Determining Management Strategies to Control Ash Dieback Disease Through the Study of Molecular and Environmental Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Plots
2.2. Plot-Level Measures
2.3. Tree-Level Measures
2.3.1. Tree Parameters
2.3.2. Quantification of Gene Expression Markers (GEMs)
2.3.3. ADB Disease Susceptibility Model
3. Results
3.1. Tree-Level Findings
3.1.1. Genetic Tolerance and DBH Stratification
3.1.2. Modelling Tree Susceptibility to ADB
3.1.3. Stratified Modelling by Tree Size
3.2. Plot-Level Results
3.2.1. Stand Types and Management Practices
3.2.2. Understorey and Weather Analysis
4. Discussion
4.1. Factors Affecting Ash Dieback Disease Damage
4.2. Ash Dieback Susceptibility Models
4.2.1. Non-Stratified Model
4.2.2. Stratified Models by DBH
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADB | Ash dieback (disease) |
DBH | Diameter at breast height |
GEMs | Gene expression markers |
CCV | Crown cylinder volume |
PCA | Principal component analysis |
AIC | Akaike information criterion |
VIF | Variance inflation factor |
References
- Chan, A.H.Y.; Barnes, C.; Swinfield, T.; Coomes, D.A. Monitoring ash dieback (Hymenoscyphus fraxineus) in British forests using hyperspectral remote sensing. Remote Sens. Ecol. Conserv. 2021, 7, 306–320. [Google Scholar] [CrossRef]
- McMullan, M.; Rafiqi, M.; Kaithakottil, G.; Clavijo, B.J.; Bilham, L.; Orton, E.; Percival-Alwyn, L.; Ward, B.J.; Edwards, A.; Saunders, D.G.O.; et al. The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat. Ecol. Evol. 2018, 2, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolska, D.; Hein, S.; Oosterbaan, A.; Wagner, S.; Clark, J.; Skovsgaard, J.P. A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry 2011, 84, 133–148. [Google Scholar] [CrossRef]
- Forestry Commission. Ash Dieback Disease: Pest Alert. 2013. Available online: https://www.forestresearch.gov.uk/publications/ash-dieback-disease-pest-alert/ (accessed on 14 April 2019).
- Mitchell, R.; Beaton, J.; Bellamy, P.; Broome, A.; Chetcuti, J.; Eaton, S.; Ellis, C.J.; Gimona, A.; Harmer, R.; Hester, A. Ash dieback in the UK: A review of the ecological and conservation implications and potential management options. Biol. Conserv. 2014, 175, 95–109. [Google Scholar] [CrossRef]
- FRAXIGEN. Ash Species in Europe: Biological Characteristics and Practical Guidelines for Sustainable Use; Oxford Forestry Institute, University of Oxford: Oxford, UK, 2005; 128p. [Google Scholar]
- Clark, J.; Webber, J. The ash resource and the response to ash dieback in Great Britain. In Dieback of European Ash (Fraxinus spp.)—Consequences and Guidelines for Sustainable Management; Vasaitis, R., Enderle, R., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2017; pp. 228–237. [Google Scholar]
- Lobo, A.; Hansen, J.K.; McKinney, L.V.; Nielsen, L.R.; Kjær, E.D. Genetic variation in dieback resistance: Growth and survival of Fraxinus excelsior under the influence of Hymenoscyphus pseudoalbidus. Scand. J. For. Res. 2014, 29, 519–526. [Google Scholar] [CrossRef]
- McKinney, L.V.; Nielsen, L.R.; Hansen, J.K.; Kjær, E.D. Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): An emerging infectious disease. Heredity 2011, 106, 788–797. [Google Scholar] [CrossRef]
- Brown, J.; Orton, E. Ashes from Ashes. Q. J. For. 2019, 115, 107–114. [Google Scholar]
- Stocks, J.J.; Buggs, R.J.A.; Lee, S.J. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Sci. Rep. 2017, 7, 16546. [Google Scholar] [CrossRef]
- Downie, J.A. Ash dieback epidemic in Europe: How can molecular technologies help? PLoS Pathog. 2017, 13, e1006381. [Google Scholar] [CrossRef]
- Harper, A.L.; McKinney, L.V.; Nielsen, L.R.; Havlickova, L.; Li, Y.; Trick, M.; Fraser, F.; Wang, L.; Fellgett, A.; Sollars, E.S.A.; et al. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics. Sci. Rep. 2016, 6, 19335. [Google Scholar] [CrossRef]
- Stocks, J.J.; Metheringham, C.L.; Plumb, W.J.; Lee, S.J.; Kelly, L.J.; Nichols, R.A.; Buggs, R.J.A. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 2019, 3, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Meger, J.; Ulaszewski, B.; Pałucka, M.; Kozioł, C.; Burczyk, J. Genomic prediction of resistance to Hymenoscyphus fraxineus in common ash (Fraxinus excelsior L.) populations. Evol. Appl. 2024, 17, e13694. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.; Kosawang, C.; Thomsen, I.M.; Hansen, L.N.; Nielsen, L.R.; Kjær, E.D. Combined progress in symptoms caused by Hymenoscyphus fraxineus and Armillaria species, and corresponding mortality in young and old ash trees. For. Ecol. Manag. 2021, 491, 119177. [Google Scholar] [CrossRef]
- Pastirčáková, K.; Adamčíková, K.; Barta, M.; Pažitný, J.; Hoťka, P.; Sarvašová, I.; Kádasi Horáková, M. Host Range of Hymenoscyphus fraxineus in Slovak Arboreta. Forests 2020, 11, 596. [Google Scholar] [CrossRef]
- Klesse, S.; Abegg, M.; Hopf, S.E.; Gossner, M.M.; Rigling, A.; Queloz, V. Spread and Severity of Ash Dieback in Switzerland–Tree Characteristics and Landscape Features Explain Varying Mortality Probability. Front. For. Glob. Change 2021, 4, 645920. [Google Scholar] [CrossRef]
- Bruns, E.; Hood, M.; Antonovics, J.; Ballister, I.; Troy, S.; Cho, J.-H. Can disease resistance evolve independently at different ages? Genetic variation in age-dependent resistance to disease in three wild plant species. J. Ecol. 2022, 110, 2046–2061. [Google Scholar] [CrossRef]
- Chadwick, O.; Bruce, L. Forest Stand Dynamics, Update Edition; FES Other Publications. 1; Wiley: New York, NY, USA, 1996; Volume 543. [Google Scholar]
- Timmermann, V.; Nagy, N.E.; Hietala, A.M.; Børja, I.; Solheim, H. Progression of ash dieback in Norway related to tree age, disease history and regional aspects. Baltic. For. 2017, 23, 150–158. [Google Scholar]
- Lonsdale. Ancient and Other Veteran Trees: Further Guidance on Management; The Tree Council: London, UK, 2013. [Google Scholar]
- Bengtsson, V.; Stenström, A.; Wheater, C.P.; Sandberg, K. The impact of ash dieback on veteran trees in southwestern Sweden. Balt. For. 2021, 27, 2–9. [Google Scholar] [CrossRef]
- Erfmeier, A.; Haldan, K.L.; Beckmann, L.-M.; Behrens, M.; Rotert, J.; Schrautzer, J. Ash Dieback and Its Impact in Near-Natural Forest Remnants—A Plant Community-Based Inventory. Front. Plant Sci. 2019, 10, 658. [Google Scholar] [CrossRef]
- Chandelier, A.; Gerarts, F.; San Martin, G.; Herman, M.; Delahaye, L. Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 2016, 46, 289–297. [Google Scholar] [CrossRef]
- Skovsgaard, J.P.; Thomsen, I.M.; Skovgaard, I.M.; Martinussen, T. Associations among symptoms of dieback in even-aged stands of ash (Fraxinus excelsior L.). For. Pathol. 2010, 40, 7–18. [Google Scholar] [CrossRef]
- Skovsgaard, J.P.; Wilhelm, G.J.; Thomsen, I.M.; Metzler, B.; Kirisits, T.; Havrdová, L.; Enderle, R.; Dobrowolska, D.; Cleary, M.; Clark, J. Silvicultural strategies for Fraxinus excelsior in response to dieback caused by Hymenoscyphus fraxineus. For. Int. J. For. Res. 2017, 90, 455–472. [Google Scholar] [CrossRef]
- Innes, J.L. Forest Health: Its Assessment and Status; CAB International: Wallingford, UK, 1993; 677p. [Google Scholar]
- Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Paap, T.; Burgess, T.I.; Wingfield, M.J. Urban trees: Bridge-heads for forest pest invasions and sentinels for early detection. Biol. Invasions 2017, 19, 3515–3526. [Google Scholar] [CrossRef]
- Cracknell, D.J.; Peterken, G.F.; Pommerening, A.; Lawrence, P.J.; Healey, J.R. Neighbours matter and the weak succumb: Ash dieback infection is more severe in ash trees with fewer conspecific neighbours and lower prior growth rate. J. Ecol. 2023, 111, 2118–2133. [Google Scholar] [CrossRef]
- Fuchs, S.; Häuser, H.; Peters, S.; Knauf, L.; Rentschler, F.; Kahlenberg, G.; Kätzel, R.; Evers, J.; Paar, U.; Langer, G.J. Ash dieback assessments on intensive monitoring plots in Germany: Influence of stand, site and time on disease progression. J. Plant Dis. Prot. 2024, 131, 1355–1372. [Google Scholar] [CrossRef]
- Carroll, D.; Boa, E. Ash dieback: From Asia to Europe. Plant Pathol. 2024, 73, 741–759. [Google Scholar] [CrossRef]
- Kjær, E.D.; McKinney, L.V.; Nielsen, L.R.; Hansen, L.N.; Hansen, J.K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 2012, 5, 219–228. [Google Scholar] [CrossRef]
- Ognjenović, M.; Seletković, I.; Potočić, N.; Marušić, M.; Tadić, M.P.; Jonard, M.; Rautio, P.; Timmermann, V.; Lovreškov, L.; Ugarković, D. Defoliation Change of European Beech (Fagus sylvatica L.) Depends on Previous Year Drought. Plants 2022, 11, 730. [Google Scholar] [CrossRef]
- Zarnoch, S.J.; Bechtold, W.A.; Stolte, K. Using crown condition variables as indicators of forest health. Can. J. For. Res. 2004, 34, 1057–1070. [Google Scholar] [CrossRef]
- Zhu, Z.; Kleinn, C.; Nölke, N. Assessing tree crown volume—A review. For. Int. J. For. Res. 2021, 94, 18–35. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Skidmore, A.K.; Cao, F.; She, G.; Cao, L. An improved area-based approach for estimating plot-level tree DBH from airborne LiDAR data. For. Ecosyst. 2023, 10, 100089. [Google Scholar] [CrossRef]
- Duan, Y.; Siegenthaler, A.; Skidmore, A.K.; Abdullah, H.; Chariton, A.A.; Laros, I.; Rousseau, M.; Arjen de Groot, G. Tree vitality predicts plant-pathogenic fungal communities in beech forest canopies. For. Ecol. Manag. 2025, 585, 122588. [Google Scholar] [CrossRef]
- Timmermann, V.; Børja, I.; Hietala, A.M.; Kirisits, T.; Solheim, H. Ash dieback: Pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bull. 2011, 41, 14–20. [Google Scholar] [CrossRef]
- Pfaffl, M.W. Quantification strategies in real-time PCR. AZ Quant. PCR 2004, 1, 89–113. [Google Scholar]
- Barton, K. Package ‘mumin’. Version 2024, 1, 439. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Havrdova, L.; Zahradnik, D.; Romportl, D.; Pešková, V.; Černý, K. Environmental and silvicultural characteristics influencing the extent of ash dieback in forest stands. Balt. For. 2017, 23, 168–182. [Google Scholar]
- Lenz, H.D.; Bartha, B.; Straßer, L.; Lemme, H. Development of Ash Dieback in South-Eastern Germany and the Increasing Occurrence of Secondary Pathogens. Forests 2016, 7, 41. [Google Scholar] [CrossRef]
- Klesse, S.; von Arx, G.; Gossner, M.; Hug, C.; Rigling, A.; Queloz, V. Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback. Tree Physiol. 2021, 41, 683–696. [Google Scholar] [CrossRef]
- Grosdidier, M.; Ioos, R.; Husson, C.; Cael, O.; Scordia, T.; Marçais, B. Tracking the invasion: Dispersal of Hymenoscyphus fraxineus airborne inoculum at different scales. Fems Microbiol. Ecol. 2018, 94, fiy049. [Google Scholar] [CrossRef]
- Combes, M.J. The Ecology and Pathology of Ash Dieback Disease. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2022. [Google Scholar]
- Jochner-Oette, S.; Rohrer, T.; Eisen, A.-K.; Tönnes, S.; Stammel, B. Influence of Forest Stand Structure and Competing Understory Vegetation on Ash Regeneration—Potential Effects of Ash Dieback. Forests 2021, 12, 128. [Google Scholar] [CrossRef]
- Kerr, G. The growth and form of ash (Fraxinus excelsior) in mixture with cherry (Prunus avium), oak (Quercus petraea and Quercus robur), and beech (Fagus sylvatica). Can. J. For. Res. 2004, 34, 2340–2350. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesth. 2019, 72, 558–569. [Google Scholar] [CrossRef]
- Hemery, G.E.; Savill, P.S.; Pryor, S.N. Applications of the crown diameter–stem diameter relationship for different species of broadleaved trees. For. Ecol. Manag. 2005, 215, 285–294. [Google Scholar] [CrossRef]
- McKinney, L.V.; Nielsen, L.R.; Collinge, D.B.; Thomsen, I.M.; Hansen, J.K.; Kjær, E.D. The ash dieback crisis: Genetic variation in resistance can prove a long-term solution. Plant Pathol. 2014, 63, 485–499. [Google Scholar] [CrossRef]
- Avery, T.E.; Burkhart, H.E. Forest Measurements, 5th ed.; McGraw-Hill Series in Forest Resources; McGraw-Hill: Boston, MA, USA, 2002. [Google Scholar]
- Frank, E.F. Crown Volume Estimates. Bull. Eastern Nat. Tree Soc. 2010, 9, 3–8. [Google Scholar]
- Kirisits, T.; Freinschlag, C. Ash dieback caused by Hymenoscyphus pseudoalbidus in a seed plantation of Fraxinus excelsior in Austria. J. Agric. Ext. Rural Dev. 2012, 4, 184–191. [Google Scholar] [CrossRef]
- Fuller, R.; Henderson, A.C.B. Distribution of breeding songbirds in Bradfield Woods, Suffolk, in relation to vegetation and coppice management. Bird Study 1992, 39, 73–88. [Google Scholar] [CrossRef]
- Susse, R.; Allegrini, C.; Morgan, P. Management of Irregular Forests: Developing the Full Potential of the Forest; Association Futaie Irregulière: Besançon, France, 2011. [Google Scholar]
- Grosenbaugh, L.R. Point Sampling and Line Sampling: Probability Theory, Geometric Implications, Synthesis; Southern Forest Experiment Station, Forest Service, U.S. Department of Agriculture: New Orleans, LA, USA, 1958; Volume 160. Available online: https://www.srs.fs.usda.gov/pubs/misc/op_160.pdf (accessed on 19 April 2019).
DBH Cats | AIC Model | Adjusted R2 | AICs Values | Delta | Weight |
---|---|---|---|---|---|
cat.1 (7–27.99 cm) | DS.2019 ~ log (CCV, 10) *** + log (DBH, 10) + GEMs *** | 0.3252 | 1187.3 | 0.00 | 0.448 |
cat.2 (28–47.99 cm) | DS.2019 ~ log (CCV, 10) *** + GEMs | 0.251 | 1119.2 | 0.00 | 0.532 |
DBH 25–31 cm | DS.2019 ~ log(CCV, 10) * + GEMs * | 0.4239 | 266.1 | 0.00 | 0.770 |
Stand Types | Associated Historic Management | Plots | Ave DS. 2019 (%) per Stand Type | Ave DBH per Stand Type | AVE.und/str.comp per Stand Type |
---|---|---|---|---|---|
Semi-natural Closed | Limited Intervention | S, T, U | 36 | 40 | 0.499560 |
Semi-natural Closed + Large Trees. | Limited Intervention | R, I | 36 | 66 | 1.281481 |
Semi-natural Irregular | Irregular High Forest: later development stage | A, B, J, K, P, Q, V | 31 | 40 | 1.409683 |
Semi-natural Irregular on Slope | Irregular High Forest: later development stage | N | 52 | 44 | 0.481481 |
Semi-natural Transition Pole Stage Dominated | Irregular High Forest: earlier development stage | M, H, W | 41 | 36 | 0.737654 |
Semi-natural Pole Stage | Even-aged naturally regenerated 35–40 yrs old | E, G, F | 56 | 14 | 0.187531 |
Plantation. Pole Stage | Even-aged plantation: 30–35 yrs old | C, D, L | 63 | 15 | 0.449250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raykova, A.; Jackson, J.; Harper, A.L.; Poore, A.; Antwis, R.; Mastin, A. Determining Management Strategies to Control Ash Dieback Disease Through the Study of Molecular and Environmental Interactions. Forests 2025, 16, 1033. https://doi.org/10.3390/f16071033
Raykova A, Jackson J, Harper AL, Poore A, Antwis R, Mastin A. Determining Management Strategies to Control Ash Dieback Disease Through the Study of Molecular and Environmental Interactions. Forests. 2025; 16(7):1033. https://doi.org/10.3390/f16071033
Chicago/Turabian StyleRaykova, Aneliya, Joseph Jackson, Andrea L. Harper, Andy Poore, Rachael Antwis, and Alexander Mastin. 2025. "Determining Management Strategies to Control Ash Dieback Disease Through the Study of Molecular and Environmental Interactions" Forests 16, no. 7: 1033. https://doi.org/10.3390/f16071033
APA StyleRaykova, A., Jackson, J., Harper, A. L., Poore, A., Antwis, R., & Mastin, A. (2025). Determining Management Strategies to Control Ash Dieback Disease Through the Study of Molecular and Environmental Interactions. Forests, 16(7), 1033. https://doi.org/10.3390/f16071033