Next Article in Journal
Fetal Calf Serum Exerts an Inhibitory Effect on Replication of Duck Hepatitis A Virus Genotype 1 in Duck Embryo Fibroblast Cells
Previous Article in Journal
Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection
Previous Article in Special Issue
The MGF360-16R ORF of African Swine Fever Virus Strain Georgia Encodes for a Nonessential Gene That Interacts with Host Proteins SERTAD3 and SDCBP
Open AccessArticle

Isolation and Identification of Porcine Deltacoronavirus and Alteration of Immunoglobulin Transport Receptors in the Intestinal Mucosa of PDCoV-Infected Piglets

1
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
2
Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
3
Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
*
Author to whom correspondence should be addressed.
Viruses 2020, 12(1), 79; https://doi.org/10.3390/v12010079
Received: 9 November 2019 / Revised: 3 January 2020 / Accepted: 7 January 2020 / Published: 9 January 2020
(This article belongs to the Special Issue Endemic and Emerging Swine Viruses)
Porcine deltacoronavirus (PDCoV) is a porcine enteropathogenic coronavirus that causes watery diarrhea, vomiting, and frequently death in piglets, causing serious economic losses to the pig industry. The strain CHN-JS-2017 was isolated and identified by cytopathology, immunofluorescence assays, transmission electron microscopy, and sequence analysis. A nucleotide sequence alignment showed that the whole genome of CHN-JS-2017 is 97.4%–99.6% identical to other PDCoV strains. The pathogenicity of the CHN-JS-2017 strain was investigated in orally inoculated five-day-old piglets; the piglets developed acute, watery diarrhea, but all recovered and survived. CHN-JS-2017 infection-induced microscopic lesions were observed, and viral antigens were detected mainly by immunohistochemical staining in the small intestine. The neonatal Fc receptor (FcRn) and polymeric immunoglobulin receptor (pIgR) are crucial immunoglobulin (Ig) receptors for the transcytosis ofimmunoglobulin G (IgG), IgA, or IgM. Importantly, CHN-JS-2017 infected five-day-old piglets could significantly down-regulate the expression of FcRn, pIgR, and nuclear factor-kappa B (NF-κB)in the intestinal mucosa. Note that the level of FcRn mRNA in the intestinal mucosa of normal piglets is positively correlated with pIgR and NF-κB. At the same time, the expressions of FcRn, pIgR, and NF-κB mRNA are also positively correlated in infected piglets. These results may help explain the immunological and pathological changes associated with porcine deltacorononirus infection. View Full-Text
Keywords: Porcine deltacoronavirus; Neonatal Fc receptor; polymeric immunoglobulin receptor; NF-κB Porcine deltacoronavirus; Neonatal Fc receptor; polymeric immunoglobulin receptor; NF-κB
Show Figures

Figure 1

MDPI and ACS Style

Qian, S.; Jia, X.; Gao, Z.; Zhang, W.; Xu, Q.; Li, Z. Isolation and Identification of Porcine Deltacoronavirus and Alteration of Immunoglobulin Transport Receptors in the Intestinal Mucosa of PDCoV-Infected Piglets. Viruses 2020, 12, 79.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop