Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (906)

Search Parameters:
Keywords = stem volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 187
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

16 pages, 1913 KiB  
Article
Stem Volume Prediction of Chamaecyparis obtusa in South Korea Using Machine Learning and Field-Measured Tree Variables
by Chiung Ko, Jintaek Kang and Donggeun Kim
Forests 2025, 16(8), 1228; https://doi.org/10.3390/f16081228 - 25 Jul 2025
Viewed by 217
Abstract
Accurate estimation of individual tree stem volume is essential for forest resource assessment and the implementation of sustainable forest management. In South Korea, traditional regression models based on non-destructive and easily measurable field variables such as diameter at breast height (DBH) and total [...] Read more.
Accurate estimation of individual tree stem volume is essential for forest resource assessment and the implementation of sustainable forest management. In South Korea, traditional regression models based on non-destructive and easily measurable field variables such as diameter at breast height (DBH) and total height (TH) have been widely used to construct stem volume tables. However, these models often fail to adequately capture the nonlinear taper of tree stems. In this study, we evaluated and compared the predictive performance of traditional regression models and two machine learning algorithms—Random Forest (RF) and Extreme Gradient Boosting (XGBoost)—using stem profile data from 1000 destructively sampled Chamaecyparis obtusa trees collected across 318 sites nationwide. To ensure compatibility with existing national stem volume tables, all models used only DBH and TH as input variables. The results showed that all three models achieved high predictive accuracy (R2 > 0.997), with XGBoost yielding the lowest RMSE (0.0164 m3) and MAE (0.0126 m3). Although differences in performance among the models were marginal, the machine learning approaches demonstrated flexible and generalizable alternatives to conventional models, providing a practical foundation for large-scale forest inventory and the advancement of digital forest management systems. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 7145 KiB  
Article
Derivation and Application of Allometric Equations to Quantify the Net Primary Productivity (NPP) of the Salix pierotii Miq. Community as a Representative Riparian Vegetation Type
by Bong Soon Lim, Jieun Seok, Seung Jin Joo, Jeong Cheol Lim and Chang Seok Lee
Forests 2025, 16(8), 1225; https://doi.org/10.3390/f16081225 - 25 Jul 2025
Viewed by 116
Abstract
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient [...] Read more.
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient use as a biofuel in short-rotation cultivation. The present study aims to derive an allometric equation and conduct stem analysis as fundamental tools for estimating net primary productivity (NPP) in Salix pierotii Miq. stand, which is increasingly acknowledged as an important emerging carbon sink. The allometric equations derived showed a high explanatory rate and fitness (R2 ranged from 0.74 to 0.99). The allometric equations between DBH and stem volume and biomass derived in the process of stem analysis also showed a high explanatory rate and fitness (R2 ranged from 0.87 to 0.94). The NPPs calculated based on the allometric equation derived and stem analysis were 11.87 tonC∙ha−1∙yr−1 and 15.70 tonC∙ha−1∙yr−1, respectively. These results show that the S. pierotii community, recognized as the representative riparian vegetation, could play an important role as a carbon sink. In this context, an assessment of the carbon absorption capacity of riparian vegetation such as willow communities could contribute significantly to achieving carbon neutrality goals. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 4304 KiB  
Article
Numerical Study of Turbulent Open-Channel Flow Through Submerged Rigid Vegetation
by Theodora P. Kalaryti, Nikolaos Th. Fourniotis and Efstratios E. Tzirtzilakis
Water 2025, 17(14), 2156; https://doi.org/10.3390/w17142156 - 20 Jul 2025
Viewed by 303
Abstract
In the present study, three-dimensional turbulent, subcritical open-channel flow (Fr = 0.19) through submerged rigid vegetation is numerically investigated using the ANSYS FLUENT solver (v. 22. 1). The Volume of Fluid (VOF) method is applied for free-surface tracking, while the standard k-ε [...] Read more.
In the present study, three-dimensional turbulent, subcritical open-channel flow (Fr = 0.19) through submerged rigid vegetation is numerically investigated using the ANSYS FLUENT solver (v. 22. 1). The Volume of Fluid (VOF) method is applied for free-surface tracking, while the standard k-ε turbulence model is employed for turbulence closure. Vegetation is modeled as vertical rigid cylinders fixed at the bottom of the channel. Regarding the arrangement of the stems, two cases are examined. In the first case, a linear arrangement of three equally spaced vegetative stems is located transversely at the center of the channel, while in the second case, a parallel arrangement of fifteen equidistant vegetative stems is located downstream of the channel center. In both cases, the vertical velocity profile within the submerged vegetation layer deviates significantly from that of the upper non-vegetated layer, which generally adheres to the logarithmic velocity distribution. In the second case, flow field repeatability is observed after the third stem series, particularly in terms of velocity profiles. Additionally, the structure of turbulence is noticeably affected in the vicinity of the stems, resulting in higher eddy viscosity values near each stem’s crest area. Furthermore, a localized drop in the free surface is recorded above the vegetated region, while a slight rise is observed upstream of each stem series, consistent with subcritical open-channel flow. Full article
(This article belongs to the Special Issue Recent Advances in Hydraulics Engineering)
Show Figures

Figure 1

18 pages, 3532 KiB  
Article
Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data
by Urooj Khan, Romana Jamshed, Adnan Ahmad Tahir, Faizan ur Rehman Qaisar, Kunpeng Wu, Awais Arifeen, Sher Muhammad, Asif Javed and Muhammad Abrar Faiz
Water 2025, 17(14), 2104; https://doi.org/10.3390/w17142104 - 15 Jul 2025
Viewed by 280
Abstract
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- [...] Read more.
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- and glacier-melt runoff using the snowmelt runoff model (SRM) in the Gilgit and Kachura River Basins of the upper Indus basin (UIB). The SRM was applied by coupling it with in situ and improved cloud-free MODIS snow and glacier composite satellite data (MOYDGL06) to simulate the flow under current and future climate scenarios. The SRM showed significant results: the Nash–Sutcliffe coefficient (NSE) for the calibration and validation period was between 0.93 and 0.97, and the difference in volume (between the simulated and observed flow) was in the range of −1.5 to 2.8% for both catchments. The flow tends to increase by 0.3–10.8% for both regions (with a higher increase in Gilgit) under mid- and late-21st-century climate scenarios. The Gilgit Basin’s higher hydrological sensitivity to climate change, compared to the Kachura Basin, stems from its lower mean elevation, seasonal snow dominance, and greater temperature-induced melt exposure. This study concludes that the simple temperature-based models, such as the SRM, coupled with improved satellite snow cover data, are reliable in simulating the current and future flows from the data-scarce mountainous catchments of Pakistan. The outcomes are valuable and can be used to anticipate and lessen any threat of flooding to the local community and the environment under the changing climate. This study may support flood assessment and mapping models in future flood risk reduction plans. Full article
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
Genotypic Variability in Growth and Leaf-Level Physiological Performance of Highly Improved Genotypes of Pinus radiata D. Don Across Different Sites in Central Chile
by Sergio Espinoza, Marco Yáñez, Carlos Magni, Eduardo Martínez-Herrera, Karen Peña-Rojas, Sergio Donoso, Marcos Carrasco-Benavides and Samuel Ortega-Farias
Forests 2025, 16(7), 1108; https://doi.org/10.3390/f16071108 - 4 Jul 2025
Viewed by 232
Abstract
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth [...] Read more.
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth and water use, needs to be evaluated. In this study, we assessed the genotypic variability of leaf-level light-saturated photosynthesis (Asat), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (iWUE), and Chlorophyll a fluorescence (OJIP-test parameters) among 30 P. radiata genotypes (i.e., full-sib families) from third-cycle parents at age 6 years on three sites in Central Chile. We also evaluated tree height (HT), diameter at breast height (DBH), and stem index volume (VOL). Families were ranked for HT as top-15 and bottom-15. In the OJIP-test parameters we observed differences at the family level for the maximum quantum yield of primary PSII photochemistry (Fv/Fm), the probability that a photon trapped by the PSII reaction center enters the electron transport chain (ψEo), and the potential for energy conservation from photons captured by PSII to the reduction in intersystem electron acceptors (PIABS). Fv/Fm, PIABS, and ψEo ranged from 0.82 to 0.87, 45 to 95, and 0.57 to 0.64, respectively. Differences among families for growth and not for leaf-level physiology were detected. DBT, H, and VOL were higher in the top-15 families (12.6 cm, 8.4 m, and 0.10 m3, respectively) whereas Asat, gs, E, and iWUE were similar in both the top-15 and bottom-15 families (4.0 μmol m−2 s−1, 0.023 mol m−2 s−1, 0.36 mmol m−2 s−1, and 185 μmol mol m−2 s−1, respectively). However, no family by site interaction was detected for growth and leaf-level physiology. The results of this study suggest that highly improved genotypes of P. radiata have uniformity in leaf-level physiological rates, which could imply uniform water use at the stand-level. The family variation found in PIABS suggests that this parameter could be incorporated to select genotypes tolerant to environmentally stressful conditions. Full article
(This article belongs to the Special Issue Water Use Efficiency of Forest Trees)
Show Figures

Figure 1

17 pages, 4939 KiB  
Article
Wood Loss in the Felling and Cross-Cutting of Trees from Spruce Stands Affected by Windthrow in the Curvature Carpathians
by Mihai Ciocirlan and Vasile Răzvan Câmpu
Forests 2025, 16(7), 1102; https://doi.org/10.3390/f16071102 - 3 Jul 2025
Viewed by 266
Abstract
Windthrow determines major changes in tree stand evolution due to the felling or breaking of either isolated trees or entire stands. It has a major ecological, social and economic impact. Wood loss resulting from tree felling and cross-cutting operations is a less-studied aspect [...] Read more.
Windthrow determines major changes in tree stand evolution due to the felling or breaking of either isolated trees or entire stands. It has a major ecological, social and economic impact. Wood loss resulting from tree felling and cross-cutting operations is a less-studied aspect related to windthrow. Wood loss is represented by high stumps, broken or split stems, wood lost in the felling of trees that remain standing, wood lost in felling cuts that attempt to remove the stem from the root plate of partially or totally uprooted trees and wood lost as a result of stem cross-cutting. The study focused on estimating losses and their indices in a spruce tree stand located in the Curvature Carpathians. Windthrow took place in this tree stand in February 2020. The results showed that the total wood loss index is 7.747%. The main losses are represented by wood losses in high stumps (5.319%). The amount of wood loss depends on the proportion of uprooted or standing trees, ground inclination and the uprooting direction of trees as opposed to ground inclination, as well as on tree dimension. Tree volume significantly influences wood loss in high stumps (p < 0.001). The closer the uprooting direction is to the highest slope, the higher the tree stump becomes. Wood loss caused by stem breaking and splitting represents 2.280%, tree felling cuttings and stem removal from the root plate in uprooted trees account for 0.138% while loss resulting from stem cross-cutting represents 0.10%. Full article
(This article belongs to the Special Issue Sustainable Forest Operations Planning and Management)
Show Figures

Figure 1

15 pages, 1701 KiB  
Article
Innovative Method of Stimulating Vegetative Propagation of Large Cranberry (Vaccinium macrocarpon Aiton) Using New Organic Initiators
by Natalia Matłok, Małgorzata Szostek, Tomasz Piechowiak and Maciej Balawejder
Int. J. Mol. Sci. 2025, 26(13), 6369; https://doi.org/10.3390/ijms26136369 - 2 Jul 2025
Viewed by 236
Abstract
Large-fruited cranberry (Vaccinium macrocarpon Aiton) is a species known for its highly valued fruit and is typically propagated vegetatively through the rooting of stem cuttings. Studies on the rooting of stem cuttings of large-fruited cranberry have shown that the morphological traits of [...] Read more.
Large-fruited cranberry (Vaccinium macrocarpon Aiton) is a species known for its highly valued fruit and is typically propagated vegetatively through the rooting of stem cuttings. Studies on the rooting of stem cuttings of large-fruited cranberry have shown that the morphological traits of the root system are a key indicator of the effectiveness of this process. To support rooting, gel coatings based on polysaccharides and containing auxins, especially the indole-3-butyric acid (IBA) W4 variant, were developed and applied. These significantly influenced root length (increase of 44.6% compared to control W0), surface area (increase of 32.4% compared to W0), volume (increase of 26.7% compared to W0), and average thickness, which translated into better nutrient uptake and a higher degree of plant nourishment. The W4 coating, combining mineral components, polysaccharides, and IBA, reduced transpiration and maintained moisture, promoting effective rooting. The associated metabolic changes were confirmed by analyses of oxidative stress markers and chlorophyll fluorescence. The study demonstrated that enhanced root system development was closely linked with the increased accumulation of macro- and micronutrients in the aerial parts of the plants, directly contributing to improved growth and potential yield. These findings highlight that effective rooting—achieved through the targeted metabolic stabilisation of the rooting environment—is essential for the successful vegetative propagation of large-fruited cranberry. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 789 KiB  
Review
Nanotechnology in Osteogenesis and Inflammation Management: Metal–Organic Frameworks, Metal Complexes, and Biomaterials for Bone Restoration
by Bogdan Huzum, Ionut Iulian Lungu, Ovidiu Alexa, Paul Dan Sirbu, Viorel Dan Cionca, Andreia Corciova, Andreea Lungu, Monica Hancianu, Ionela Lacramioara Serban and Oana Cioanca
Biomedicines 2025, 13(7), 1597; https://doi.org/10.3390/biomedicines13071597 - 30 Jun 2025
Viewed by 463
Abstract
A varied family of polyphenolic chemicals, flavonoids, are becoming more and more important in bone tissue engineering because of their osteogenic, anti-inflammatory, and antioxidant effects. Recent developments incorporating flavonoids into different biomaterial platforms to improve bone regeneration are emphasized in this study. Osteocalcin [...] Read more.
A varied family of polyphenolic chemicals, flavonoids, are becoming more and more important in bone tissue engineering because of their osteogenic, anti-inflammatory, and antioxidant effects. Recent developments incorporating flavonoids into different biomaterial platforms to improve bone regeneration are emphasized in this study. Osteocalcin (OCN) expression was 2.1-fold greater in scaffolds loaded with flavonoids—such as those made of polycaprolactone (PCL)—greatly increasing human mesenchymal stem cell (hMSC) proliferation and mineralization. Comparably, a threefold increase in calcium deposition indicates increased mineralization when hydroxyapatite (HA) was functionalized with flavonoids such as quercetin. These HA scaffolds with flavonoids also showed a 45% decrease in osteoclast activity, therefore promoting balanced bone remodeling. Concurrent with flavonoids like EGCG and quercetin, chitosan-based scaffolds encouraged osteogenic differentiation with increases in osteogenic markers like osteopontin (OPN) and alkaline phosphatase (ALP) expression by up to 82%. These scaffolds also showed 82% bone defect repair after six weeks in vivo, suggesting their promise in rapid bone regeneration. With an increase of up to 32% in the bone volume-to-total volume ratio (BV/TV) and 28% greater bone–implant contact (BIC), flavonoid coatings on titanium implants enhanced osteointegration in implantology. Displaying successful osteogenesis and immunomodulation, the addition of flavonoids into metal–organic frameworks (MOFs) and injectable hydrogels demonstrated a 72% increase in new bone formation in vivo. Though further research is required to confirm long-term clinical effectiveness, these findings show the great promise of flavonoid-functionalized biomaterials in bone regeneration. Full article
(This article belongs to the Special Issue Applications and Developments of Metal-Based Drugs)
Show Figures

Figure 1

16 pages, 351 KiB  
Article
Secondary School Students’ Perceptions of Subjects in Integrated STEM Teaching
by Anna Kellinghusen, Sandra Sprenger, Catharina Zieriacks, Anna Orschulik, Katrin Vorhölter and Sandra Schulz
Educ. Sci. 2025, 15(7), 821; https://doi.org/10.3390/educsci15070821 - 28 Jun 2025
Viewed by 390
Abstract
This study examines students’ perceptions of the subjects geography, mathematics, and computer science in integrated science, technology, engineering, and mathematics (STEM) lessons. Although the importance of an integrated approach in STEM education is emphasized, researchers are not clear about whether students perceive connections [...] Read more.
This study examines students’ perceptions of the subjects geography, mathematics, and computer science in integrated science, technology, engineering, and mathematics (STEM) lessons. Although the importance of an integrated approach in STEM education is emphasized, researchers are not clear about whether students perceive connections between the subjects on the one hand and subject-specific working methods and content in integrated lessons on the other. Data was collected in an integrated teaching unit on the sustainability of apples using an open-ended digital questionnaire in to two ninth grade classes in Hamburg, Germany (n = 38); this data was analyzed using qualitative content analysis. The results reveal that students perceive the subjects differently, but similarities can also be identified. While subject-specific content is perceived—such as the use of maps in geography, the calculation of volumes in mathematics, and Dijkstra’s algorithm in computer science—methodological connections, such as calculating, analyzing diagrams, or solving problems, are anchored across disciplines. This suggests that the subject-specific contents are not lost in integrating lessons, and that connections among the subjects are, to a certain extent, promoted. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches to STEM Education)
Show Figures

Figure 1

18 pages, 2524 KiB  
Article
Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens
by Matthias Diez and Simon Zabler
Crystals 2025, 15(7), 605; https://doi.org/10.3390/cryst15070605 - 27 Jun 2025
Viewed by 333
Abstract
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While [...] Read more.
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While numerous methods have been developed to reduce X-ray scattering artifacts, fewer methods deal with optical scattering. In this study, a measurement method for determining optical scattering in scintillators is presented with the aim of further developing correction algorithms. A theoretical model based on internal multiple reflections was developed for this purpose. This model assumes an additive exponential kernel with a certain scattering length to the system’s point spread function. This assumption was confirmed, and the scatter length was estimated from three new different kinds of experiments (hgap, rect, and LSF) on the BM18 beamline of the European synchrotron. The experiments further revealed significant differences in scattering proportion and length when different coatings are applied to the front and back faces of crystalline LuAG scintillators. Anti-reflective coatings on the backside show an effect of reducing the scattering magnitude while reflective coatings on the front side increase the proportion of the unscattered signal and, thus, show proportionally less scattering than black coating or no front coating. In particular, roughened black coating is found to worsen optical scattering. In summary, our results indicate that a combination of reflective (front) and anti-reflective (back) coatings yields the least optical scattering and, hence, the best image quality. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

32 pages, 2492 KiB  
Article
A Study on the Correlation Between Urbanization and Agricultural Economy Based on Efficiency Measurement and Quantile Regression: Evidence from China
by Hong Ye, Yaoyao Ding, Rong Zhang and Yuntao Zou
Sustainability 2025, 17(13), 5908; https://doi.org/10.3390/su17135908 - 26 Jun 2025
Viewed by 331
Abstract
The impact of urbanization on the agricultural economy has long attracted scholarly attention. Taking China as a case, this study investigates the relationship between urbanization and agricultural development under the dual progress of urbanization and the rural revitalization strategy. Based on panel data [...] Read more.
The impact of urbanization on the agricultural economy has long attracted scholarly attention. Taking China as a case, this study investigates the relationship between urbanization and agricultural development under the dual progress of urbanization and the rural revitalization strategy. Based on panel data from 31 mainland provinces, this paper measures agricultural economic efficiency using the global slack-based measure (SBM) model and employs quantile regression to systematically analyze the influence of various urbanization factors across different levels of agricultural efficiency. A Tobit regression model is further adopted for robustness checks. The results show that representative urbanization factors, such as the proportion of urban population and the prevalence of higher education, exert significant negative impacts on agricultural efficiency, particularly in regions with higher efficiency levels. Freight volume has a significantly negative effect in regions with medium and low efficiency, while freight turnover negatively impacts medium- to high-efficiency areas. In contrast, improvements in healthcare services and digital infrastructure are found to consistently enhance agricultural efficiency. Although the corporatization of agriculture is often regarded as a key outcome of urbanization, its efficiency-improving effect is not statistically significant in most models and is mainly concentrated in high-efficiency regions. Overall, the improvement in China’s agricultural economic efficiency relies more on direct support from the rural revitalization strategy, while rapid urbanization has failed to bring substantial benefits and has even led to structural negative effects. These adverse outcomes may stem from the rapid occupation of suburban farmland, increased logistics costs due to the relocation of agricultural activities, and the ineffective absorption of surplus rural labor. This study highlights the need for future urbanization policies in China to pay greater attention to the coordinated development of the agricultural economy. The methods and findings of this research also provide reference value for other developing regions facing similar urbanization-agriculture dynamics. Full article
Show Figures

Figure 1

22 pages, 13594 KiB  
Article
Numerical Modelling of the Multiphase Flow in an Agricultural Hollow Cone Nozzle
by Paweł Karpiński, Zbigniew Czyż and Stanisław Parafiniuk
Appl. Sci. 2025, 15(13), 7214; https://doi.org/10.3390/app15137214 - 26 Jun 2025
Viewed by 216
Abstract
In the field of agriculture, various types of pesticides are used to control crop pests. These chemical agents are applied using nozzles with different geometries. Regardless of their configuration and operational liquid parameters, the applied liquid jet encounters issues with wind drift and [...] Read more.
In the field of agriculture, various types of pesticides are used to control crop pests. These chemical agents are applied using nozzles with different geometries. Regardless of their configuration and operational liquid parameters, the applied liquid jet encounters issues with wind drift and penetration efficiency. Therefore, it is necessary to optimize the spraying process. In this study, 3D numerical calculations were performed using computational fluid dynamics (CFD). A two-phase flow model based on the volume of fluid (VOF) method was used to simulate the mixing of water and air. The k-ω SST turbulence model was adopted to capture vortex phenomena. A hollow cone nozzle geometry, commonly used in orchards, was selected. Simulations allowed the analysis of pressure, velocity, and turbulence kinetic energy (TKE) in selected cross-sections. Results show that the maximum velocity of the liquid jet at the nozzle outlet exceeded 23 m/s, with the highest TKE reaching 35 m2/s2 in the vortex chamber. The computed spray cone angle was approximately 88°, while the experimental value was 80°, and the simulated mass flow rate differed by 16.7% from the measured reference. The critical flow region was identified between the vortex insert and the ceramic stem, where the highest gradients of pressure and velocity were observed. Full article
Show Figures

Figure 1

21 pages, 2498 KiB  
Article
Effective Adsorption of Phenoxyacetic Herbicides by Tomato Stem-Derived Activated Carbons
by Krzysztof Kuśmierek, Beata Doczekalska, Maciej Sydor and Andrzej Świątkowski
Appl. Sci. 2025, 15(12), 6816; https://doi.org/10.3390/app15126816 - 17 Jun 2025
Viewed by 262
Abstract
Six activated carbons from tomato (Solanum lycopersicum L.) stems (TS-AC) were synthesized by carbonization and chemical activation using potassium hydroxide (KOH) and sodium hydroxide (NaOH) at temperatures of 550, 650, and 750 °C. These TS-ACs were then evaluated as adsorbents to remove [...] Read more.
Six activated carbons from tomato (Solanum lycopersicum L.) stems (TS-AC) were synthesized by carbonization and chemical activation using potassium hydroxide (KOH) and sodium hydroxide (NaOH) at temperatures of 550, 650, and 750 °C. These TS-ACs were then evaluated as adsorbents to remove 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) from aqueous solutions. The adsorption kinetics of both herbicides followed the pseudo-second-order model, closely correlating with the mesopore volume of the TS-AC. The Langmuir isotherm accurately described the adsorption process for both 2,4-D and MCPA. The porous structure of TS-AC, characterized by micropore volume and specific surface area, significantly influenced the maximum adsorption capacities. The adsorption of both herbicides was pH dependent, but ionic strength had no significant effect. Regeneration testing, conducted over three cycles, showed less than a 15% reduction in herbicide adsorption capacity. This study demonstrates that agricultural waste, specifically tomato stems, can be effectively valorized by using simple activation techniques in TS-AC that are efficient adsorbents to remove organic pollutants, such as herbicides, from aqueous media. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
Show Figures

Figure 1

18 pages, 5001 KiB  
Article
Repair Effects of Scenedesmus obliquus on Cucumber Seedlings Under Saline–Alkali Stress
by Zhao Liu, Yanlong Dong, Xiaoxia Jin, Yan Liu, Zhonghui Yue and Wei Li
Agronomy 2025, 15(6), 1468; https://doi.org/10.3390/agronomy15061468 - 16 Jun 2025
Viewed by 496
Abstract
In this study, cucumber seedlings were treated with Scenedesmus obliquus at different concentrations (0.25, 0.50, 0.75, 1 g·L−1) under saline–alkali stress (60 mM and 90 mM). The effects of Scenedesmus obliquus on the repair of cucumber seedlings under saline–alkali stress were [...] Read more.
In this study, cucumber seedlings were treated with Scenedesmus obliquus at different concentrations (0.25, 0.50, 0.75, 1 g·L−1) under saline–alkali stress (60 mM and 90 mM). The effects of Scenedesmus obliquus on the repair of cucumber seedlings under saline–alkali stress were explored from physiological and morphological perspectives by measuring growth physiological indices and observing microstructure. It provides a cytological basis for the development of microalgae biofertilizer. The results showed that the addition of Scenedesmus obliquus effectively alleviated the physiological and structural damage in cucumber seedlings caused by saline–alkali stress, with the best mitigation effect at 0.75 g·L−1. More specifically, the addition of Scenedesmus obliquus significantly improved seedling fresh weight and plant height under saline–alkali stress, increased stem vascular vessel diameter, thickened vessel walls, reduced structural damage, the structural recovery of mitochondria, nuclei, and other organelles in the phloem; The results showed that root xylem vessel distribution became more centralized, vessel diameter decreased, and wall thickness decreased, with other changes similar to those in the stem; The number and volume of mesophyll cells increased, chloroplast morphology recovered, and chlorophyll content rose, effectively alleviating the impact of saline–alkali stress on photosynthesis. MDA content decreased, mitigating oxidative damage caused by saline–alkali stress. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

Back to TopTop