Unveiling Drivers of Green Production in Forest-Grown Ginseng Farms in China: An Ordered Probit-LGBM Fusion Approach
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Foundational Role of Resource Endowment
2.2. Psychological Driving Effects of Cognition and Intention
2.3. External Catalysis and Compensation Effects of Policy Incentives
2.4. Interactive Enhancement Effects Between Policy Incentives and Resources
3. Data and Methods
3.1. Data Source and Processing
3.2. Econometric Model Specification
3.3. Machine Learning Predictive Modeling
4. Results and Discussion
4.1. Data Description and Visualization Analysis
4.2. Econometric Results
4.3. Machine Learning Model Results
4.4. Interaction Analysis Results
4.4.1. Interaction Effects Analysis Based on SHAP
4.4.2. Matrix Visualization of Feature Interactions
4.4.3. Cross-Analysis Revealing Synergistic Effects
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, P.; Du, J.; Shahzad, F. Leader’s strategies for designing the promotional path of regional brand competitiveness in the context of economic globalization. Front. Psychol. 2022, 13, 972371. [Google Scholar] [CrossRef]
- Zhang, P.; Guan, P.; Hao, C.; Yang, J.; Xie, Z.; Wu, D. Changes in assembly processes of soil microbial communities in forest-to-cropland conversion in Changbai Mountains, northeastern China. Sci. Total Environ. 2022, 818, 151738. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Zhou, W.; Razzaq, A.; Yang, Y. Land resource management and sustainable, development: Evidence from China’s regional data. Resour. Policy 2023, 84, 103732. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, X.; Yang, R. Complements or substitutes? The impact of social interactions and Internet use on farmers’ green production technology adoption behavior. J. Clean. Prod. 2025, 518, 145964. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H. Farmers’ adoption of agriculture green production technologies: Perceived value or policy-driven? Heliyon 2024, 10, e23925. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Liu, K.; Wu, Y.J. Overcoming Barriers to Agriculture Green Technology Diffusion through Stakeholders in China: A Social Network Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6976. [Google Scholar]
- Dong, C.; Wang, H.; Long, W.; Ma, J.; Cui, Y. Can Agricultural Cooperatives Promote Chinese Farmers’ Adoption of Green Technologies? Int. J. Environ. Res. Public Health 2023, 20, 4051. [Google Scholar] [CrossRef]
- Li, J.; Liu, G.; Chen, Y.; Li, R. Study on the influence mechanism of adoption of smart agriculture technology behavior. Sci. Rep. 2023, 13, 8554. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Armitage, C.J.; Conner, M. Efficacy of the Theory of Planned Behaviour: A meta-analytic review. Br. J. Soc. Psychol. 2001, 40, 471–499. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M. The Processes of Technological Innovation; Lexington Books: Washington, DC, USA, 1990; pp. 27–50. ISBN 0669203483. [Google Scholar]
- Zhao, W.; Gao, Y.; Tang, M.; Ma, A. Promoting or inhibiting? The impact of urban–rural integration on the green transformation of arable land utilization: Evidence from China’s major grain-producing regions. Ecol. Indic. 2025, 176, 113617. [Google Scholar] [CrossRef]
- Hoque, M.A.; Rasiah, R.; Furuoka, F.; Kumar, S.; Adnan, Z.H.; Chowdhury, N.H. Antecedents and firm performance of sustainable technology adoption in the clothing industry: A study based on the technology–organization–environment framework. Sustain. Futures 2025, 10, 101381. [Google Scholar] [CrossRef]
- Benchis, M.P.; Shahzad, K.; Dan, S. Comparative analysis of blockchain adoption in the public and private sectors. A technology-organization-environment (TOE) framework approach. J. Innov. Knowl. 2025, 10, 100746. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Zhao, P.; Chen, K.; Wu, L. Factors affecting the willingness of agricultural green production from the perspective of farmers’ perceptions. Sci. Total Environ. 2020, 738, 140289. [Google Scholar] [CrossRef]
- Xu, Z.; Meng, W.; Li, S.; Chen, J.; Wang, C. Driving factors of farmers’ green agricultural production behaviors in the multi-ethnic region in China based on NAM-TPB models. Glob. Ecol. Conserv. 2024, 50, e02812. [Google Scholar] [CrossRef]
- Tilahun, G.; Bantider, A.; Yayeh, D. Empirical and methodological foundations on the impact of climate-smart agriculture on food security studies: Review. Heliyon 2025, 11, e41242. [Google Scholar] [CrossRef] [PubMed]
- Greiner, R.; Gregg, D. Farmers’ intrinsic motivations, barriers to the adoption of conservation practices and effectiveness of policy instruments: Empirical evidence from northern Australia. Land Use Policy 2011, 28, 257–265. [Google Scholar] [CrossRef]
- Yang, C.; Liang, X.; Xue, Y.; Zhang, Y.Y.; Xue, Y. Can government regulation weak the gap between green production intention and behavior? Based on the perspective of farmers’ perceptions. J. Clean. Prod. 2024, 434, 139743. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, S.; Li, X.; Xia, X. Adoption of green production technologies by farmers through traditional and digital agro-technology promotion—An example of physical versus biological control technologies. J. Environ. Manag. 2024, 370, 122813. [Google Scholar] [CrossRef]
- Li, S.; Li, C. Exploring pathways for enhancing green total factor productivity in high-carbon emission enterprises: A configurational analysis based on the TOE framework and fsQCA. Sustain. Futures 2025, 10, 101418. [Google Scholar] [CrossRef]
- Xiang, J.; Cai, H.H.; Khan, N.U.; Yin, H.; Al Shammre, A.S.; Ariza-Montes, A. Driving sustainability: Role of economic incentives, and environmental awareness in electronic sector. J. Environ. Manag. 2025, 394, 127229. [Google Scholar] [CrossRef]
- Ali, M.; Lyu, C.; Tian, X.; Jiang, C.; Li, Q. The impact of digital marketing literacy on digital marketing strategy to enhance the library patrons’ engagement: An application of the TOE framework. Acta Psychol. 2025, 260, 105495. [Google Scholar] [CrossRef]
- Xuan, H.; Liu, Q.; Wang, L. The impact of incentive policies on shipowners’ adoption behavior of clean energy technologies: Evidence from China. Mar. Policy 2024, 167, 106277. [Google Scholar] [CrossRef]
- Chen, W.; Song, Z.; Xie, Y. Why incentive-regulatory policy synergy underperforms in driving energy transition: Evidence from China. Energy Convers. Manag. 2025, 27, 101206. [Google Scholar] [CrossRef]
- Chen, X.; Xing, L.; Li, B.; Zhang, Y. Substitution or complementary effects: The impact of neighborhood effects and policy interventions on farmers’ pesticide packaging waste recycling behavior. J. Clean. Prod. 2024, 482, 144198. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Cai, Y.; Hu, H.; Xiao, W. Spatiotemporal heterogeneity of ecosystem services in the context of policy intervention in Shanxi Province. Environ. Sustain. Indic. 2025, 28, 100975. [Google Scholar] [CrossRef]
- Yang, Z.; Chu, L.; Wang, C.; Pan, Y.; Su, W.; Qin, Y.; Cai, C. What drives the spatial heterogeneity of cropping patterns in the Northeast China: The natural environment, the agricultural economy, or policy? Sci. Total Environ. 2023, 905, 167810. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, G.; Huang, H.; Wang, J.; Tarefder, R.A. Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model. Accid. Anal. Prev. 2016, 96, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Lord, D. Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Anal. Methods Accid. Res. 2014, 1, 72–85. [Google Scholar] [CrossRef]
- Scarano, A.; Sadeghi, M.; Mauriello, F.; Riccardi, M.R.; Aghabayk, K.; Montella, A. Cyclist crash severity modeling: A hybrid approach of XGBoost-SHAP and random parameters logit with heterogeneity in means and variances. J. Saf. Res. 2025, 93, 373–398. [Google Scholar] [CrossRef]
- Guo, X.; Yin, Y.; Dong, C.; Yang, G.; Zhou, G. On the Class Imbalance Problem. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; pp. 192–201. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Samerei, S.A.; Aghabayk, K. Analyzing the transition from two-vehicle collisions to chain reaction crashes: A hybrid approach using random parameters logit model, interpretable machine learning, and clustering. Accid. Anal. Prev. 2024, 202, 107603. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Xie, Y.; Wu, L.; Jiang, L. Quantifying and comparing the effects of key risk factors on various types of roadway segment crashes with LightGBM and SHAP. Accid. Anal. Prev. 2021, 159, 106261. [Google Scholar] [CrossRef] [PubMed]







| Hypothesis | Hypothesis Description | Corresponding Variables |
|---|---|---|
| H1 | Resource endowment exerts a foundational influence on green production behavior. | Individual characteristics, household characteristics, natural conditions |
| H2 | Cognition and intention exert a psychologically driving effect on green production behavior. | Cognitive traits, production intention |
| H3 | Policy incentives and resource endowment exhibit an interactive enhancement effect. | Policy incentives, individual characteristics, household characteristics, natural conditions |
| H4 | Policy incentives have a positive influence on cognition and intention. | Policy incentives, cognitive traits, production intention |
| Variable Type | Variable Description | Symbol | Mean | Standard |
|---|---|---|---|---|
| Explained variable | Degree of Green Production Behavior Participation (Scaled 0–6 based on implementation level) | DIGB | 3.29 | 1.46 |
| Explanatory variables | ||||
| Individual characteristics | Gender (categorical variables, 1 = male, 2 = female.) | GD | 1.58 | 0.49 |
| Age (continuous variable) | AGE | 49.54 | 9.83 | |
| Education Level (0 = No schooling, 1 = Primary, 2 = Junior high, 3 = Senior high/technical, 4 = College or above) | EL | 1.81 | 0.68 | |
| Social Role (categorical variables, 1 = Village cadre, 2 = Cooperative member, 3 = Ordinary farmer, 4 = Enterprise-contracted farmer) | SR | 3.42 | 0.42 | |
| Household characteristics | Annual Total Household Income (10,000 CNY) (1 = <1, 2 = 1–5, 3 = 5–10, 4 = 10–20, 5 = >20) | ATHI | 3.62 | 1.21 |
| Proportion of Forest-Grown Ginseng Income (%) (1 = 1–20, 2 = 21–40, 3 = 41–60, 4 = 61–80, 5 = 81–100) | PFPI | 3.62 | 1.92 | |
| Planting Area (10000 mu) (1 = <1, 2 = 1–5, 3 = 5–10, 4 = 10–20,000, 5 = >20) | PA | 1.98 | 0.36 | |
| Natural Conditions | Soil Fertility (1 = Very poor, 2 = Poor, 3 = Average, 4 = Good, 5 = Excellent) | SF | 4.16 | 0.54 |
| Located within Ecological Protection Area (0 = No, 1 = Yes) | WEPA | 0.46 | 0.30 | |
| Cognitive Traits | Awareness of Green Production Standards (Completely unaware to Fully aware = 1 to 5) | AGPS | 2.48 | 0.83 |
| Awareness of Ecological and Quality Safety (Completely unaware to Fully aware = 1 to 5) | AEQS | 2.52 | 0.95 | |
| Understanding of Green Production Techniques (Completely unaware to Fully aware = 1 to 5) | UGPT | 2.85 | 1.16 | |
| Perception of Industry’s Importance to Ecological Protection (Very unimportant to Very important = 1 to 5) | IEP | 4.02 | 0.86 | |
| Production Intention | Willingness to Accept Price Premium for Green Products (Completely unwilling to Very willing = 1 to 5) | PPGP | 3.50 | 0.92 |
| Willingness to Subsidize Agricultural Inputs Purchase (Completely unwilling to Very willing = 1 to 5) | SPAI | 3.66 | 0.90 | |
| Policy Implementation | Government Supervision (0 = No, 1 = Yes) | GS | 0.41 | 0.28 |
| Product Certification Subsidy (0 = No, 1 = Yes) | PCS | 0.65 | 0.14 | |
| Degree of Policy Propaganda (0 = No, 1 = Yes) | DPP | 0.92 | 0.21 | |
| Market Management (0 = No, 1 = Yes) | MM | 0.68 | 0.23 |
| Variables | Ordered Probit | Ordered Logit | |||
|---|---|---|---|---|---|
| β | σ | β | σ | Odds Ratio | |
| AGE | −0.021 * | 0.012 | −0.035 * | 0.02 | 0.966 |
| EL | 0.152 ** | 0.072 | 0.319 ** | 0.14 | 1.376 |
| SR | 0.084 | 0.058 | 0.055 | 0.087 | 1.057 |
| ATHI | 0.032 | 0.025 | 0.060 | 0.048 | 1.246 |
| PFPI | 0.117 ** | 0.048 | 0.155 ** | 0.072 | 1.427 |
| PA | 0.045 | 0.039 | 0.17 | 0.123 | 1.185 |
| SF | 0.103 | 0.068 | 0.170 | 0.108 | 1.31 |
| WEPA | 0.185 ** | 0.091 | 0.418 ** | 0.206 | 1.519 |
| AGPS | 0.212 *** | 0.065 | 0.541 *** | 0.142 | 1.718 |
| AEQS | 0.276 ** | 0.109 | 0.422 ** | 0.206 | 1.619 |
| UGPT | 0.194 ** | 0.088 | 0.336 ** | 0.165 | 1.399 |
| IEP | 0.228 ** | 0.107 | 0.212 * | 0.115 | 1.48 |
| PPGP | 0.279 *** | 0.072 | 0.328 ** | 0.13 | 1.388 |
| SPAI | 0.134 * | 0.081 | 0.232 * | 0.125 | 1.261 |
| GS | 0.187 ** | 0.092 | 0.255 ** | 0.121 | 1.357 |
| PCS | 0.156 * | 0.094 | 0.252 * | 0.138 | 1.422 |
| DPP | 0.102 | 0.087 | 0.205 | 0.129 | 1.228 |
| MM | 0.075 | 0.078 | 0.147 | 0.123 | 1.158 |
| Pseudo R2 | 0.126 | 0.121 | |||
| LR chi2 | 112.45 * | 126.62 * | |||
| Variables | Tonghua (n = 193) | Baishan (n = 122) | Yanbian (n = 54) |
|---|---|---|---|
| AGE | −0.018 * (0.010) | −0.035 * (0.021) | −0.009 (0.011) |
| EL | 0.211 ** (0.104) | 0.152 (0.118) | 0.284 * (0.169) |
| SR | 0.045 (0.082) | 0.011 (0.091) | 0.103 (0.129) |
| ATHI | 0.148 (0.102) | 0.193 * (0.113) | 0.065 (0.161) |
| PFPI | 0.187 ** (0.092) | 0.221 * (0.127) | 0.178 (0.181) |
| PA | 0.115 (0.106) | 0.082 (0.116) | 0.234 (0.165) |
| SF | 0.182 * (0.108) | 0.129 (0.119) | 0.195 (0.170) |
| WEPA | 0.198 (0.210) | 0.362 ** (0.169) | 0.301 (0.312) |
| AGPS | 0.398 *** (0.121) | 0.345 ** (0.138) | 0.332 * (0.196) |
| AEQS | 0.351 *** (0.110) | 0.302 ** (0.125) | 0.289 * (0.158) |
| UGPT | 0.223 ** (0.106) | 0.165 (0.132) | 0.241 (0.188) |
| IEP | 0.205 * (0.115) | 0.198 * (0.120) | 0.310 * (0.171) |
| PPGP | 0.226 ** (0.112) | 0.143 (0.128) | 0.192 (0.182) |
| SPAI | 0.159 (0.109) | 0.102 (0.124) | 0.175 (0.177) |
| GS | 0.203 * (0.114) | 0.178 (0.130) | 0.124 (0.185) |
| PCS | 0.312 *** (0.108) | 0.249 * (0.143) | 0.266 * (0.142) |
| DPP | 0.135 (0.111) | 0.098 (0.126) | 0.121 (0.180) |
| MM | 0.092 (0.107) | 0.067 (0.122) | 0.088 (0.174) |
| Parameters | Description | Value |
|---|---|---|
| n_estimators | Number of boosting iterations | 300 |
| max_depth | Maximum depth limit for each tree | 6 |
| max_leaves | Maximum number of leaves per tree | 45 |
| learning_rate | Step size shrinkage to prevent overfitting | 0.01 |
| min_child_weight | Minimum sum of sample weights among leaves | 6.5 |
| Subsample | Fraction of samples used for training each tree | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-B.; Lou, Y.-J.; Jia, Y.-N.; Han, J.-F.; Zhang, Y.; Wu, C.-L. Unveiling Drivers of Green Production in Forest-Grown Ginseng Farms in China: An Ordered Probit-LGBM Fusion Approach. Forests 2025, 16, 1868. https://doi.org/10.3390/f16121868
Zhang X-B, Lou Y-J, Jia Y-N, Han J-F, Zhang Y, Wu C-L. Unveiling Drivers of Green Production in Forest-Grown Ginseng Farms in China: An Ordered Probit-LGBM Fusion Approach. Forests. 2025; 16(12):1868. https://doi.org/10.3390/f16121868
Chicago/Turabian StyleZhang, Xin-Bo, Yi-Jun Lou, Yu-Ning Jia, Jia-Fang Han, Yang Zhang, and Cheng-Liang Wu. 2025. "Unveiling Drivers of Green Production in Forest-Grown Ginseng Farms in China: An Ordered Probit-LGBM Fusion Approach" Forests 16, no. 12: 1868. https://doi.org/10.3390/f16121868
APA StyleZhang, X.-B., Lou, Y.-J., Jia, Y.-N., Han, J.-F., Zhang, Y., & Wu, C.-L. (2025). Unveiling Drivers of Green Production in Forest-Grown Ginseng Farms in China: An Ordered Probit-LGBM Fusion Approach. Forests, 16(12), 1868. https://doi.org/10.3390/f16121868

