# Non-Destructive, Laser-Based Individual Tree Aboveground Biomass Estimation in a Tropical Rainforest

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

^{2}= 0.85). This study used horizontal slices for diameter at breast height measurements and employed allometric models for EVI biomass estimation. A multi-scan approach provides more detailed datasets that can be used in tree reconstruction to measure wood and leaf volume directly from the point clouds, providing a more geometrical-based biomass estimation rather than depending on allometric equations. Several studies have been devoted to biomass estimation of shrubs. There was a study that utilized TLS for shrub biomass estimations using volumetric surface differencing and voxel counting [20]. Both methods produced strong relationships between harvested and estimated biomass. Point clouds obtained from airborne LiDAR and TLS were combined to estimate the biomass of sagebrush based on regression models between voxel-volume, TIN-volume, convex hull-volume, airborne LiDAR-derived percent vegetation cover (PVC) and harvested biomass [21]. The results showed the voxel-volume approach produced better results for individual shrub biomass estimation. The PVC method showed a good correlation with the field-measured shrub biomass at the plot scale. In another study, the aboveground biomass of sagebrush was estimated using regression models between shrub volume estimated using voxel, convex hull and harvested biomass [22]. The biomass estimate obtained using the convex-hull volume outperformed the voxel approach. The methods used for shrub volume estimation could be used for tree crown biomass estimation in forest areas.

## 2. Materials and Methods

#### 2.1. Individual Tree Inventory: A Conventional Approach

#### 2.2. Generation of Point Clouds in Sample Plots

#### 2.3. Semi-Automatic Approach for Individual Tree Measurement

#### 2.3.1. Pre-Processing of Point Cloud Data

#### 2.3.2. Estimation of Individual Tree Attributes

#### 2.4. Individual Tree Biomass Estimation Using a Reconstructed Tree Model

^{−3}[25,26]. The biomass of these individual components was assessed with values calculated using allometric equations developed by [27]. These allometric equations (Equations (5) to (8)) were developed based on data collected in the Pasoh reserve forest in Malaysia.

#### 2.5. Individual Tree Biomass Estimation Using Field-Collected Tree Attributes

## 3. Results and Discussion

#### 3.1. Validation of the Estimated Tree Parameters from Point Clouds

#### 3.2. Individual Tree Biomass Estimation Using Point Clouds

#### 3.3. TLS-Derived Allometric Equations for Biomass Estimation

#### 3.4. Individual Tree Biomass Estimation Using Point Clouds for Each Tree Species

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 0.6417(dbh)^{2} − 12.374(dbh) + 97.082 | 0.960 |

Tree Height (th), m | Ws = 3.6791e^{0.1998(th)} | 0.356 | |

Crown Base Height (cbh), m | Ws = 7.2717(cbh) + 20.624 | 0.060 | |

Stem Volume (sv), m^{3} | Ws = 489.48(sv) + 10.727 | 0.959 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 0.1394(dbh)^{2} − 2.7953(dbh) + 20.585 | 0.967 |

Tree Height (th), m | Wb = 3.9972(th) − 39.276 | 0.256 | |

Crown Base Height (cbh), m | Wb =1.4604(cbh) + 3.2792 | 0.055 | |

Stem Volume (sv), m^{3} | Wb =102.74(sv) + 0.7763 | 0.961 | |

Branches Volume (bv), m^{3} | Wb = −3.39ln(bv) − 5.544 | 0.055 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.0161(dbh)^{2} − 0.2385(dbh) + 2.9398 | 0.920 |

Tree Height (th), m | Wl = 0.6151(th) − 4.8345 | 0.289 | |

Crown Base Height (cbh), m | Wl = 0.2617(cbh) + 1.4871 | 0.084 | |

Stem Volume (sv), m^{3} | Wl = 14.65(sv) + 1.4755 | 0.937 | |

Leaves Volume (lv), m^{3} | Wl = 0.0019(lv)^{2} − 0.0669(lv) + 2.9365 | 0.795 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 0.7972(dbh)^{2} − 15.407(dbh) + 120.61 | 0.961 |

Tree Height (th), m | TAGB = 4.5336e^{0.1999(th)} | 0.356 | |

Crown Base Height (cbh), m | TAGB = 30.665e^{0.1083(cbh)} | 0.167 | |

Stem Volume (sv), m^{3} | TAGB = 606.87(sv) + 12.979 | 0.960 | |

Crown Volume (cv), m^{3} | TAGB = 0.0171(cv)^{2} − 1.1185(cv) + 71.109 | 0.908 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 0.1555(dbh)^{2} − 3.0338(dbh) + 23.525 | 0.962 |

Tree Height (th), m | CB = 1.7768ln(th) + 8.5812 | 0.356 | |

Crown Base Height (cbh), m | CB = 5.8073e^{0.1083(cbh)} | 0.167 | |

Stem Volume (sv), m^{3} | CB = 117.39(sv) + 2.2518 | 0.960 | |

Crown Volume (cv), m^{3} | CB = 0.0033(cv)^{2} − 0.2183(cv) + 13.543 | 0.911 |

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 11.255(dbh) − 89.918 | 0.693 |

Tree Height (th), m | Ws = 13.21(th) − 107.19 | 0.636 | |

Crown Base Height (cbh), m | Ws = 13.144(cbh) − 23.172 | 0.464 | |

Stem Volume (sv), m^{3} | Ws = 549.25(sv) + 9.564 | 0.840 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 2.2341(dbh) − 18.612 | 0.692 |

Tree Height (th), m | Wb = 0.4813(dbh) − 3.1791 | 0.611 | |

Crown Base Height (cbh), m | Wb = 2.6304(cbh) − 5.4811 | 0.470 | |

Stem Volume (sv), m^{3} | Wb = 109.68(sv) + 1.0878 | 0.848 | |

Branches Volume (bv), m^{3} | Wb = 0.028e^{−0.071(bv)} | 0.131 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.4187(dbh) − 2.6566 | 0.694 |

Tree Height (th), m | Wl = 2.6368(th) − 22.216 | 0.642 | |

Crown Base Height (cbh), m | Wl = 0.4736(cbh) − 0.0874 | 0.436 | |

Stem Volume (sv), m^{3} | Wl = 19.976(sv) + 1.0783 | 0.804 | |

Leaves Volume (lv), m^{3} | Wl = 0.8481(lv)^{0.2764} | 0.097 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 13.907(dbh) − 111.19 | 0.693 |

Tree Height (th), m | TAGB = 16.328(th) − 132.59 | 0.636 | |

Crown Base Height (cbh), m | TAGB = 16.248(cbh) − 28.741 | 0.464 | |

Stem Volume (sv), m^{3} | TAGB = 678.9(sv) + 11.73 | 0.841 | |

Crown Volume (cv), m^{3} | TAGB = 7.393(cv)^{0.4699} | 0.194 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 0.2611(dbh) + 9.375 | 0.693 |

Tree Height (th), m | CB = 0.2044(th) + 9.5069 | 0.638 | |

Crown Base Height (cbh), m | CB = 3.104(cbh) − 5.5684 | 0.465 | |

Stem Volume (sv), m^{3} | CB = 0.0065(sv) − 0.0024 | 0.842 | |

Crown Volume (cv), m^{3} | CB = 1.4053(cv)^{0.469} | 0.192 |

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 16.094(dbh) − 164.09 | 0.900 |

Tree Height (th), m | Ws = 18.201(th) − 129.05 | 0.751 | |

Crown Base Height (cbh), m | Ws = −1.8538(cbh) + 125.42 | 0.002 | |

Stem Volume (sv), m^{3} | Ws = 640.26(sv) + 6.1876 | 0.816 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 3.2656(dbh) − 34.479 | 0.897 |

Tree Height (th), m | Wb = 3.694(th) − 27.377 | 0.749 | |

Crown Base Height (cbh), m | Wb = −0.4088(cbh) + 24.59 | 0.003 | |

Stem Volume (sv), m^{3} | Wb = 130.17(sv) + 0.0335 | 0.816 | |

Branches Volume (bv), m^{3} | Wb = 234.44(bv) + 17.447 | 0.073 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.5499(dbh) − 4.6229 | 0.911 |

Tree Height (th), m | Wl = 0.6214(th) − 3.4191 | 0.759 | |

Crown Base Height (cbh), m | Wl = −0.0414(cbh) + 5.0512 | 0.001 | |

Stem Volume (sv), m^{3} | Wl = 21.711(sv) + 1.2216 | 0.814 | |

Leaves Volume (lv), m^{3} | Wl = 2.8525e^{0.01(lv)} | 0.073 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 11.433e^{0.1653(dbh)} | 0.652 |

Tree Height (th), m | TAGB = 22.517(th) − 159.84 | 0.751 | |

Crown Base Height (cbh), m | TAGB = 45.06ln(cbh) + 234.78 | 0.010 | |

Stem Volume (sv), m^{3} | TAGB = 0.001(sv) + 0.0212 | 0.816 | |

Crown Volume (cv), m^{3} | TAGB = 60.498e^{0.0092(cv)} | 0.323 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 5.2179(dbh)^{0.3029} | 0.651 |

Tree Height (th), m | CB = 9.8085(th)^{0.1775} | 0.497 | |

Crown Base Height (cbh), m | CB = −0.4502(cbh) + 29.641 | 0.002 | |

Stem Volume (sv), m^{3} | CB = 0.0545e^{0.0337(sv)} | 0.819 | |

Crown Volume (cv), m^{3} | CB = 11.44e^{0.0093(cv)} | 0.323 |

Biomass | Variable | Regression models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 7.628(dbh) − 11.885 | 0.285 |

Tree Height (th), m | Ws = 11.861(th) − 78.138 | 0.648 | |

Crown Base Height (cbh), m | Ws = 102.94ln(cbh) − 109.19 | 0.506 | |

Stem Volume (sv), m^{3} | Ws = 614.81(sv) + 19.505 | 0.530 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 1.5456(dbh) − 3.6529 | 0.291 |

Tree Height (th), m | Wb = 2.3576(th) − 16.399 | 0.636 | |

Crown Base Height (cbh), m | Wb = 20.603ln(cbh) − 22.857 | 0.504 | |

Stem Volume (sv), m^{3} | Wb = 122.78(sv) + 2.9346 | 0.525 | |

Branches Volume (bv), m^{3} | Wb = −237.49(lv) + 21.215 | 0.054 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.2626(dbh) + 0.6073 | 0.263 |

Tree Height (th), m | Wl = 0.4387(th) − 2.1232 | 0.689 | |

Crown Base Height (cbh), m | Wl = 3.714ln(cbh) − 3.0849 | 0.512 | |

Stem Volume (sv), m^{3} | Wl = 22.333(sv) + 1.539 | 0.544 | |

Leaves Volume (lv), m^{3} | Wl = 1.3139(lv)^{0.3566} | 0.220 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 9.4361(dbh) − 14.931 | 0.286 |

Tree Height (th), m | TAGB = 14.658(th) − 96.66 | 0.647 | |

Crown Base Height (cbh), m | TAGB = 27.337e^{0.1584(cbh)} | 0.460 | |

Stem Volume (sv), m^{3} | TAGB = 0.0529e^{0.006(sv)} | 0.557 | |

Crown Volume (cv), m^{3} | TAGB = 11.434(cv)^{0.595} | 0.332 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 0.1587(dbh) + 10.714 | 0.287 |

Tree Height (th), m | CB = −0.0102(th)^{2} + 0.7471(th) + 4.8683 | 0.819 | |

Crown Base Height (cbh), m | CB = 24.317ln(cbh) − 25.942 | 0.505 | |

Stem Volume (sv), m^{3} | CB = 0.0189(sv)^{0.6011} | 0.564 | |

Crown Volume (cv), m^{3} | CB = 2.1641(cv)^{0.5958} | 0.330 |

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 1.8818(dbh)^{2} − 37.269(dbh) + 225.41 | 0.830 |

Tree Height (th), m | Ws = 5.0971e^{0.1528(th)} | 0.655 | |

Crown Base Height (cbh), m | Ws = 20.699(cbh) − 90.348 | 0.455 | |

Stem Volume (sv), m^{3} | Ws = 1.4941(sv) + 19.932 | 0.155 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 0.4089(dbh)^{2} − 8.2824(dbh) + 49.15 | 0.838 |

Tree Height (th), m | Wb = 0.7769e^{0.1635(th)} | 0.655 | |

Crown Base Height (cbh), m | Wb = 4.323(cbh) − 20.363 | 0.454 | |

Stem Volume (sv), m^{3} | Wb = 0.3166(sv) + 2.4873 | 0.160 | |

Branches Volume (bv), m^{3} | Wb = −235.98(bv) + 20.753 | 0.040 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.0473(dbh)^{2} − 0.8183(dbh) + 5.7661 | 0.794 |

Tree Height (th), m | Wl = 0.4756e^{0.1162(th)} | 0.653 | |

Crown Base Height (cbh), m | Wl = 0.6303(cbh) − 1.5725 | 0.453 | |

Stem Volume (sv), m^{3} | Wl = 0.0428(sv) + 1.8917 | 0.136 | |

Leaves Volume (lv), m^{3} | Wl = 0.102(lv) + 1.6459 | 0.090 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 2.3379(dbh)^{2} − 46.37(dbh) + 280.33 | 0.830 |

Tree Height (th), m | TAGB = 6.2626e^{0.153(th)} | 0.655 | |

Crown Base Height (cbh), m | TAGB = 25.653(cbh) − 112.28 | 0.455 | |

Stem Volume (sv), m^{3} | TAGB = 0.001(sv) + 0.0248 | 0.933 | |

Crown Volume (cv), m^{3} | TAGB = 1.8535(cv) + 24.311 | 0.156 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 0.1408(dbh) + 9.9889 | 0.712 |

Tree Height (th), m | CB = 0.1322(th) + 13.46 | 0.609 | |

Crown Base Height (cbh), m | CB = 4.9533(cbh) − 21.936 | 0.454 | |

Stem Volume (sv), m^{3} | CB = 0.0053(sv) + 0.0261 | 0.934 | |

Crown Volume (cv), m^{3} | CB = 0.3594(cv) + 4.379 | 0.157 |

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 1.6625(dbh)2 − 44.183(dbh) + 452.49 | 0.993 |

Tree Height (th), m | Ws = 5.0013e^{0.2009(th)} | 0.710 | |

Crown Base Height (cbh), m | Ws = 4.3661e^{0.3589(cbh)} | 0.665 | |

Stem Volume (sv), m^{3} | Ws = 956.68(sv) − 140.95 | 0.996 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 0.471(dbh)^{2} − 15.264(dbh) + 157.65 | 0.993 |

Tree Height (th), m | Wb = 0.7613e^{0.215(th)} | 0.710 | |

Crown Base Height (cbh), m | Wb = 0.6583e^{0.384(cbh)} | 0.665 | |

Stem Volume (sv), m^{3} | Wb = 254.17(sv) − 67.284 | 0.994 | |

Branches Volume (bv), m^{3} | Wb = 37415(bv) + 76.382 | 0.237 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.0015(dbh)^{2} + 1.0511(dbh) − 9.9892 | 0.976 |

Tree Height (th), m | Wl = 0.8091e^{0.1227(th)} | 0.634 | |

Crown Base Height (cbh), m | Wl = 0.6533e^{0.2283(cbh)} | 0.666 | |

Stem Volume (sv), m^{3} | Wl = 5.3073(sv) + 11.443 | 0.876 | |

Leaves Volume (lv), m^{3} | Wl = 0.182(lv) + 10.001 | 0.165 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 2.132(dbh)^{2} − 58.395(dbh) + 600.16 | 0.993 |

Tree Height (th), m | TAGB = 6.0646e^{0.202(th)} | 0.710 | |

Crown Base Height (cbh), m | TAGB = 5.3052e^{0.3607(cbh)} | 0.665 | |

Stem Volume (sv), m^{3} | TAGB = 0.0008(sv) + 0.1722 | 0.995 | |

Crown Volume (cv), m^{3} | TAGB = 177.3e^{0.0158(cv)} | 0.342 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 4.7122(dbh)^{0.3672} | 0.955 |

Tree Height (th), m | CB = 3.4552ln(th) + 6.3963 | 0.713 | |

Crown Base Height (cbh), m | CB = 0.9459e^{0.3678(cbh)} | 0.664 | |

Stem Volume (sv), m^{3} | CB = 0.0038(cbh) + 0.2272 | 0.995 | |

Crown Volume (cv), m^{3} | CB = 33.828e^{0.0161(cv)} | 0.342 |

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 1.2341e^{0.2733(dbh)} | 0.725 |

Tree Height (th), m | Ws = 1.4142e^{0.2742(th)} | 0.298 | |

Crown Base Height (cbh), m | Ws = 23.03(cbh) − 67.83 | 0.348 | |

Stem Volume (sv), m^{3} | Ws = 4473.7(sv)^{2} − 37.922(sv) + 25.414 | 0.941 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 0.1703e^{0.2925(dbh)} | 0.725 |

Tree Height (th), m | Wb = 0.1971e^{0.2934(th)} | 0.298 | |

Crown Base Height (cbh), m | Wb = 4.6707(cbh) − 14.698 | 0.347 | |

Stem Volume (sv), m^{3} | Wb = 975.62(sv)^{2} − 25.158(sv) + 4.9099 | 0.947 | |

Branches Volume (bv), m^{3} | Wb = 0.0009(bv)^{−2.087} | 0.765 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.1558e^{0.2103(dbh)} | 0.723 |

Tree Height (th), m | Wl = 0.1726e^{0.2112(th)} | 0.298 | |

Crown Base Height (cbh), m | Wl = 0.7919(cbh) − 1.5288 | 0.350 | |

Stem Volume (sv), m^{3} | Wl = 104.51(sv)^{2} + 11.348(sv) + 1.1712 | 0.910 | |

Leaves Volume (lv), m^{3} | Wl = 7.3105e^{−0.047(lv)} | 0.504 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 1.5193e^{0.2735(dbh)} | 0.726 |

Tree Height (th), m | TAGB = 1.7419e^{0.2744(th)} | 0.298 | |

Crown Base Height (cbh), m | TAGB = 28.493(cbh) − 84.056 | 0.348 | |

Stem Volume (sv), m^{3} | TAGB = 0.0006(sv) + 0.0265 | 0.911 | |

Crown Volume (cv), m^{3} | TAGB = 152.6e^{−0.027(cv)} | 0.268 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 5.4682(dbh) − 55.262 | 0.707 |

Tree Height (th), m | CB = 5.3067(th) − 50.255 | 0.272 | |

Crown Base Height (cbh), m | CB = −1.879ln(cbh) + 9.8938 | 0.299 | |

Stem Volume (sv), m^{3} | CB = 5.3067(sv) − 50.255 | 0.2721 | |

Crown Volume (cv), m^{3} | CB = 28.835e^{−0.027(cv)} | 0.264 |

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 37.123e^{0.0694(dbh)} | 0.835 |

Tree Height (th), m | Ws = 0.0074(th)^{3.4699} | 0.759 | |

Crown Base Height (cbh), m | Ws = 0.4531(cbh)^{2.6252} | 0.655 | |

Stem Volume (sv), m^{3} | Ws = 171.13(sv)^{2} + 59.232(sv) + 175.24 | 0.928 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 6.5022e^{0.0742(dbh)} | 0.835 |

Tree Height (th), m | Wb = 0.0007(th)^{3.7127} | 0.759 | |

Crown Base Height (cbh), m | Wb = 0.0583(cbh)^{2.8089} | 0.655 | |

Stem Volume (sv), m^{3} | Wb = 47.588(sv)^{2} − 10.914(sv) + 40.801 | 0.921 | |

Branches Volume (bv), m^{3} | Wb = 4.362(bv)^{−0.443} | 0.177 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 2.373e^{0.0469(dbh)} | 0.802 |

Tree Height (th), m | Wl = 0.0063(th)^{2.4012} | 0.764 | |

Crown Base Height (cbh), m | Wl = 0.1091(cbh)^{1.8176} | 0.666 | |

Stem Volume (sv), m^{3} | Wl = −0.2529(sv)^{2} + 11.424(sv) + 4.1154 | 0.950 | |

Leaves Volume (lv), m^{3} | Wl = 6.999e^{0.009(lv)} | 0.129 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 45.642e^{0.0696(dbh)} | 0.835 |

Tree Height (th), m | TAGB = 0.0089(th)^{3.4833} | 0.759 | |

Crown Base Height (cbh), m | TAGB = 26.096e^{0.2001(cbh)} | 0.655 | |

Stem Volume (sv), m^{3} | TAGB = 1180(sv) − 208.06 | 0.856 | |

Crown Volume (cv), m^{3} | TAGB = 15.196(cv)^{0.8352} | 0.286 | |

Crown Biomass (CB), kg | Diameter at breast height (dbh), cm | CB = 8.5276e^{0.0708(dbh)} | 0.837 |

Tree Height (th), m | CB = 2.1908e^{0.1516(th)} | 0.754 | |

Crown Base Height (cbh), m | CB = 4.8349e^{0.2034(cbh)} | 0.655 | |

Stem Volume (sv), m^{3} | CB = 243.23(sv) − 47.864 | 0.846 | |

Crown Volume (cv), m^{3} | CB = 2.7984(cv)^{0.8484} | 0.286 |

## References

- Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag.
**2009**, 257, 1684–1694. [Google Scholar] [CrossRef] - Kankare, V.; Holopainen, M.; Vastaranta, M.; Puttonen, E.; Yu, X.; Hyyppä, J.; Vaaja, M.; Hyyppä, H.; Alho, P. Individual tree biomass estimation using terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens.
**2013**, 75, 64–75. [Google Scholar] [CrossRef] - Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia
**2005**, 145, 87–99. [Google Scholar] [CrossRef] [PubMed] - Lucas, R.M.; Cronin, N.; Lee, A.; Moghaddam, M.; Witte, C.; Tickle, P. Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sens. Environ.
**2006**, 100, 407–425. [Google Scholar] [CrossRef] - Næsset, E.; Gobakken, T. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ.
**2008**, 112, 3079–3090. [Google Scholar] [CrossRef] - Ni-Meister, W.; Lee, S.; Strahler, A.H.; Woodcock, C.E.; Schaaf, C.; Yao, T.; Ranson, K.J.; Sun, G.; Blair, J.B. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J. Geophys. Res.
**2010**, 115, 1–12. [Google Scholar] [CrossRef] - Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ.
**2011**, 115, 636–649. [Google Scholar] [CrossRef] - Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ.
**2011**, 115, 2786–2797. [Google Scholar] [CrossRef] - Petrie, G.; Toth, C.K. Terrestrial Laser Scanner. Citeseer
**2008**, 46, 87–128. [Google Scholar] - Lefsky, M.; McHale, M.R. Volume estimates of trees with complex architecture from terrestrial laser scanning. J. Appl. Remote Sens.
**2008**, 2, 23521. [Google Scholar] - Bucksch, A.; Fleck, S. Automated Detection of Branch Dimensions in Woody Skeletons of Fruit Tree Canopies. Photogramm. Eng. Remote Sens.
**2011**, 77, 229–240. [Google Scholar] [CrossRef] - Yao, T.; Yang, X.; Zhao, F.; Wang, Z.; Zhang, Q.; Jupp, D.; Lovell, J.; Culvenor, D.; Newnham, G.; Ni-Meister, W.; et al. Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens. Environ.
**2011**, 115, 2965–2974. [Google Scholar] [CrossRef] - Fernández-Sarría, A.; Velázquez-Martí, B.; Sajdak, M.; Martínez, L.; Estornell, J. Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Comput. Electron. Agric.
**2013**, 93, 90–97. [Google Scholar] [CrossRef] - Holopainen, M.; Kankare, V.; Vastaranta, M.; Liang, X.; Lin, Y.; Vaaja, M.; Yu, X.; Hyyppä, J.; Hyyppä, H.; Kaartinen, H.; et al. Tree mapping using airborne, terrestrial and mobile laser scanning—A case study in a heterogeneous urban forest. Urban For. Urban Green.
**2013**, 12, 546–553. [Google Scholar] [CrossRef] - Dassot, M.; Colin, A.; Santenoise, P.; Fournier, M.; Constant, T. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric.
**2012**, 89, 86–93. [Google Scholar] [CrossRef] - Fernández-Sarría, A.; Martínez, L.; Velázquez-Martí, B.; Sajdak, M.; Estornell, J.; Recio, J.A. Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements. Comput. Electron. Agric.
**2013**, 90, 176–185. [Google Scholar] [CrossRef] - Hosoi, F.; Nakai, Y.; Omasa, K. 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS J. Photogramm. Remote Sens.
**2013**, 82, 41–48. [Google Scholar] [CrossRef] - Feliciano, E.A.; Wdowinski, S.; Potts, M.D. Assessing Mangrove Above-Ground Biomass and Structure using Terrestrial Laser Scanning: A Case Study in the Everglades National Park. Wetlands
**2014**, 34, 955–968. [Google Scholar] [CrossRef] - Olschofsky, K.; Mues, V.; Kohl, M. Operational assessment of aboveground tree volume and biomass by terrestrial laser scanning. Comput. Electron. Agric.
**2016**, 127, 699–707. [Google Scholar] [CrossRef] - Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ.
**2015**, 164, 26–35. [Google Scholar] [CrossRef] - Li, A.; Glenn, N.F.; Olsoy, P.J.; Mitchell, J.J.; Shrestha, R. Aboveground biomass estimates of sagebrush using terrestrial and airborne LiDAR data in a dryland ecosystem. Agric. For. Meteorol.
**2015**, 213, 138–147. [Google Scholar] [CrossRef] - Olsoy, P.J.; Glenn, N.F.; Clark, P.E.; Derryberry, D.R. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens.
**2014**, 88, 166–173. [Google Scholar] [CrossRef] - Fei, L.K. Save the Belum-Temengor Rainforest. Available online: http://mns.my/article.php?aid=2455 (accessed on 11 February 2015).
- Rahman, M.Z.A.; Gorte, B.; Menenti, M.; Ibrahim, A.L. A generic approach in estimating vegetation density for hydrodynamic roughness parameterization using high density airborne laser scanning data. J. Hydroinform.
**2013**, 15, 446–463. [Google Scholar] [CrossRef] - Capuzzo, J.P.; Rossatto, D.R.; Franco, A.C. Differences in morphological and physiological leaf characteristics between Tabebuia aurea and T. impetiginosa is related to their typical habitats of occurrence. Acta Bot. Brasilica
**2012**, 26, 519–526. [Google Scholar] [CrossRef] - Sereneski-de Lima, C.; Torres-Boeger, M.R.; Larcher-de Carvalho, L.; Pelozzo, A.; Soffiatti, P. Sclerophylly in mangrove tree species from South Brazil. Rev. Mex. Biodivers.
**2013**, 84, 1159–1166. [Google Scholar] [CrossRef] - Kato, R.; Tadaki, Y.; Ogawa, H. Plant biomass and growth increment studies in Pasoh Forest. Malay. Nat. J.
**1978**, 30, 211–224. [Google Scholar] - Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett.
**2009**, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]

**Figure 3.**Individual tree measurements in a forest plot aided by a special signage located on selected trees.

**Figure 5.**Manually define threshold for the histogram of intensity values differentiating point clouds of branches and leaves.

**Figure 6.**(

**a**) Histogram for elevation value of point clouds fitted with multiple Gaussian models and (

**b**) the corresponding point clouds of a single tree [24].

**Figure 7.**Cylinder fitting applied to point clouds of the stem showing the diameter profile from the bottom to the top of a stem.

**Figure 8.**Delineation of branches and leaves from TLS-generated cloud points: (

**a**) classified branches in red and leaves in yellow; (

**b**) volume of branches and (

**c**) volume of leaves, estimated using alpha shapes.

**Figure 9.**Alpha applied to the convex hull to refine the detail volume estimation for crown components.

**Figure 10.**Correlation between total aboveground biomass, Weight of Stem, Weight of Branches and Weight of Leaves estimated using allometric equations and those determined using TLS-derived values.

**Figure 11.**Manually observed low point density of branches affected by longer distances from the scanner and obstruction by leaves.

**Table 1.**List of tree species and wood density [28].

Tree Species | Wood Density (g·cm^{−3}) | No. of Trees | Mean DBH (cm) |
---|---|---|---|

Akasia (Acacia auriculiformis A. Cunn. ex Benth.) | 0.68 | 23 | 14.2 |

Balik Angin (Mallotus paniculatus (Lam.) Müll.Arg.) | 0.50 | 16 | 13.9 |

Resak (Vatica umbonata (Hook.f.) Burck) | 0.79 | 16 | 16.8 |

Keruing (Dipterocarpus costatus Gaertn.f.) | 0.76 | 3 | 31.4 |

Mempening (Lithocarpus kingianus (Gamble) A. Camus) | 0.80 | 6 | 15.0 |

Kelat (Eugenia filiformis Wall. ex Duthie var. clavimyrtus (Koord. & Valeton) M.R. Hend.) | 0.71 | 13 | 17.3 |

Merbau (Intsia palembanica Miq.) | 0.63 | 3 | 83.2 |

Sepetir (Sindora echinocalyx (Benth.) Prain) | 0.61 | 5 | 18.82 |

Medang (Alseodaphne insignis Gamble) | 0.71 | 11 | 16.0 |

Temponek (Artocarpus rigidus Blume) | 0.55 | 1 | 13.6 |

Pelung (Pentaspadon motleyi Hook.f.) | 0.50 | 3 | 38.4 |

Kempas (Koompassia malaccensis Maing. ex Benth.) | 0.76 | 9 | 44.8 |

Perah (Elateriospermum tapos Blume) | 0.65 | 3 | 35.5 |

Keledang (Artocarpus gomezianus Wall. ex Trécul) | 0.54 | 1 | 8.49 |

Mempisang (Goniothalamus giganteus Hook.f. & Thomson) | 0.38 | 4 | 26.1 |

Nyatoh (Palaquium clarkeanum King & Gamble) | 0.66 | 1 | 35.5 |

Tree Attribute | RMSE | % RMSE to Mean | MAE | % MAE to Mean | Mean Bias | Correlation |
---|---|---|---|---|---|---|

Diameter at Breast Height (DBH), cm | 0.062 | 29.0 | 0.041 | 19.0 | −0.032 | 0.969 |

Tree Height, m | 7.104 | 46.9 | 5.042 | 37.4 | 3.065 | 0.616 |

Crown Base Height (CBH), m | 4.310 | 42.6 | 3.020 | 29.9 | 1.050 | 0.590 |

**Table 3.**Comparison of total above ground biomass (TAGB) and weight of stem, branches and leaves for all tree species between TLS-measured values and values obtained from allometric equations.

Biomass | RMSE (kg) | % RMSE to Mean | MAE (kg) | % MAE to Mean | Mean Bias (kg) | Correlation |
---|---|---|---|---|---|---|

Weight of stem (kg) | 1751.666 | 410.0 | 512.015 | 119.8 | −59.075 | 0.973 |

Weight of branches (kg) | 399.777 | 396.4 | 99.035 | 98.2 | −93.438 | −0.124 |

Weight of leaves (kg) | 15.528 | 194.9 | 10.294 | 129.2 | 3.973 | 0.242 |

Total aboveground biomass (kg) | 842.674 | 157.2 | 197.855 | 36.9 | −154.912 | 0.973 |

Biomass | Variable | Regression Models | R^{2} |
---|---|---|---|

Weight of Stem (Ws), kg | Diameter at breast height (dbh), cm | Ws = 1.7016(dbh)^{2} − 57.964(dbh) + 527.85 | 0.918 |

Tree Height (th), m | Ws = 5.2021e^{0.174(th)} | 0.758 | |

Crown Base Height (cbh), m | Ws = 15.348e^{0.1994(cbh)} | 0.439 | |

Stem Volume (sv), m^{3} | Ws = 637.93(sv) + 14.617 | 0.937 | |

Weight of Branches (Wb), kg | Diameter at breast height (dbh), cm | Wb = 0.4672(dbh)^{2} − 17.634(dbh) + 160.17 | 0.913 |

Tree Height (th), m | Wb = 0.7941e^{0.1861(th)} | 0.758 | |

Crown Base Height (cbh), m | Wb = 2.5271e^{0.2134(cbh)} | 0.439 | |

Stem Volume (sv), m^{3} | Wb = 147.06(sv) − 0.3387 | 0.940 | |

Branches Volume (bv), m^{3} | Wb = 2.1588(bv)^{−0.372} | 0.200 | |

Weight of Leaves (Wl), kg | Diameter at breast height (dbh), cm | Wl = 0.8032(dbh) − 6.8435 | 0.914 |

Tree Height (th), m | Wl = 0.5582e^{0.122(th)} | 0.742 | |

Crown Base Height (cbh), m | Wl = 1.1945e^{0.1403(cbh)} | 0.446 | |

Stem Volume (sv), m^{3} | Wl = 11.88(sv) + 2.6475 | 0.885 | |

Leaves Volume (lv), m^{3} | Wl = 2.9449e^{0.0101(lv)} | 0.105 | |

Total Aboveground Biomass (TAGB), kg | Diameter at breast height (dbh), cm | TAGB = 2.172(dbh)^{2} − 75.055(dbh) + 684.18 | 0.917 |

Tree Height (th), m | TAGB = 6.3679e^{0.1746(th)} | 0.759 | |

Crown Base Height (cbh), m | TAGB = 18.84e^{0.2001(cbh)} | 0.439 | |

Stem Volume (sv), m^{3} | TAGB = 1154.4(sv) − 123.89 | 0.984 | |

Crown Volume (cv), m^{3} | TAGB = 60e^{0.0114(cv)} | 0.236 | |

Weight of Crown (Wc) = WI + Wb, kg | Diameter at breast height (dbh), cm | TAGB = 0.5079(dbh)^{2} − 21.867(dbh) + 215.57 | 0.954 |

Tree Height (th), m | Wc = 0.8818e^{0.1865(th)} | 0.882 | |

Crown Base Height (cbh) | Wc = 2.7528ln(cbh) + 1.285 | 0.656 | |

Stem Volume (sv), m^{3} | Wc = 0.0059(sv) + 0.0057 | 0.939 | |

Crown Volume (cv), m^{3} | Wc = 20.4ln(cbh) − 5.2361 | 0.237 |

**Table 5.**Assessment of biomass from different compartments and total aboveground biomass of different tree species.

Tree Species | Biomass | RMSE (kg) | % RMSE to Mean | MAE (kg) | % MAE to Mean | Mean Bias (kg) | Correlation (R) |
---|---|---|---|---|---|---|---|

Acacia auriculiformis (Akasia) | Weight of Stem (kg) | 35.814 | 54.9 | 22.397 | 34.3 | 11.202 | 0.979 |

Weight of Branches (kg) | 19.055 | 155.7 | 9.132 | 74.6 | −6.218 | −0.167 | |

Weight of Leaves (kg) | 8.439 | 272.9 | 5.760 | 186.3 | 4.772 | 0.731 | |

TAGB (kg) | 27.794 | 34.5 | 22.086 | 27.4 | 8.197 | 0.980 | |

Mallotus paniculatus (Balik Angin) | Weight of Stem (kg) | 23.257 | 46.5 | 18.529 | 37.0 | −13.193 | 0.917 |

Weight of Branches (kg) | 14.185 | 154.7 | 9.822 | 107.1 | 1.623 | −0.265 | |

Weight of Leaves (kg) | 14.424 | 565.6 | 11.813 | 463.2 | 11.813 | 0.094 | |

TAGB (kg) | 29.221 | 47.3 | 23.853 | 38.6 | 0.243 | 0.896 | |

Vatica spp. (Resak) | Weight of Stem (kg) | 42.796 | 40.0 | 30.691 | 28.7 | 22.110 | 0.904 |

Weight of Branches (kg) | 20.112 | 98.0 | 15.586 | 75.9 | −9.754 | 0.270 | |

Weight of Leaves (kg) | 13.682 | 294.9 | 9.905 | 213.5 | 9.285 | 0.490 | |

TAGB (kg) | 44.873 | 34.0 | 33.324 | 25.2 | 21.641 | 0.911 | |

Eugenia filiformis (Kelat) | Weight of Stem (kg) | 40.029 | 41.0 | 30.942 | 31.7 | −7.419 | 0.728 |

Weight of Branches (kg) | 18.506 | 99.9 | 14.948 | 80.7 | −10.476 | −0.232 | |

Weight of Leaves (kg) | 10.020 | 229.0 | 7.457 | 170.5 | 6.577 | 0.289 | |

TAGB (kg) | 53.704 | 44.6 | 40.148 | 33.3 | −11.318 | 0.669 | |

Cinnamomum spp. (Medang) | Weight of Stem (kg) | 28.215 | 30.8 | 22.580 | 24.6 | 7.983 | 0.966 |

Weight of Branches (kg) | 28.656 | 162.0 | 19.419 | 109.8 | −8.462 | −0.199 | |

Weight of Leaves (kg) | 6.726 | 170.5 | 6.044 | 153.2 | 5.298 | 0.293 | |

TAGB (kg) | 42.770 | 37.7 | 35.582 | 31.4 | 4.818 | 0.975 | |

Koompassia malaccensis (Kempas) | Weight of Stem (kg) | 930.076 | 42.8 | 435.705 | 20.1 | −334.296 | 0.998 |

Weight of Branches (kg) | 1200.291 | 219.5 | 545.273 | 99.7 | −545.273 | 0.444 | |

Weight of Leaves (kg) | 27.190 | 112.0 | 19.158 | 78.9 | −13.338 | 0.248 | |

TAGB (kg) | 2139.214 | 78.0 | 947.839 | 34.6 | −892.907 | 0.997 | |

Litocarpus Kingianus (Mempening) | Weight of Stem (kg) | 33.291 | 45.0 | 27.490 | 37.2 | −5.851 | 0.954 |

Weight of Branches (kg) | 19.505 | 138.7 | 13.881 | 98.7 | −3.213 | −0.647 | |

Weight of Leaves (kg) | 8.498 | 253.8 | 6.479 | 193.5 | 5.835 | −0.473 | |

TAGB (kg) | 55.073 | 60.2 | 46.913 | 51.3 | −3.228 | 0.936 | |

Others | Weight of Stem (kg) | 873.460 | 88.3 | 338.779 | 34.2 | −207.822 | 0.905 |

Weight of Branches (kg) | 487.298 | 208.6 | 232.335 | 99.5 | −229.473 | −0.178 | |

Weight of Leaves (kg) | 21.532 | 126.4 | 14.307 | 84.0 | −2.047 | 0.279 | |

TAGB (kg) | 1319.042 | 106.4 | 501.304 | 40.4 | −439.341 | 0.905 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abd Rahman, M.Z.; Abu Bakar, M.A.; Razak, K.A.; Rasib, A.W.; Kanniah, K.D.; Wan Kadir, W.H.; Omar, H.; Faidi, A.; Kassim, A.R.; Abd Latif, Z. Non-Destructive, Laser-Based Individual Tree Aboveground Biomass Estimation in a Tropical Rainforest. *Forests* **2017**, *8*, 86.
https://doi.org/10.3390/f8030086

**AMA Style**

Abd Rahman MZ, Abu Bakar MA, Razak KA, Rasib AW, Kanniah KD, Wan Kadir WH, Omar H, Faidi A, Kassim AR, Abd Latif Z. Non-Destructive, Laser-Based Individual Tree Aboveground Biomass Estimation in a Tropical Rainforest. *Forests*. 2017; 8(3):86.
https://doi.org/10.3390/f8030086

**Chicago/Turabian Style**

Abd Rahman, Muhammad Zulkarnain, Md Afif Abu Bakar, Khamarrul Azahari Razak, Abd Wahid Rasib, Kasturi Devi Kanniah, Wan Hazli Wan Kadir, Hamdan Omar, Azahari Faidi, Abd Rahman Kassim, and Zulkiflee Abd Latif. 2017. "Non-Destructive, Laser-Based Individual Tree Aboveground Biomass Estimation in a Tropical Rainforest" *Forests* 8, no. 3: 86.
https://doi.org/10.3390/f8030086