Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,356)

Search Parameters:
Keywords = wood density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6941 KiB  
Article
Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production
by Hubert Justin Nnanga Guissele, Arnaud Maxime Cheumani Yona, Armel Edwige Mewoli, Désiré Chimeni-Yomeni, Lucioni Fabien Tsague, Tatiane Marina Abo, Jean-Bosco Saha-Tchinda, Maurice Kor Ndikontar and Antonio Pizzi
Polymers 2025, 17(15), 2156; https://doi.org/10.3390/polym17152156 - 6 Aug 2025
Abstract
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) [...] Read more.
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) as liquefying solvent with 98% wt. sulfur acid as catalyst, and the mixture was taken to boil at 140 °C for 2, 2.5, and 3 h. Three bio-polyols LBP1, LBP2, and LBP3 were obtained, and each of them exhibited a high proportion of -OH groups. Lignin-based polyurethane foams (LBPUFs) were prepared using the bio-polyols obtained with a toluene diisocyanate (TDI) prepolymer by the one-shot method. Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) were used characterize lignin in order to determine viscosity, yield, and composition and to characterize their structure. The PEG-400–glycerol mixture was found to react with the lignin bio-polyols’ phenolic -OHs. The bio-polyols’ viscosity was found to increase as the liquefaction temperature increased, while simultaneously their molecular weights decreased. All the NCO groups were eliminated from the samples, which had high thermal stability as the liquefaction temperature increased, leading to a decrease in cell size, density, and crystallinity and an improvement in mechanical performance. Based on these properties, especially the presence of some aromatic rings in the bio-polyols, the foams produced can be useful in automotive applications and for floor carpets. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

17 pages, 5490 KiB  
Technical Note
Double vs. Single Shear in Dowelled Timber Connections Under Fire Conditions, Thermal Analysis
by Elza M. M. Fonseca
Fire 2025, 8(8), 310; https://doi.org/10.3390/fire8080310 - 5 Aug 2025
Abstract
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects [...] Read more.
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects of double and single shear. Several parameters will be examined to determine the load capacity. Furthermore, a numerical thermal analysis using finite element methods will be performed to estimate the temperatures inside the connections and compare them. The results show that the double shear connection in steel-to-timber, with a steel plate of any thickness as the central element and with a higher density of wood material, has better mechanical and fire resistance. Lower temperatures were also observed in this connection type in the wood material and along the length of the dowel. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

18 pages, 1807 KiB  
Article
Influence of Pyrolysis Temperature on the Properties and Electrochemical Performance of Cedar Wood-Derived Biochar for Supercapacitor Electrodes
by Layal Abdallah, Chantal Gondran, Virginie Monnier, Christian Vollaire and Naoufel Haddour
Bioengineering 2025, 12(8), 841; https://doi.org/10.3390/bioengineering12080841 - 4 Aug 2025
Viewed by 96
Abstract
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 [...] Read more.
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 °C and fully characterized in terms of their structural, physicochemical and electrochemical properties, including specific surface area, hydrophobicity, electrical conductivity, and surface functional groups. The results indicated that the cedar wood biochar obtained through pyrolysis at 900 °C (BC900) provided optimal electrical conductivity, hydrophobicity, and porosity characteristics relative to the other cedar wood biochars produced by pyrolysis at 800 °C to 1100 °C. Specifically, when compared to commercial activated carbon (AC), BC900 provided half the specific capacitance at a current density of 1 A g−1 and indicated that there is more potential for improvement with further activation and doping. The influence of the binder (either polyvinylidene fluoride (PVDF) or chitosan) in combination with conductive carbon black (CB) was also examined. Electrodes fabricated with PVDF binder showed higher specific capacitance, while biochar electrodes made from CB and chitosan (BC900/CB/chitosan) showed better electrical conductivity, wettability, and good electrochemical stability with >95% capacity retention even after 10,000 cycles. Full article
Show Figures

Figure 1

25 pages, 2786 KiB  
Article
Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance
by José Gándara, Matías Nión, Silvia Ross, Jaime González-Tálice, Paolo Tabeira and María Elena Fernández
Forests 2025, 16(8), 1267; https://doi.org/10.3390/f16081267 - 2 Aug 2025
Viewed by 214
Abstract
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis [...] Read more.
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis (GT), and E. grandis × urophylla (GU1, GU2). We evaluated vessel traits (water transport), fibers (mechanical support), and wood density (D) in stems and branches. Theoretical stem hydraulic conductivity (kStheo), vessel lumen fraction (F), vessel composition (S), and associations with previous hydraulic and growth data were assessed. While general drought responses occurred, GC had the most distinct xylem profile. This may explain it having the highest performance in different irrigation conditions. Red gum hybrids (GC, GT) maintained kStheo under drought, with stable F and a narrower vessel size, especially in branches. Conversely, GG and GU2 reduced F and S; and stem kStheo declined for a similar F in these clones, indicating vascular reconfiguration aligning the stem with the branch xylem. Almost all clones increased D under drought in any organ, with the highest increase in red gum hybrids. These results reveal diverse anatomical adjustments to drought among clones, partially explaining their growth responses. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

21 pages, 1379 KiB  
Article
Stream Temperature, Density Dependence, Catchment Size, and Physical Habitat: Understanding Salmonid Size Variation Across Small Streams
by Kyle D. Martens and Warren D. Devine
Fishes 2025, 10(8), 368; https://doi.org/10.3390/fishes10080368 - 1 Aug 2025
Viewed by 252
Abstract
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four [...] Read more.
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four potentially influencing indicators for three species/age classes to assess the relative importance of their influences on body size. The global model containing all indicators was the most parsimonious model for juvenile coho salmon (Oncorhynchus kisutch; R2m = 0.4581, R2c = 0.5859), age-0 trout (R2m = 0.4117, R2c = 0.5968), and age-1 or older coastal cutthroat trout (O. clarkii; R2m = 0.2407, R2c = 0.5188). Contrary to expectations, salmonid density, catchment size, and physical habitat metrics contributed more to the top models for both coho salmon and age-1 or older cutthroat trout than stream temperature metrics. However, a stream temperature metric, accumulated degree days, had the only significant relationship (positive) of the indicators with body size in age-0 trout (95% CI 1.58 to 23.04). Our analysis identifies complex relationships between salmonid body size and environmental influences, such as the importance of physical habitat such as pool size and boulders. However, management or restoration actions aimed at improving or preventing anticipated declines in physical habitat such as adding instream wood or actions that may lead to increasing pool area have potential to ensure a natural range of salmonid body sizes across watersheds. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

11 pages, 4560 KiB  
Article
Valorization of Forest Biomass Through Biochar for Static Floating Applications in Agricultural Uses
by Óscar González-Prieto, Luis Ortiz Torres and María Esther Costas Costas
Biomass 2025, 5(3), 44; https://doi.org/10.3390/biomass5030044 - 30 Jul 2025
Viewed by 210
Abstract
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, [...] Read more.
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, and pellets of pine and residues from two acacia species using a pyrolysis time between 60 and 120 min and mean temperatures between 380 and 690 °C in a simple double-chamber reactor. Biomass and biochar were characterized for their main properties: bulk density, moisture content, volatile matter, ash content, fixed carbon, and pH. Biochar was also evaluated through a basic floatability test over 27 days (648 h) in distilled water. The highest fixed carbon content was observed in pine bark biochar (69.5%), followed by the pine pellets (67.4%) and pine chips (63.4%). Despite their high carbon content, the pellets exhibited a low floatability level, whereas pine bark biochar showed superior static floatage times, together with chip and ground chip biochar. These results suggest that biochar produced from bark and wood chips may be suitable for application as floatability material in water or slurry management systems. These results warrant further research into the static floating of biochar. Full article
Show Figures

Figure 1

23 pages, 1249 KiB  
Review
Guiding Microbial Crossroads: Syngas-Driven Valorisation of Anaerobic-Digestion Intermediates into Bio-Hydrogen and Volatile Fatty Acids
by Alvaro dos Santos Neto and Mohammad J. Taherzadeh
Bioengineering 2025, 12(8), 816; https://doi.org/10.3390/bioengineering12080816 - 29 Jul 2025
Viewed by 354
Abstract
Anaerobic digestion (AD) has long been valued for producing a biogas–digestate pair, yet its profitability is tightening. Next-generation AD biorefineries now position syngas both as a supplementary feedstock and as a springboard to capture high-value intermediates, hydrogen (H2) and volatile fatty [...] Read more.
Anaerobic digestion (AD) has long been valued for producing a biogas–digestate pair, yet its profitability is tightening. Next-generation AD biorefineries now position syngas both as a supplementary feedstock and as a springboard to capture high-value intermediates, hydrogen (H2) and volatile fatty acids (VFA). This review dissects how complex natural consortia “decide” between hydrogenogenesis and acetogenesis when CO, H2, and CO2 co-exist in the feedstocks, bridging molecular mechanisms with process-scale levers. The map of the bioenergetic contest between the biological water–gas shift reaction and Wood–Ljungdahl pathways is discussed, revealing how electron flow, thermodynamic thresholds, and enzyme inhibition dictate microbial “decision”. Kinetic evidence from pure and mixed cultures is integrated with practical operating factors (gas composition and pressure, pH–temperature spectrum, culture media composition, hydraulic retention time, and cell density), which can bias consortia toward the desired product. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Graphical abstract

25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 221
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Viewed by 528
Abstract
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been [...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga. Full article
Show Figures

Figure 1

14 pages, 1659 KiB  
Article
Accuracy of Increment Core Method for Measuring Basic Wood Density and Moisture Content in Three Catalpa Species
by Xiping Zhao, Dongfang Wang, Pingping Guo, Qi Feng and Yuanping Deng
Plants 2025, 14(15), 2339; https://doi.org/10.3390/plants14152339 - 29 Jul 2025
Viewed by 210
Abstract
Assessing wood moisture and density is essential to understanding ecological processes such as tree growth and wood formation. This study compared basic density and moisture content estimates for three Catalpa species (Catalpa ovata G. Don, Catalpa bungei C. A. Mey, and Catalpa [...] Read more.
Assessing wood moisture and density is essential to understanding ecological processes such as tree growth and wood formation. This study compared basic density and moisture content estimates for three Catalpa species (Catalpa ovata G. Don, Catalpa bungei C. A. Mey, and Catalpa fargesii Bureau) using three sampling methods (incremental cores, wood chips, and standard wood blocks). While strong correlations (r2 ≥ 0.99) were observed among all methods, the incremental core approach exhibited significant species-specific biases—overestimating density by 27.31–12.31% on average while underestimating moisture content by 5.61–30.51%. Despite its cost-effectiveness and minimal sample collection requirements, the method’s systematic deviations limit its applicability to multiple tree species. Consequently, we recommend developing species-specific linear calibration models that incorporate baseline data from standard wood block measurements to substantially improve estimation accuracy. This approach offers a practical, theory-supported solution for optimizing field sampling strategies in ecological research. Full article
Show Figures

Figure 1

24 pages, 56885 KiB  
Article
Bio-Crafting Architecture: Experiences of Growing Mycelium in Minimal Surface Molds
by Anca-Simona Horvath, Alina Elena Voinea and Radu Adrian Arieșan
Sustainability 2025, 17(15), 6835; https://doi.org/10.3390/su17156835 - 28 Jul 2025
Viewed by 395
Abstract
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the [...] Read more.
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the one hand, this study investigated mycelium growth in 3D-printed minimal surface shapes using a wood-based filament, and on the other hand, it examined how both designers and the general public experience interacting with mycelium. Using a material-driven design research method, a workshop with architecture students was conducted where various triply periodic minimal surfaces were designed and 3D printed. These shapes were used as molds and impregnated with mycelium, and the growth of mycelium was analyzed visually and photographically. Data on the experiences of the 30 workshop participants of working with mycelium was collected through a survey and analyzed qualitatively. After exhibiting results of the workshop in a public-facing exhibition, semi-structured interviews with members of the general public about their perceptions of mycelium were conducted. Three-dimensionally printed minimal surfaces with wood-based filaments can function as structural cores for mycelium-based composites, and the density of the minimal surface appears to influence mycelium growth, which binds to wood-based filaments. Students exhibited stronger feelings for living materials compared to non-living ones, displaying both biophilia and, to a lesser extent, biophobia. Introducing hands-on workshops with living and experimental materials in design studio settings can help future generations of designers develop sensibilities for, and a critical approach towards, the impact of their design decisions on the environment and sustainability. The study also contributes empirical data on how members of the general public perceive mycelium as a material for design. Full article
Show Figures

Figure 1

18 pages, 2786 KiB  
Article
Performance of Oriented Strand Boards Made with Jack Pine Strands Produced by an Innovative Strander-Canter
by Rosilei Garcia, Alain Cloutier, Irsan Alipraja, Roger E. Hernández and Ahmed Koubaa
Forests 2025, 16(8), 1227; https://doi.org/10.3390/f16081227 - 25 Jul 2025
Viewed by 178
Abstract
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To [...] Read more.
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To address this issue, a strander-canter capable of producing both softwood cants and strands for oriented strand board (OSB) presents a promising alternative. This study evaluates the feasibility of using jack pine strands generated by a novel strander-canter equipped with a cutterhead for OSB strand production. Strands were generated from frozen and unfrozen logs under varying cutting parameters and incorporated in the core layer of the panels. Industrial aspen strands were used for the surface layers. OSB panels were assessed for mechanical and physical properties following the CSA O325:21 standard. Strand size distribution and vertical density profiles were also analyzed. The results indicated that panels made from jack pine strands demonstrated bending and internal bond properties that were either comparable to or superior to those of the control panels. However, including jack pine strands in the core layer increased the thickness swelling of the panels. Full article
(This article belongs to the Special Issue Properties and Uses of Value-Added Wood-Based Products and Composites)
Show Figures

Graphical abstract

20 pages, 6563 KiB  
Article
Determining the Structural Characteristics of Farmland Shelterbelts in a Desert Oasis Using LiDAR
by Xiaoxiao Jia, Huijie Xiao, Zhiming Xin, Junran Li and Guangpeng Fan
Forests 2025, 16(8), 1221; https://doi.org/10.3390/f16081221 - 24 Jul 2025
Viewed by 178
Abstract
The structural analysis of shelterbelts forms the foundation of their planning and management, yet the scientific and effective quantification of shelterbelt structures requires further investigation. This study developed an innovative heterogeneous analytical framework, integrating three key methodologies: the LeWoS algorithm for wood–leaf separation, [...] Read more.
The structural analysis of shelterbelts forms the foundation of their planning and management, yet the scientific and effective quantification of shelterbelt structures requires further investigation. This study developed an innovative heterogeneous analytical framework, integrating three key methodologies: the LeWoS algorithm for wood–leaf separation, TreeQSM for structural reconstruction, and 3D alpha-shape spatial quantification, using terrestrial laser scanning (TLS) technology. This framework was applied to three typical farmland shelterbelts in the Ulan Buh Desert oasis, enabling the first precise quantitative characterization of structural components during the leaf-on stage. The results showed the following to be true: (1) The combined three-algorithm method achieved ≥90.774% relative accuracy in extracting structural parameters for all measured traits except leaf surface area. (2) Branch length, diameter, surface area, and volume decreased progressively from first- to fourth-order branches, while branch angles increased with ascending branch order. (3) The trunk, branch, and leaf components exhibited distinct vertical stratification. Trunk volume and surface area decreased linearly with height, while branch and leaf volumes and surface areas followed an inverted U-shaped distribution. (4) Horizontally, both surface area density (Scd) and volume density (Vcd) in each cube unit exhibited pronounced edge effects. Specifically, the Scd and Vcd were greatest between 0.33 and 0.60 times the shelterbelt’s height (H, i.e., mid-canopy). In contrast, the optical porosity (Op) was at a minimum of 0.43 H to 0.67 H, while the volumetric porosity (Vp) was at a minimum at 0.25 H to 0.50 H. (5) The proposed volumetric stratified porosity (Vsp) metric provides a scientific basis for regional farmland shelterbelt management strategies. This three-dimensional structural analytical framework enables precision silviculture, with particular relevance to strengthening ecological barrier efficacy in arid regions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 594 KiB  
Article
Influence of In Situ Polymerization on the Compressive Strength of Scots Pine (Pinus sylvestris L.) Recovered from Demolition Timber and Two Forest-Sourced Species: European Beech (Fagus sylvatica) and Black Alder (Alnus glutinosa)
by Emil Żmuda and Kamil Roman
Materials 2025, 18(15), 3439; https://doi.org/10.3390/ma18153439 - 22 Jul 2025
Viewed by 167
Abstract
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to [...] Read more.
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to polymer formation and composite-like structures. In this study, we assumed similar behavior and focused on a mechanical evaluation of the modified wood. Three different polymer systems were applied to evaluate differences in performance. After modification, the compressive strength levels increased by 60% in beech, 119% in alder, and 150% in pine, with corresponding increases in density and weight percent gain (WPG). The highest relative improvement was observed in the least dense species, pine. The findings suggest that polymer treatment can significantly enhance the mechanical properties, likely due to the incorporation of polymer into the wood matrix; however, this inference is based on indirect physical evidence. Full article
Show Figures

Figure 1

18 pages, 1465 KiB  
Article
Enhancing Functional and Visual Properties of Paulownia Wood Through Thermal Modification in a Steam Atmosphere
by Beata Doczekalska, Agata Stachowiak-Wencek, Krzysztof Bujnowicz and Maciej Sydor
Polymers 2025, 17(15), 2000; https://doi.org/10.3390/polym17152000 - 22 Jul 2025
Viewed by 353
Abstract
Paulownia elongata wood is characterized by rapid mass gain, but its limited mechanical strength hinders engineering applications. This study aimed to determine the effect of thermal modification in a steam atmosphere (at temperatures of 180 °C and 190 °C for 12 or 6 [...] Read more.
Paulownia elongata wood is characterized by rapid mass gain, but its limited mechanical strength hinders engineering applications. This study aimed to determine the effect of thermal modification in a steam atmosphere (at temperatures of 180 °C and 190 °C for 12 or 6 h with 3 or 6 h of steam dosing) on wood’s selected physicochemical and aesthetic properties. Color changes (CIELAB), chemical composition (FTIR), density, and compressive strength parallel to the grain were evaluated. The results showed a clear darkening of the wood, a shift in hues towards red and yellow, and an increase in color saturation depending on the treatment parameters. FTIR spectroscopy confirmed a reduction in hydroxyl and carbonyl groups, indicating thermal degradation of hemicelluloses and extractives. Wood density remained relatively stable, despite observed mass losses and reduced swelling. The most significant increase in compressive strength, reaching 27%, was achieved after 6 h of modification at 180 °C with a concurrent 6 h steam dosing time. The obtained results confirm that thermal treatment can effectively improve the functional and visual properties of paulownia wood, favoring its broader application in the furniture and construction industries. Full article
(This article belongs to the Special Issue Eco-Friendly Wood-Based Composites—Challenges and Prospects)
Show Figures

Figure 1

Back to TopTop