm. subalbatus | Anopheles sp. | An. subpictus | Mansonia sp. | Toxorhynchites sp. | Total | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ||
Village 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |
Village 2 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 8 | 1 | 8 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 32 |
Village 3 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
Village 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 96★ | 1 | 181★ | 0 | 7 | 0 | 7 | 0 | 5 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 307 |
Village 5 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 19 | 0 | 19 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 |
Village 6 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
Village 7 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
Village 8 | 1 | 3 | 0 | 2★ | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 14 | 1 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 0 | 1 | 0 | 0 | 37 |
Forest session 1 | 0 | 15 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 |
Forest session 2 | 0 | 18 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2★ | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
Forest session 3 | 0 | 8 | 0 | 0 | 0 | 27★ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 46 |
Individuals | 1 | 54 | 0 | 2 | 0 | 35 | 3 | 13 | 0 | 4 | 0 | 2 | 0 | 1 | 4 | 164 | 4 | 233 | 0 | 7 | 0 | 25 | 0 | 26 | 0 | 2 | 0 | 8 | 0 | 6 | 0 | 1 | 0 | 1 | 596 |
positive pools/Nbr of pool for each species | 0/1 | 0/11 | 0 | 1/1 | 0 | 1/8 | 0/2 | 0/6 | 0/1 | 0/2 | 0 | 0/2 | 0 | 0/1 | 0/3 | 2/24 | 0/4 | 2/24 | 0 | 0/1 | 0 | 0/8 | 0 | 0/7 | 0 | 0/2 | 0 | 0/3 | 0 | 0/3 | 0 | 0/1 | 0 | 0/1 | 6/116 |
Mosquito Pool ID | Mosquito Species Identification | Number of Mosquitoes per Pool | First Hit with BLAST® Alignment | |||
---|---|---|---|---|---|---|
Collection Site | Viral Identification | Coverage Score | Identity Score | |||
P#13 | Ades aegypti | 2 ♀ | Village 8 | PAFV | 97% | 98.07% |
P#20 | Aedes sp. | 9 ♀ | Forest | YNCxFV | 97% | 80.68% |
P#49 | Culex sp. | 10 ♀ | Village 4 | TMUV | 99% | 97.36% |
P#60 | Culex sp. | 1 ♀ | Forest | YNCxFV | 98% | 81.31% |
P#73 | Culex vishnui | 15 ♀ | Village 4 | TMUV | 100% | 98.83% |
P#77 | Culex vishnui | 15 ♀ | Village 4 | PAFV | 98% | 98.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamel, R.; Vargas, R.E.M.; Rajonhson, D.M.; Yamanaka, A.; Jaroenpool, J.; Wichit, S.; Missé, D.; Kritiyakan, A.; Chaisiri, K.; Morand, S.; et al. Identification of the Tembusu Virus in Mosquitoes in Northern Thailand. Viruses 2023, 15, 1447. https://doi.org/10.3390/v15071447
Hamel R, Vargas REM, Rajonhson DM, Yamanaka A, Jaroenpool J, Wichit S, Missé D, Kritiyakan A, Chaisiri K, Morand S, et al. Identification of the Tembusu Virus in Mosquitoes in Northern Thailand. Viruses. 2023; 15(7):1447. https://doi.org/10.3390/v15071447
Chicago/Turabian StyleHamel, Rodolphe, Ronald Enrique Morales Vargas, Dora Murielle Rajonhson, Atsushi Yamanaka, Jiraporn Jaroenpool, Sineewanlaya Wichit, Dorothée Missé, Anamika Kritiyakan, Kittipong Chaisiri, Serge Morand, and et al. 2023. "Identification of the Tembusu Virus in Mosquitoes in Northern Thailand" Viruses 15, no. 7: 1447. https://doi.org/10.3390/v15071447
APA StyleHamel, R., Vargas, R. E. M., Rajonhson, D. M., Yamanaka, A., Jaroenpool, J., Wichit, S., Missé, D., Kritiyakan, A., Chaisiri, K., Morand, S., & Pompon, J. (2023). Identification of the Tembusu Virus in Mosquitoes in Northern Thailand. Viruses, 15(7), 1447. https://doi.org/10.3390/v15071447