Differences in Tolerance of Alnus cordata (Loisel.) Duby and Tilia × europaea L. ‘Pallida’ to Environmental Stress in the First Year After Planting in Urban Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Location and Climatic Conditions
2.2. Plant Material
2.3. Chlorophyll a Fluorescence
2.4. Chemical Analyses
- Ve—extract volume (10 mL);
- Vp—sample volume used for spectrophotometric analysis.
2.5. Phenological Observations
- BBCH 92—beginning of leaf discoloration (when 10% of leaves turned yellow);
- BBCH 94—full leaf discoloration (50% of leaves turned yellow);
- BBCH 93—beginning of leaf fall (10% of leaves had dropped);
- BBCH 95—full leaf fall (50% of leaves had dropped);
- BBCH 97—end of leaf fall (100% or nearly 100% of leaves had dropped).
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Chlorophyll a Fluorescence
3.3. Chemical Analyses
3.4. Autumn Phenology
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyrväinen, L.; Pauleit, S.; Seeland, K.; de Vries, S. Benefits and uses of urban forests and trees. In Urban Forests and Trees; Konijnendijk, C.C., Nilsson, K., Randrup, T.B., Schipperijn, J., Eds.; Springer: Berlin, Germany, 2005; pp. 81–114. [Google Scholar] [CrossRef]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain. AMBIO 2014, 43, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Swoczyna, T.; Jastrzębska, J.; Rosłon-Szeryńska, E. Changes in air water vapour pressure, relative humidity and carbon dioxide concentration in summer on the city outskirts. J. Ecol. Eng. 2024, 25, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Noszczyk, T.; Gorzelany, J.; Kukulska-Kozieł, A.; Hernik, J. The impact of the COVID-19 pandemic on the importance of urban green spaces to the public. Land Use Policy 2022, 113, 105925. [Google Scholar] [CrossRef] [PubMed]
- European Commision. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives; European Commision: Brussels, Belgium, 2020; COM/2020/380 final; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020DC0380 (accessed on 17 July 2024).
- Pancewicz, A.; Anczykowska, W.; Żak, N. Climate change adaptation activities planning and implementation in large cities: Results of research carried out in Poland and selected European cities. Clim. Chang. 2023, 176, 116. [Google Scholar] [CrossRef]
- Smaliychuk, A.; Latocha-Wites, A. Climate change adaptation policy and practice: Case study of the major cities in Poland. Cities 2023, 141, 104474. [Google Scholar] [CrossRef]
- Whitlow, T.H.; Bassuk, N.L.; Reichert, D.L. A 3-year study of water relations of urban street trees. J. Appl. Ecol. 1992, 29, 436–450. [Google Scholar] [CrossRef]
- Sieghardt, M.; Mursch-Radlgruber, E.; Paoletti, E.; Couenberg, E.; Dimitrakopoulus, A.; Rego, F.; Hatzistathis, A.; Randrup, T.B. The abiotic urban environment: Impact of urban growing conditions on urban vegetation. In Urban Forests and Trees; Konijnendijk, C.C., Nilsson, K., Randrup, T.B., Schipperijn, J., Eds.; Springer: Berlin, Germany, 2005; pp. 281–323. [Google Scholar]
- Cekstere, G.; Nikodemus, O.; Osvalde, A. Toxic impact of the de-icing material to street greenery in Riga, Latvia. Urban For. Urban Green. 2008, 7, 207–217. [Google Scholar] [CrossRef]
- Paoletti, E. Ozone and urban forests in Italy. Environ. Pollut. 2009, 157, 1506–1512. [Google Scholar] [CrossRef]
- Widney, S.; Fischer, B.C.; Vogt, J. Tree mortality undercuts ability of tree-planting programs to provide benefits: Results of a three-city study. Forests 2016, 7, 65. [Google Scholar] [CrossRef]
- Wattenhofer, D.J.; Johnson, G.R. Understanding why young urban trees die can improve future success. Urban For. Urban Green. 2021, 64, 127247. [Google Scholar] [CrossRef]
- Roman, L.A.; Battles, J.J.; McBride, J.R. Determinants of establishment survival for residential trees in Sacramento County, CA. Landsc. Urban Plan. 2014, 129, 22–31. [Google Scholar] [CrossRef]
- Hilbert, D.R.; Roman, L.A.; Koeser, A.K.; Vogt, J.; van Doorn, N.S. Urban Tree Mortality: A Literature Review. Arboric. Urban For. 2019, 45, 167–200. [Google Scholar] [CrossRef]
- Roloff, A.; Korn, S.; Gillner, S. The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban For. Urban Green. 2009, 8, 295–308. [Google Scholar] [CrossRef]
- Sjöman, H.; Nielsen, A.B. Selecting trees for urban paved sites in Scandinavia—A review of information on stress tolerance and its relation to the requirements of tree planners. Urban For. Urban Green. 2010, 9, 281–293. [Google Scholar] [CrossRef]
- Jack-Scott, E.J. Survival and growth factors affecting community-planted urban street trees. Cities Environ. (CATE) 2012, 4, 10. [Google Scholar]
- Swoczyna, T. Growth and Development of Young Trees Planted in the Streets of Warsaw. Ph.D. Thesis, Warsaw University of Life Scienses—SGGW, Warsaw, Poland, 2013. (In Polish). [Google Scholar]
- Stratópoulos, L.M.F.; Zhang, C.; Duthweiler, S.; Häberle, K.H.; Rötzer, T.; Xu, C.; Pauleit, S. Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Int. J. Biometeorol. 2019, 63, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Gillner, S.; Korn, S.; Roloff, A. Leaf-gas exchange of five tree species at urban street sites. Arboric. Urban For. 2015, 41, 113–124. [Google Scholar] [CrossRef]
- Swoczyna, T.; Kalaji, H.M.; Pietkiewicz, S.; Borowski, J. Ability of various tree species to acclimation in urban environments probed with the JIP-test. Urban For. Urban Green. 2015, 14, 544–553. [Google Scholar] [CrossRef]
- Moser, A.; Rötzer, T.; Pauleit, S.; Pretzsch, H. The urban environment can modify drought stress of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.). Forests 2016, 7, 71. [Google Scholar] [CrossRef]
- Haase, D.; Hellwig, R. Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees For. People 2022, 8, 100252. [Google Scholar] [CrossRef]
- May, P.B.; Livesley, S.J.; Shears, I. Managing and monitoring tree health and soil water status during extreme drought in Melbourne, Victoria. Arboric. Urban For. 2013, 39, 136–145. [Google Scholar] [CrossRef]
- Zhang, C.; Stratópoulos, L.M.F.; Xu, C.; Pretzsch, H.; Rötzer, T. Development of fine root biomass of two contrasting urban tree cultivars in response to drought stress. Forests 2020, 11, 108. [Google Scholar] [CrossRef]
- Allen, K.S.; Harper, R.W.; Bayer, A.; Brazee, N.J. A review of nursery production systems and their influence on urban tree survival. Urban For. Urban Green. 2017, 21, 183–191. [Google Scholar] [CrossRef]
- Geister, D.; Ferree, D.C. The influence of root pruning on water relations, net photosynthesis, and growth of young ‘Golden Delicious’ apple trees. J. Am. Soc. Hort. Sci. 1984, 109, 827–831. [Google Scholar] [CrossRef]
- Andersen, L.; Rasmussen, H.N.; Brander, P.E. Regrowth and dry matter allocation in Quercus robur (L.) seedlings root pruned prior to transplanting. New For. 2000, 19, 205–214. [Google Scholar] [CrossRef]
- Else, M.A.; Janowiak, F.; Atkinson, C.J.; Jackson, M.B. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 2009, 103, 313–323. [Google Scholar] [CrossRef]
- Cinantya, A.; Manea, A.; Leishman, M.R. The effect of root shaving and biostimulant application on the transplant success of six common Australian urban tree species. Urban Ecosys. 2024, 27, 1313–1322. [Google Scholar] [CrossRef]
- Öquist, G. Environmental stress and photosynthesis. In Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis, Providence, RI, USA, 10–15 August 1986; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 1–10. [Google Scholar]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar]
- Andrianjara, I.; Cabassa, C.; Lata, J.C.; Hansart, A.; Raynaud, X.; Renard, M.; Nold, F.; Genet, P.; Planchais, S. Characterization of stress indicators in Tilia cordata Mill. as early and long-term stress markers for water availability and trace element contamination in urban environments. Ecol. Ind. 2024, 158, 111296. [Google Scholar] [CrossRef]
- Cruz, J.L.; Mosquim, P.R.; Pelacani, C.R.; Araújo, W.L.; DaMatta, F.M. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency. Plant Soil 2003, 257, 417–423. [Google Scholar] [CrossRef]
- Flexas, J.; Gallé, A.; Galmés, J.; Ribas-Carbo, M.; Medrano, H. The response of photosynthesis to soil water stress. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 129–144. [Google Scholar] [CrossRef]
- Kunz, J.; Räder, A.; Bauhus, J. Effects of drought and rewetting on growth and gas exchange of minor European broadleaved tree species. Forests 2016, 7, 239. [Google Scholar] [CrossRef]
- Paganová, V.; Hus, M.; Lichtnerová, H. Effect of salt treatment on the growth, water status, and gas exchange of Pyrus pyraster L. (Burgsd.) and Tilia cordata Mill. seedlings. Horticulturae 2022, 8, 519. [Google Scholar] [CrossRef]
- Swoczyna, T.; Łata, B.; Stasiak, A.; Stefaniak, J.; Latocha, P. JIP-test in assessing sensitivity to nitrogen deficiency in two cultivars of Actinidia arguta (Siebold et Zucc.) Planch. ex Miq. Photosynthetica 2019, 57, 646–658. [Google Scholar] [CrossRef]
- Sieczko, L.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Dąbrowski, P.; Borucki, W.; Janaszek-Mańkowska, M.; Przybył, J.L.; Mojski, J.; Kalaji, H.M. Phosphorus-deficiency stress in cucumber (Cucumis sativus L.) plants: Early detection based on chosen physiological parameters and statistical analyses. Photosynthetica 2024, 62, 44–57. [Google Scholar] [CrossRef]
- Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Dąbrowski, P.; Tuchowska, Ż.; Kalaji, H. Influence of induced drought on photosynthetic performance in Dactylis glomerata varieties during the early growth stage. J. Water Land Dev. 2024, 60, 194–208. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Swoczyna, T.; Kalaji, H.M.; Bussotti, F.; Mojski, J.; Pollastrini, M. Environmental stress-what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Front. Plant Sci. 2022, 13, 1048582. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 443–480. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Qiang, S.; Goltsev, V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophts. Acta-Bioenerg. 2010, 1797, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Jędrzejuk, A.; Bator, M.; Werno, A.; Karkoszka, L.; Kuźma, N.; Zaraś, E.; Budzynski, R. Development of an algorithm to indicate the right moment of plant watering using the analysis of plant biomasses based on Dahlia × hybrida. Sustainability 2022, 14, 5165. [Google Scholar] [CrossRef]
- Baccari, S.; Elloumi, O.; Chaari-Rkhis, A.; Fenollosa, E.; Morales, M.; Drira, N.; Abdallah, F.B.; Fki, L.; Munné-Bosch, S. Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo-and antioxidant protection in juvenile olive trees subjected to severe drought. Front. Plant Sci. 2020, 11, 614144. [Google Scholar] [CrossRef] [PubMed]
- Šircelj, H.; Tausz, M.; Grill, D.; Batič, F. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. J. Plant Physiol. 2005, 162, 1308–1318. [Google Scholar] [CrossRef]
- Prsa, I.; Stampar, F.; Vodnik, D.; Veberic, R. Influence of nitrogen on leaf chlorophyll content and photosynthesis of ‘Golden Delicious’ apple. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2007, 57, 283–289. [Google Scholar] [CrossRef]
- Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 2006, 57, 55–77. [Google Scholar] [CrossRef]
- Maslova, T.G.; Markovskaya, E.F.; Slemnev, N.N. Functions of carotenoids in leaves of higher plants. Biol. Bull. Rev. 2021, 11, 476–487. [Google Scholar] [CrossRef]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef]
- Lucci, N.; Mazzafera, P. Distribution of rutin in fava d’anta (Dimorphandra mollis) seedlings under stress. J. Plant Interact. 2009, 4, 203–208. [Google Scholar] [CrossRef]
- Ismail, H.; Maksimović, J.D.; Maksimović, V.; Shabala, L.; Živanović, B.D.; Tian, Y.; Jacobsen, S.E.; Shabala, S. Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Funct. Plant Biol. 2015, 43, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, U.; Rao, M.J.; Qi, C.; Xie, Q.; Noushahi, H.A.; Yaseen, M.; Shi, X.; Zheng, B. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in Populus under drought stress. Molecules 2021, 26, 5546. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Morishita, T.; Kim, S.J.; Park, S.U.; Woo, S.H.; Noda, T.; Takigawa, S. Physiological roles of rutin in the buckwheat plant. Jpn. Agric. Res. Q. JARQ 2015, 49, 37–43. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A Review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Selig, M.; Bohne, H. Drought stress reactions of different populations of Quercus robur L. and Tilia cordata Mill. J. Environ. Hortic. 2017, 35, 6–12. [Google Scholar] [CrossRef]
- Bessonova, V.P.; Ivanchenko, O.E. Free radical oxidation and proline content as indicators of urban tree vitality (the case of Dnipro city parks, Ukraine). Ukr. J. Ecol. 2017, 7, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, B.R.; Jung, W.J.; Kim, K.Y.; Avice, J.C.; Ourry, A. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Funct. Plant Biol. 2004, 31, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; von Wirén, N. Ammonium as a signal for physiological and morphological responses in plants. J. Exp. Bot. 2017, 68, 2581–2592. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Alegre, L. Die and let live: Leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 2004, 31, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Frei, E.R.; Gossner, M.M.; Vitasse, Y.; Queloz, V.; Dubach, V.; Gessler, A.; Ginzler, C.; Hagedorn, F.; Meusburger, K.; Moor, M.; et al. European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biol. 2022, 24, 1132–1145. [Google Scholar] [CrossRef]
- Pauleit, S.; Jones, N.; Garcia-Martin, G.; Garcia-Valdecantos, J.L.; Rivière, L.M.; Vidal-Beaudet, L.; Bodson, M.; Randrup, T.B. Tree establishment practice in towns and cities—Results from a European survey. Urban For. Urban Green. 2002, 1, 83–96. [Google Scholar] [CrossRef]
- Vanden Broeck, A.; Cox, K.; Melosik, I.; Maes, B.; Smets, K. Genetic diversity loss and homogenization in urban trees: The case of Tilia × europaea in Belgium and the Netherlands. Biodivers. Conserv. 2018, 27, 3777–3792. [Google Scholar] [CrossRef]
- Wolff, K.; Hansen, O.K.; Couch, S.; Moore, L.; Sander, H.; Logan, S.A. Tilia cultivars in historic lime avenues and parks in the UK, Estonia and other European countries. Urban For. Urban Green. 2019, 43, 126346. [Google Scholar] [CrossRef]
- Ducci, F.; Tani, A. EUFORGEN Technical Guidelines for Genetic Conservation and Use of Italian Alder (Alnus cordata). 2009, pp. 1–6, EUFORGEN. Available online: https://www.euforgen.org/publications/publication/alnus-cordata-technical-guidelines-for-genetic-conservation-and-use-for-italian-alder (accessed on 24 November 2024).
- Villani, F.; Castellana, S.; Beritognolo, I.; Cherubini, M.; Chiocchini, F.; Battistelli, A.; Mattioni, C. Genetic variability of Alnus cordata (Loisel.) Duby populations and introgressive hybridization with A. glutinosa (L.) Gaertn. in Southern Italy: Implication for conservation and management of genetic resources. Forests 2021, 12, 655. [Google Scholar] [CrossRef]
- Tognetti, R.; Borghetti, M. Formation and seasonal occurrence of xylem embolism in Alnus cordata. Tree Physiol. 1994, 14, 241–250. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Eom, S.H.; Jin, C.W.; Park, H.J.; Kim, E.H.; Chung, I.M.; Kim, M.J.; Yu, C.Y.; Cho, D.H. Far infrared ray irradiation stimulates antioxidant activity in Vitis flexuosa Thunb. berries. Korean J. Med. Crop Sci. 2007, 15, 319–323. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Lin, C.C.; Kao, C.H. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul. 1996, 18, 233–238. [Google Scholar] [CrossRef]
- Bleiholder, H.; Van Den Boom, J.; Langelüddeke, P.; Stauss, R. Einkeitliche Codierung der phänologischen Stadien bei Kultur-und Schadpflanzen. Gesunde Pflanz. 1989, 41, 381–384. [Google Scholar]
- Finn, G.A.; Straszewski, A.E.; Peterson, V. A general growth stage key for describing trees and woody plants. Ann. Appl. Biol. 2007, 151, 127–131. [Google Scholar] [CrossRef]
- Gerhold, H.D.; McElroy, H.L. Callery pear cultivars tested as street trees: Initial results. Arboric. Urban For. 1994, 20, 259–261. [Google Scholar] [CrossRef]
- Struve, D.K. Tree establishment: A review of some of the factors affecting transplant survival and establishment. Arboric. Urban For. 2009, 35, 10–13. [Google Scholar] [CrossRef]
- Jacobs, D.F.; Salifu, K.F.; Davis, A.S. Drought susceptibility and recovery of transplanted Quercus rubra seedlings in relation to root system morphology. Ann. For. Sci. 2009, 66, 504. [Google Scholar] [CrossRef]
- Shapira, O.; Hochberg, U.; Joseph, A.; McAdam, S.; Azoulay-Shemer, T.; Brodersen, C.R.; Holbrook, N.M.; Zait, Y. Wind speed affects the rate and kinetics of stomatal conductance. Plant J. 2024, 120, 1552–1562. [Google Scholar] [CrossRef]
- Burdett, A.N. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can. J. For. Res. 1990, 20, 415–427. [Google Scholar] [CrossRef]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, M.; Gao, J.; Li, P.; Goltsev, V.; Ma, F. Thermotolerance of apple tree leaves probed by chlorophyll a fluorescence and modulated 820 nm reflection during seasonal shift. J. Photochem. Photobiol. B 2015, 152, 347–356. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Račková, L.; Paganová, V.; Swoczyna, T.; Rusinowski, S.; Sitko, K. Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ. Exp. Bot. 2018, 152, 149–157. [Google Scholar] [CrossRef]
- Guha, A.; Sengupta, D.; Reddy, A.R. Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J. Photochem. Photobiol. B 2013, 119, 71–83. [Google Scholar] [CrossRef]
- Mihaljević, I.; Viljevac Vuletić, M.; Tomaš, V.; Horvat, D.; Zdunić, Z.; Vuković, D. PSII photochemistry responses to drought stress in autochthonous and modern sweet cherry cultivars. Photosynthetica 2021, 59, 517–528. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Ač, A.; Marek, M.V.; Kalina, J.; Urban, O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem. PPB 2007, 45, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Shrivastava, D.; Deshmukh, K.; Dubey, P. Effect of air pollution on chlorophyll content of leaves. Curr. Agric. Res. J. 2013, 1, 93–98. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; Available online: http://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 24 September 2024).
- Lichtenthaler, H.K.; Babani, F. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 713–736. [Google Scholar]
- You, H.N.; Woo, S.Y.; Park, C.R. Physiological and biochemical responses of roadside trees grown under different urban environmental conditions in Seoul. Photosynthetica 2016, 54, 478–480. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; He, Z.; Lu, Z.; Cui, J.; Xu, N.; Jin, B.; Wang, L. Physiological and transcriptomic changes during autumn coloration and senescence in Ginkgo biloba leaves. Hortic. Plant J. 2020, 6, 396–408. [Google Scholar] [CrossRef]
- Procházková, D.; Haisel, D.; Wilhelmová, N. Content of carotenoids during ageing and senescence of tobacco leaves with genetically modulated life-span. Photosynthetica 2009, 47, 409–414. [Google Scholar] [CrossRef]
- Petrova, S.T.; Yurukova, L.D.; Velcheva, I.G. Assessment of the urban trees health status on the base of nutrient and pigment content in their leaves. J. BioSci. Biotechnol. 2014, 3, 69–77. [Google Scholar]
- Scattolin, L.; Alzetta, C.; Bolzon, P.; Sambo, P.; Accordi, S.M. Linden tree stress detection: Chlorophyll–nitrogen contents and ectomycorrhizal community. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2013, 147, 364–375. [Google Scholar] [CrossRef]
- Close, D.C.; Beadle, C.L.; Brown, P.H. The physiological basis of containerised tree seedling ‘transplant shock’: A review. Aust. For. 2005, 68, 112–120. [Google Scholar] [CrossRef]
- Hernández, I.; Alegre, L.; Munné-Bosch, S. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol. 2004, 24, 1303–1311. [Google Scholar] [CrossRef]
- Czaja, M.; Kołton, A.; Muras, P. Delayed inhibition of photosynthetic performance—Three linden species in an urban environment. Forests 2021, 12, 761. [Google Scholar] [CrossRef]
- Lee, B.R.; Muneer, S.; Park, S.H.; Zhang, Q.; Kim, T.H. Ammonium-induced proline and sucrose accumulation, and their significance in antioxidative activity and osmotic adjustment. Acta Physiol. Plant. 2013, 35, 2655–2664. [Google Scholar] [CrossRef]
- Xie, S.; Cao, S.; Liu, Q.; Xiong, X.; Lu, X. Effect of water deficit stress on isotope 15N uptake and nitrogen metabolism of Newhall orange and Yamasitaka mandarin seedling. J. Life Sci. 2013, 7, 1170–1178. [Google Scholar]
- Li, C.; Feng, Y.; Tian, P.; Yu, X. Mathematical estimation of endogenous proline as a bioindicator to regulate the stress of trivalent chromium on rice plants grown in different nitrogenous conditions. Toxics 2023, 11, 803. [Google Scholar] [CrossRef]
- Aslani, F.; Tedersoo, L.; Põlme, S.; Knox, O.; Bahram, M. Global patterns and determinants of bacterial communities associated with ectomycorrhizal root tips of Alnus species. Soil Biol. Biochem. 2020, 148, 107923. [Google Scholar] [CrossRef]
- Swoczyna, T.; Borowski, J.; Zambrzycka, A. Phenological reactions of young streetside trees of Ginkgo biloba L. in Warsaw. Ann. Wars. Univ. Life Sci.-SGGW Hortic. Landsc. Archit. 2009, 30, 161–171. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kościesza, M.; Korbik, M.; Jędrzejuk, A.; Swoczyna, T.; Latocha, P. Differences in Tolerance of Alnus cordata (Loisel.) Duby and Tilia × europaea L. ‘Pallida’ to Environmental Stress in the First Year After Planting in Urban Conditions. Forests 2025, 16, 277. https://doi.org/10.3390/f16020277
Kościesza M, Korbik M, Jędrzejuk A, Swoczyna T, Latocha P. Differences in Tolerance of Alnus cordata (Loisel.) Duby and Tilia × europaea L. ‘Pallida’ to Environmental Stress in the First Year After Planting in Urban Conditions. Forests. 2025; 16(2):277. https://doi.org/10.3390/f16020277
Chicago/Turabian StyleKościesza, Marek, Mateusz Korbik, Agata Jędrzejuk, Tatiana Swoczyna, and Piotr Latocha. 2025. "Differences in Tolerance of Alnus cordata (Loisel.) Duby and Tilia × europaea L. ‘Pallida’ to Environmental Stress in the First Year After Planting in Urban Conditions" Forests 16, no. 2: 277. https://doi.org/10.3390/f16020277
APA StyleKościesza, M., Korbik, M., Jędrzejuk, A., Swoczyna, T., & Latocha, P. (2025). Differences in Tolerance of Alnus cordata (Loisel.) Duby and Tilia × europaea L. ‘Pallida’ to Environmental Stress in the First Year After Planting in Urban Conditions. Forests, 16(2), 277. https://doi.org/10.3390/f16020277