Construction of a Core Collection of Korean Pine (Pinus koraiensis) Clones Based on Morphological and Physiological Traits and Genetic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Evaluated Traits
2.3. DNA Extraction and Genotyping
2.4. Data Analysis
3. Results
3.1. Variation of Traits
3.2. Genetic Diversity
3.3. Analysis of Genetic Structure
Source | df | SS | MS | Est. Var. | % |
---|---|---|---|---|---|
Among Pops | 7 | 66.152 | 9.450 | 0.084 | 3% |
Among Indiv. | 306 | 950.221 | 3.105 | 0.298 | 10% |
Within Indiv. | 314 | 788.000 | 2.510 | 2.510 | 87% |
Total | 627 | 1804.373 | 2.891 | 100% |
3.4. Construction of a Core Collection
3.5. Confirmation and Evaluation of Core Collection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Locus | Primer Sequence | Motif | Tm (°C) | Size (bp) | Fluorescent Dye |
---|---|---|---|---|---|
p49 | F: GAGATGAGCGAATCTGGG | (AAG)7 | 52 | 261 | FAM |
R: TACAAGTTCCACCTACGG | |||||
p70 | F: CAACATCGCCAATGACTC | (CTCA)6 | 54 | 294 | FAM |
R: CCTACCTACGCTCTGCTC | |||||
p72 | F: TGGGTTACCACCTTTAGC | (GCT)6 | 52 | 193 | HEX |
R: CAATCAGAGTCTGGAGCA | |||||
p79 | F: CCACCGCCAAGTCCATTA | (CAA)7 | 55 | 190 | HEX |
R: GCTTTGTTAGCCGTCCAG | |||||
p82 | F: GGAAGATGAATCGCAAACC | (GCG)6 | 54 | 280 | ROX |
R: ACACCCGCCTGAAGAGCA | |||||
EPD11 | F: GTGGATGCAATGAAGAAAAACAT | (AGG)6 | 60 | 139 | TAM |
R: ACGAATTGCAAAACTGCATAACT | |||||
NFPK-34 | F: AACCCACAGAAAGCTGAGGA | (TAA)6 | 60 | 221 | TAM |
R: CACCCCTGAACAGAGAGGAG | |||||
P6* | F: TCAAATTACCAGACAATAA | (TA)3 (GT)15 | 55 | 125 | FAM |
R: GAATTCGCCAATGAAATCA | |||||
P45* | F: CTTACATTTTGCTGCTTTTC | (TG)16 (AG)17 | 55 | 173 | HEX |
R: TTGTCAGTTTTAGGTTGGAT | |||||
P51* | F: CCTAAGAGCAATGTAAAATG | (AG)15 | 55 | 204 | TAM |
R: AGCTTGACAACGACTAACT | |||||
P52* | F: CCATCCTTCAAATTTTCCT | (AG)26 | 56 | 138 | ROX |
Pop | Locus | N | Na | Ne | I | Ho | He | uHe | F |
---|---|---|---|---|---|---|---|---|---|
LSH | p49 | 21 | 3 | 2.178 | 0.876 | 0.476 | 0.541 | 0.554 | 0.119 |
p70 | 21 | 3 | 2.125 | 0.864 | 0.143 | 0.529 | 0.542 | 0.730 | |
p72 | 21 | 3 | 1.273 | 0.425 | 0.190 | 0.214 | 0.220 | 0.111 | |
p79 | 21 | 2 | 1.630 | 0.575 | 0.524 | 0.387 | 0.396 | −0.355 | |
p82 | 21 | 2 | 1.960 | 0.683 | 0.095 | 0.490 | 0.502 | 0.806 | |
EPD11 | 21 | 2 | 1.960 | 0.683 | 0.667 | 0.490 | 0.502 | −0.361 | |
NFPK-34 | 21 | 2 | 1.208 | 0.314 | 0.190 | 0.172 | 0.177 | −0.105 | |
P6* | 21 | 4 | 1.834 | 0.872 | 0.429 | 0.455 | 0.466 | 0.057 | |
P45* | 21 | 11 | 5.313 | 1.973 | 0.714 | 0.812 | 0.832 | 0.120 | |
P52* | 21 | 9 | 4.820 | 1.815 | 0.762 | 0.793 | 0.812 | 0.039 | |
P51* | 21 | 11 | 5.444 | 2.019 | 0.810 | 0.816 | 0.836 | 0.008 | |
HL | p49 | 25 | 1 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
p70 | 25 | 3 | 2.023 | 0.844 | 0.560 | 0.506 | 0.516 | −0.108 | |
p72 | 25 | 3 | 1.390 | 0.546 | 0.240 | 0.281 | 0.287 | 0.145 | |
p79 | 25 | 4 | 2.887 | 1.173 | 0.120 | 0.654 | 0.667 | 0.816 | |
p82 | 25 | 2 | 1.471 | 0.500 | 0.400 | 0.320 | 0.327 | −0.250 | |
EPD11 | 25 | 3 | 1.649 | 0.717 | 0.440 | 0.394 | 0.402 | −0.118 | |
NFPK-34 | 25 | 2 | 2.000 | 0.693 | 0.200 | 0.500 | 0.510 | 0.600 | |
P6* | 25 | 8 | 2.747 | 1.409 | 0.680 | 0.636 | 0.649 | −0.069 | |
P45* | 25 | 12 | 7.440 | 2.196 | 0.800 | 0.866 | 0.883 | 0.076 | |
P52* | 25 | 9 | 4.513 | 1.821 | 0.520 | 0.778 | 0.794 | 0.332 | |
P51* | 25 | 12 | 7.764 | 2.232 | 0.640 | 0.871 | 0.889 | 0.265 | |
SCZ | p49 | 24 | 2 | 1.843 | 0.650 | 0.708 | 0.457 | 0.467 | −0.548 |
p70 | 24 | 3 | 2.268 | 0.907 | 0.500 | 0.559 | 0.571 | 0.106 | |
p72 | 24 | 3 | 1.471 | 0.602 | 0.292 | 0.320 | 0.327 | 0.089 | |
p79 | 24 | 3 | 1.453 | 0.548 | 0.292 | 0.312 | 0.318 | 0.064 | |
p82 | 24 | 3 | 1.341 | 0.475 | 0.292 | 0.254 | 0.260 | −0.147 | |
EPD11 | 24 | 3 | 1.607 | 0.688 | 0.375 | 0.378 | 0.386 | 0.007 | |
NFPK-34 | 24 | 2 | 1.385 | 0.451 | 0.250 | 0.278 | 0.284 | 0.100 | |
P6* | 24 | 6 | 2.007 | 1.077 | 0.458 | 0.502 | 0.512 | 0.087 | |
P45* | 24 | 12 | 6.400 | 2.106 | 0.792 | 0.844 | 0.862 | 0.062 | |
P52* | 24 | 6 | 4.159 | 1.557 | 0.208 | 0.760 | 0.776 | 0.726 | |
P51* | 24 | 9 | 6.621 | 2.005 | 0.542 | 0.849 | 0.867 | 0.362 | |
XBH | p49 | 45 | 2 | 1.670 | 0.591 | 0.378 | 0.401 | 0.406 | 0.058 |
p70 | 45 | 4 | 1.968 | 0.892 | 0.511 | 0.492 | 0.497 | −0.039 | |
p72 | 45 | 3 | 1.480 | 0.615 | 0.356 | 0.324 | 0.328 | −0.097 | |
p79 | 45 | 3 | 1.599 | 0.601 | 0.378 | 0.375 | 0.379 | −0.009 | |
p82 | 45 | 3 | 1.199 | 0.359 | 0.178 | 0.166 | 0.168 | −0.073 | |
EPD11 | 45 | 5 | 1.946 | 0.955 | 0.444 | 0.486 | 0.492 | 0.086 | |
NFPK-34 | 45 | 3 | 1.411 | 0.563 | 0.200 | 0.291 | 0.294 | 0.313 | |
P6* | 45 | 6 | 2.179 | 1.115 | 0.600 | 0.541 | 0.547 | −0.109 | |
P45* | 45 | 12 | 5.000 | 1.921 | 0.578 | 0.800 | 0.809 | 0.278 | |
P52* | 45 | 11 | 4.018 | 1.831 | 0.822 | 0.751 | 0.760 | −0.095 | |
P51* | 45 | 10 | 7.181 | 2.096 | 0.600 | 0.861 | 0.870 | 0.303 | |
HB | p49 | 81 | 2 | 1.608 | 0.566 | 0.481 | 0.378 | 0.380 | −0.274 |
p70 | 81 | 4 | 1.433 | 0.612 | 0.222 | 0.302 | 0.304 | 0.264 | |
p72 | 81 | 3 | 1.522 | 0.635 | 0.370 | 0.343 | 0.345 | −0.080 | |
p79 | 81 | 7 | 1.804 | 0.801 | 0.519 | 0.446 | 0.449 | −0.163 | |
p82 | 81 | 3 | 1.160 | 0.285 | 0.148 | 0.138 | 0.139 | −0.073 | |
EPD11 | 81 | 4 | 2.180 | 0.921 | 0.593 | 0.541 | 0.545 | −0.095 | |
NFPK-34 | 81 | 4 | 1.429 | 0.541 | 0.309 | 0.300 | 0.302 | −0.029 | |
P6* | 81 | 9 | 2.184 | 1.256 | 0.543 | 0.542 | 0.545 | −0.002 | |
P45* | 81 | 18 | 7.062 | 2.308 | 0.728 | 0.858 | 0.864 | 0.151 | |
P52* | 81 | 9 | 3.670 | 1.632 | 0.679 | 0.728 | 0.732 | 0.067 | |
P51* | 81 | 11 | 7.397 | 2.165 | 0.679 | 0.865 | 0.870 | 0.215 | |
WY | p49 | 51 | 2 | 1.613 | 0.568 | 0.314 | 0.380 | 0.384 | 0.174 |
p70 | 51 | 4 | 1.818 | 0.829 | 0.412 | 0.450 | 0.454 | 0.085 | |
p72 | 51 | 3 | 1.502 | 0.630 | 0.353 | 0.334 | 0.338 | −0.056 | |
p79 | 51 | 3 | 1.775 | 0.666 | 0.373 | 0.437 | 0.441 | 0.147 | |
p82 | 51 | 3 | 1.148 | 0.278 | 0.137 | 0.129 | 0.130 | −0.064 | |
EPD11 | 51 | 4 | 1.565 | 0.640 | 0.412 | 0.361 | 0.365 | −0.140 | |
NFPK-34 | 51 | 3 | 1.702 | 0.744 | 0.412 | 0.412 | 0.416 | 0.001 | |
P6* | 51 | 7 | 2.971 | 1.448 | 0.647 | 0.663 | 0.670 | 0.025 | |
P45* | 51 | 11 | 6.149 | 2.029 | 0.627 | 0.837 | 0.846 | 0.251 | |
P52* | 51 | 9 | 4.172 | 1.709 | 0.765 | 0.760 | 0.768 | −0.006 | |
P51* | 51 | 12 | 7.930 | 2.231 | 0.686 | 0.874 | 0.883 | 0.215 | |
LX | p49 | 40 | 3 | 1.682 | 0.639 | 0.475 | 0.405 | 0.410 | −0.172 |
p70 | 40 | 3 | 1.868 | 0.818 | 0.500 | 0.465 | 0.471 | −0.076 | |
p72 | 40 | 3 | 1.396 | 0.544 | 0.325 | 0.283 | 0.287 | −0.147 | |
p79 | 40 | 4 | 1.951 | 0.887 | 0.350 | 0.488 | 0.494 | 0.282 | |
p82 | 40 | 3 | 1.467 | 0.591 | 0.275 | 0.318 | 0.322 | 0.136 | |
EPD11 | 40 | 4 | 1.996 | 0.881 | 0.475 | 0.499 | 0.505 | 0.048 | |
NFPK-34 | 40 | 3 | 1.227 | 0.391 | 0.050 | 0.185 | 0.187 | 0.729 | |
P6* | 40 | 8 | 1.968 | 1.132 | 0.475 | 0.492 | 0.498 | 0.034 | |
P45* | 40 | 16 | 7.159 | 2.302 | 0.750 | 0.860 | 0.871 | 0.128 | |
P52* | 40 | 9 | 3.865 | 1.620 | 0.750 | 0.741 | 0.751 | −0.012 | |
P51* | 40 | 9 | 6.061 | 1.963 | 0.600 | 0.835 | 0.846 | 0.281 | |
SGL | p49 | 27 | 2 | 1.874 | 0.659 | 0.444 | 0.466 | 0.475 | 0.047 |
p70 | 27 | 3 | 1.581 | 0.671 | 0.370 | 0.368 | 0.375 | −0.007 | |
p72 | 27 | 3 | 1.409 | 0.557 | 0.333 | 0.290 | 0.296 | −0.149 | |
p79 | 27 | 3 | 1.839 | 0.708 | 0.444 | 0.456 | 0.465 | 0.026 | |
p82 | 27 | 3 | 1.256 | 0.426 | 0.148 | 0.204 | 0.208 | 0.273 | |
EPD11 | 27 | 4 | 2.363 | 1.066 | 0.778 | 0.577 | 0.588 | −0.348 | |
NFPK-34 | 27 | 3 | 1.255 | 0.420 | 0.074 | 0.203 | 0.207 | 0.635 | |
P6* | 27 | 9 | 2.390 | 1.379 | 0.630 | 0.582 | 0.593 | −0.083 | |
P45* | 27 | 11 | 3.984 | 1.854 | 0.667 | 0.749 | 0.763 | 0.110 | |
P52* | 27 | 9 | 3.496 | 1.537 | 0.667 | 0.714 | 0.727 | 0.066 | |
P51* | 27 | 4 | 3.233 | 1.238 | 0.111 | 0.691 | 0.704 | 0.839 |
References
- Liu, Y.; Geng, Y.; Xie, X.; Zhang, P.; Hou, J.; Wang, W. Core collection construction and evaluation of the genetic structure of Glycyrrhiza in China using markers for genomic simple sequence repeats. Genet. Resour. Crop Evol. 2020, 67, 1839–1852. [Google Scholar] [CrossRef]
- Boczkowska, M.; Apiński, B.; Kordulasińska, I.; Dostatny, D.F.; Czembor, J.H. Promoting the Use of Common Oat Genetic Resources through Diversity Analysis and Core Collection Construction. PLoS ONE 2016, 11, e0167855. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Prom, L.K. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. BMC Genom. 2020, 21, 88. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, S.; Liu, Q.; Chen, J.; Pan, J.; Zhang, J. Selection of a core collection of Prunus sibirica L. germplasm by a stepwise clustering method using simple sequence repeat markers. PLoS ONE 2021, 16, e0260097. [Google Scholar] [CrossRef]
- Li, N.; Yang, Y.; Xu, F.; Chen, X.; Wei, R.; Li, Z.; Pan, W.; Zhang, W. Genetic Diversity and Population Structure Analysis of Castanopsis hystrix and Construction of a Core Collection Using Phenotypic Traits and Molecular Markers. Genes 2022, 13, 2383. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Li, J.; Cao, S.; Zhang, Z.; Zhang, J.; Zhang, Y.; Deng, Y.; Niu, D.; Su, L.; et al. Genetic diversity and core collection extraction of Robinia pseudoacacia L. germplasm resources based on phenotype, physiology, and genotyping markers. Ind. Crops Prod. 2022, 178, 114627. [Google Scholar] [CrossRef]
- Frankel, O.H.; Brown, A.H.D. Current plant genetic resources—A critical appraisal. In Crop Genetic Resources: Conservation and Evaluation; Holden, J.H.W., Williams, J.T., Eds.; George Allan and Unwin: London, UK, 1984; Chapter 21; pp. 249–257. [Google Scholar]
- Charmet, G.; Balfourier, F.; Ravel, C.; Denis, J.B. Genotype x environment interactions in a core collection of French perennial ryegrass populations. TAG Theor. Appl. Genetics. Theor. Und Angew. Genet. 1993, 86, 731–736. [Google Scholar] [CrossRef]
- Gepts, P. Plant genetic resources conservation and utilization: The accomplishments and future of a societal insurance policy. Crop Sci. 2006, 46, 2278–2292. [Google Scholar] [CrossRef]
- Gu, R.; Fan, S.; Wei, S.; Li, J.; Zheng, S.; Liu, G. Developments on Core Collections of Plant Genetic Resources: Do We Know Enough? Forests 2023, 14, 926. [Google Scholar] [CrossRef]
- Razi, S.; Soleimani, A.; Zeinalabedini, M.; Vazifeshenas, M.R.; Martínez-Gómez, P.; Kermani, A.M.; Raiszadeh, A.R.; Tayari, M.; Martínez-García, P.J. Development of a Multipurpose Core Collection of New Promising Iranian Pomegranate (Punica granatum L.) Genotypes Based on Morphological and Pomological Traits. Horticulturae 2021, 7, 350. [Google Scholar] [CrossRef]
- Sivalingam, P.N.; Singh, D.; Chauhan, S.; Changal, H.K.; Bhan, C.; Mohapatra, T.; More, T.A.; Sharma, S.K. Establishment of the core collection of Ziziphus mauritiana Lam. from India. Plant Genet. Resour. 2014, 12, 140–142. [Google Scholar] [CrossRef]
- Li, Y.X.; Gao, Q.J.; Li, T.H. Sampling strategy based on fruit characteristics for a primary core collection of peach cultivars. J. Fruit Sci. 2006, 23, 359–364. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, J.; Xu, H.M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet. 2000, 101, 264–268. [Google Scholar] [CrossRef]
- Tanksley, S.D.; Mccouch, S. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef]
- Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol. 2002, 11, 1–16. [Google Scholar] [CrossRef]
- Boccacci, P.; Aramini, M.; Ordidge, M.; Hintum, T.J.L.v.; Marinoni, D.T.; Valentini, N.; Sarraquigne, J.-P.; Solar, A.; Rovira, M.; Bacchetta, L.; et al. Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories. Tree Genet. Genomes 2021, 17, 48. [Google Scholar] [CrossRef]
- Krichen, L.; Audergon, J.M.; Trifi-Farah, N. Relative efficiency of morphological characters and molecular markers in the establishment of an apricot core collection. Hereditas 2012, 149, 163–172. [Google Scholar] [CrossRef]
- Sun, Q.; Bai, L.; Ke, L.; Xiang, X.; Zhao, J.; Ou, L. Developing a core collection of litchi (Litchi chinensis Sonn.) based on EST-SSR genotype data and agronomic traits. Sci. Hortic. 2012, 146, 29–38. [Google Scholar] [CrossRef]
- Kumar, S.; Ambreen, H.; Variath, M.T.; Rao, A.R.; Agarwal, M.; Kumar, A.; Jagannath, A. Utilization of Molecular, Phenotypic, and Geographical Diversity to Develop Compact Composite Core Collection in the Oilseed Crop, Safflower (Carthamus tinctorius L.) through Maximization Strategy. Front. Plant Sci. 2016, 7, 1554. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Z.; Gao, C.; Li, K. Strategy for the construction of a core collection for Pinus yunnanensis Franch. to optimize timber based on combined phenotype and molecular marker data. Genet. Resour. Crop Evol. 2021, 68, 3219–3240. [Google Scholar] [CrossRef]
- Zhen, Z.; Hanguo, Z.; Chi, M.; Lei, Z. Transcriptome Sequencing Analysis and Development of EST-SSR Markers for Pinus koraiensis. Sci. Silvae Sin. 2015, 51, 114–120. [Google Scholar] [CrossRef]
- Jianlu, M.; Liwen, Z.; Jingwen, L.; Dong, C. Geographic Distribution of Pinus koraiensis in The World. J. NorthEast For. Univ. 1992, 20, 9. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, S.-H.; Shen, H.-L. Research and Development on the Growth Environment of the Young Tree of Pinus koraiensis in Pinus koraiensis-Broadleaved Mixed Forest. For. Res. 2003, 16, 216–224. [Google Scholar] [CrossRef]
- Nergiz, C.; Dönmez, İ. Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem. 2004, 86, 365–368. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT-Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Zhen, Z.; Lei, Z.; Han-Guo, Z.; Ling, L.; Ying, J. Variations in Nutrition Compositions and Morphology Characteristics of Pine-Nuts in Korean Pine (Pinus koraiensis) Seed Orchard of Tieli. Bull. Bot. Res. 2014, 34, 356–363. [Google Scholar] [CrossRef]
- De’an, X.; Shuwen, Y.; Chuanping, Y.; Qingyou, L.; Guifeng, L.; Peigao, Z. A Study on The Provenance Test of Pinus koraiensis (Ⅰ) Preliminary Division of The Provenance. J. Northeast. For. Univ. 1991, 19, 7. [Google Scholar] [CrossRef]
- Yan, P.; Xie, Z.; Feng, K.; Qiu, X.; Zhang, L.; Zhang, H. Genetic diversity analysis and fingerprint construction of Korean pine (Pinus koraiensis) clonal seed orchard. Front. Plant Sci. 2023, 13, 1079571. [Google Scholar] [CrossRef]
- Zhen, Z.; Zhang, H.-G.; Zhang, L. Age Variations in Productivity and Family Selection of Open-Pollinated Families of Korean Pine (Pinus koraiensis). Bull. Bot. Res. 2016, 36, 305–309. [Google Scholar] [CrossRef]
- Qianping, T.; Limei, Y.; Lei, Z.; Yu, J.; Wenshu, M.; Jiali, Z.; Hanguo, Z. Genetic Diversity Analysis on Indivitual of Pinus koraiensis in Seed Orchard Based on ISSR-PCR. For. Sci. Technol. 2020, 45, 4. [Google Scholar] [CrossRef]
- Pingyu, Y.; Peng, W.; Weiman, Y.; Hanguo, Z. Analysis of Seeding Characters of Korean Pine Seed Orchard and Selection of Excellent Clones. For. Eng. 2020, 36, 11. [Google Scholar] [CrossRef]
- Qi-ping, H.; Ying, C. Comparision on Different Extaction Techniques about Chlorophyll and Determanation of Chlorophyll Content of Common Plants in Campus. Heilongjiang Agric. Sci. 2015, 38, 117–120. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef]
- Cun, C.; Chang-jun, D.; Qin-jun, H.; Zheng-hong, L.; Jing, Z.; Ning, L.; Bo, L.; Xiao-hua, S. Construction of Phenotypic Core Collection of Populus deltoides. For. Res. 2021, 34, 1–11. [Google Scholar] [CrossRef]
- Guo, W.-L.; Li, Y.-L.; Zhao, F.-C.; Tie, J.; Liao, F.-Y.; Zhong, S.-Y.; Lin, C.-M.; Ye, W.-F. Phenotypic Genetic Diversity of Pinus elliottii*P.caribaea Morelet var. hondurensis Clones. Bull. Bot. Res. 2019, 39, 259–266. [Google Scholar] [CrossRef]
- Chuanping, Y.; Shuwen, Y.; De’an, X.; Guifeng, L.; Qingyou, L.; Hongsheng, Z.; Peigao, Z. Study on The Geographic Variation Rule and Pattern of Growth Characters of Larix olgensis. J. Northeast. For. Univ. 1991, 19, 10. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 1995, 68, 248–249. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Kim, K.-W.; Chung, H.-K.; Cho, G.-T.; Ma, K.-H.; Chandrabalan, D.; Gwag, J.-G.; Kim, T.-S.; Cho, E.-G.; Park, Y.-J. PowerCore: A program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 2007, 23, 2155–2162. [Google Scholar] [CrossRef]
- Linfeng, Z.; Jianliang, G. Variance analyses of the growth and morphological traits of Chinese fir excellent clones. J. Cent. South Univ. For. Technol. 2022, 42, 8–15. [Google Scholar] [CrossRef]
- Basey, A.; Fant, J.B.; Kramer, A. Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Nativ. Plants J. 2015, 16, 37–53. [Google Scholar] [CrossRef]
- Turchetto, C.; Segatto, A.L.c.A.; Mäder, G.; Rodrigues, D.M.; Bonatto, S.L.; Freitas, L.B. High levels of genetic diversity and population structure in an endemic and rare species: Implications for conservation. Aob Plants 2016, 8, plw002. [Google Scholar] [CrossRef]
- Rongbo, J.; Jun, L.; Jingmin, J.; Chao, K.; Yanjie, L. Geographical Variation in Main Phenotypic Traits and Seedling Traits of Machilus thunbergii. J. Northeast. For. Univ. 2011, 39, 9–11. [Google Scholar]
- Yang, X.X.; Leng, P.S.; Zheng, J.; Hu, Z.H.; Liu, X.Y.; Yang, X.H.; Dou, D.Q. Variation of phenotypic traits of seed and seedling of Syringa reticulata subsp. amurensis from different provenances and their correlations with geographic-climatic factors. J. Plant Resour. Environ. 2016, 25, 80–89. [Google Scholar] [CrossRef]
- Fujuan, F.; Dongdong, Z.; Shijie, H. Genetic Diversity of Superior Clones from Pinus koraiensis Seed Orchard. J. Northeast. For. Univ. 2007, 35, 9–11. [Google Scholar]
- Odong, T.L.; Jansen, J.; van Eeuwijk, F.A.; van Hintum, T.J.L. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor. Appl. Genet. 2013, 126, 289–305. [Google Scholar] [CrossRef]
- Marita, J.M.; Rodriguez, J.M.; Nienhuis, J. Development of an algorithm identifying maximally diverse core collections. Genet. Resour. Crop Evol. 2000, 47, 515–526. [Google Scholar] [CrossRef]
- Schoen, D.J.; Brown, A.H. Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc. Natl. Acad. Sci. USA 1993, 90, 10623–10627. [Google Scholar] [CrossRef]
- Hanbo, Y.; Rui, Z.; Bangshun, W.; Zhaoyou, X.; Zhichun, Z. Construction of Core Collection of Schima superba Based on SSR Molecular Markers. Sci. Silvae Sin. 2017, 53, 37–46. [Google Scholar] [CrossRef]
- Mahmoodi, R.; Dadpour, M.R.; Hassani, D.; Zeinalabedini, M.; Vendramin, E.; Leslie, C.A. Composite core set construction and diversity analysis of Iranian walnut germplasm using molecular markers and phenotypic traits. PLoS ONE 2021, 16, e0248623. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-C.; Zhang, H.-L.; Chao, Y.-S. Studies on the Sampling Strategy for Primary Core Collection of Chinese Ingenious Rice. Acta Agron. Sin. 2003, 29, 20–24. [Google Scholar]
- Chen, B.; Zhang, J.; Liu, G.; Li, S.; Gao, Y.; Li, H.; Li, T. Selection of Excellent Families and Evaluation of Selection Method for Pulpwood Half-sibling Families of Betula platyphylla. Bull. Bot. Res. 2023, 43, 690–699. [Google Scholar] [CrossRef]
- Huang, C.Q.; Long, T.; Bai, C.J.; Wang, W.Q.; Tang, J.; Liu, G.D. Establishment of a core collection of Cynodon based on morphological data. Trop. Grassl. Forrajes Trop. 2020, 8, 203–213. [Google Scholar] [CrossRef]
Population | Regions | Source | Seed Orchard | Longitude (°) | Latitude (°) | Number of Clones |
---|---|---|---|---|---|---|
LSH | Changbaishan | Lushuihe | Lushuihe | E127.783 | N42.467 | 21 |
HL | Helong | Sanchazi | E126.848 | N42.626 | 25 | |
SCZ | Sanchazi | E126.848 | N42.626 | 24 | ||
XBH | Zhangguangcailing | Xiaobeihu | Bohai | E129.094 | N44.057 | 45 |
HB | Xiaoxinganling | Hebei | Weihe | E128.028 | N44.676 | 81 |
WY | Wuying | Hegang | E130.233 | N47.066 | 51 | |
LX | Langxiang | Tieli | E128.333 | N47.110 | 40 | |
SGL | Shangganling | E128.333 | N47.110 | 27 |
Traits | Abbreviation |
---|---|
Needle length (cm) | CL |
Needle width (mm) | CW |
Needle length/width | CL/CW |
Fresh weight of needles (g) | FWC |
Dry weight of needles (g) | DWC |
Water content of needles (%) | WC |
Chlorophyll a content in the needles (mg/g) | Chla |
Chlorophyll b content in the needles (mg/g) | Chlb |
Total Chlorophyll content in the needles (mg/g) | Chl |
Traits | Population | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
LSH | HL | SCZ | XBH | HB | WY | LX | SGL | Total | ||
CL (mm) | Mean | 96.0 c | 117.5 a | 114.7 a | 104.3 b | 118.4 a | 105.1 b | 116.8 a | 114.2 a | 111.8 |
H | 1.8 | 1.7 | 1.8 | 2.0 | 2.1 | 2.1 | 1.9 | 1.9 | 2.1 | |
CV/% | 9.3 | 6.7 | 6.7 | 12.1 | 7.3 | 7.2 | 9.3 | 11.9 | 10.8 | |
CW (mm) | Mean | 0.7 c | 0.8 b | 0.8 b | 0.8 b | 0.8 a | 0.8 ab | 0.8 b | 0.8 ab | 0.8 |
H | 1.8 | 1.9 | 1.8 | 1.9 | 2.0 | 1.9 | 1.8 | 2.0 | 2.1 | |
CV/% | 7.6 | 5.5 | 6.4 | 16.8 | 8.0 | 14.2 | 8.5 | 13.0 | 12.0 | |
CL/CW | Mean | 139.4 bc | 149.3 ab | 148.2 ab | 139.3 bc | 141.0 bc | 134.0 c | 154.7 a | 146.5 ab | 142.9 |
H | 1.9 | 1.9 | 2.0 | 1.9 | 2.0 | 1.9 | 2.0 | 1.8 | 2.0 | |
CV/% | 10.1 | 8.4 | 6.5 | 16.5 | 9.6 | 15.5 | 14.5 | 19.1 | 13.8 | |
FWC (g) | Mean | 0.6 c | 0.9 a | 0.9 a | 0.7 c | 0.9 a | 0.8 b | 0.9 a | 0.9 a | 0.9 |
H | 2.0 | 1.8 | 1.9 | 1.9 | 2.0 | 2.1 | 1.8 | 1.7 | 2.1 | |
CV/% | 16.3 | 11.8 | 11.7 | 21.7 | 13.2 | 15.3 | 13.6 | 24.9 | 19.6 | |
DWC (g) | Mean | 0.3 c | 0.4 a | 0.5 a | 0.3 b | 0.4 a | 0.4 b | 0.4 a | 0.5 a | 0.4 |
H | 2.0 | 1.9 | 1.9 | 1.9 | 2.1 | 2.0 | 1.8 | 1.9 | 2.1 | |
CV/% | 17.8 | 11.8 | 10.3 | 20.0 | 13.0 | 22.5 | 13.6 | 25.6 | 21.3 | |
WC (%) | Mean | 56.5 a | 51.5 cde | 49.4 f | 50.6 def | 52.3 bcd | 53.6 b | 52.7 bc | 50.1 ef | 52.1 |
H | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.5 | 2.0 | 1.8 | 2.0 | |
CV/% | 2.4 | 6.8 | 7.9 | 9.5 | 6.6 | 8.7 | 4.1 | 5.8 | 7.7 | |
Chla (mg/g) | Mean | 1.0 ef | 1.4 a | 1.2 bc | 1.1 cd | 1.2 b | 1.0 fg | 1.1 de | 0.9 g | 1.1 |
H | 1.9 | 1.8 | 2.0 | 2.0 | 2.0 | 1.9 | 1.9 | 1.9 | 2.1 | |
CV/% | 11.1 | 9.5 | 11.3 | 16.7 | 16.5 | 17.0 | 17.9 | 23.0 | 20.0 | |
Chlb (mg/g) | Mean | 0.4 bc | 0.5 b | 0.5 a | 0.3 d | 0.4 bc | 0.4 c | 0.4 c | 0.3 d | 0.4 |
H | 1.8 | 1.9 | 2.0 | 2.0 | 2.1 | 1.9 | 1.8 | 2.0 | 2.0 | |
CV/% | 9.5 | 12.7 | 20.3 | 39.7 | 31.9 | 33.1 | 28.2 | 38.8 | 33.5 | |
Chl (mg/g) | Mean | 1.4 c | 1.8 a | 1.7 b | 1.4 c | 1.7 b | 1.3 c | 1.4 c | 1.2 d | 1.5 |
H | 2.0 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 1.9 | 2.0 | 2.1 | |
CV/% | 9.8 | 9.3 | 10.9 | 19.0 | 16.6 | 19.5 | 19.3 | 16.8 | 20.0 | |
Mean | H | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 1.9 | 1.9 | 1.9 | 2.1 |
CV/% | 10.4 | 9.2 | 10.2 | 19.1 | 13.6 | 17.0 | 14.3 | 19.9 | 17.6 |
Pop | N | Na | Ne | I | Ho | He | uHe | F |
---|---|---|---|---|---|---|---|---|
LSH | 21 | 52 | 2.704 | 1.009 | 0.455 | 0.518 | 0.531 | 0.106 |
HL | 25 | 59 | 3.171 | 1.103 | 0.418 | 0.528 | 0.538 | 0.169 |
SCZ | 24 | 52 | 2.778 | 1.006 | 0.428 | 0.501 | 0.512 | 0.082 |
XBH | 45 | 62 | 2.695 | 1.049 | 0.459 | 0.499 | 0.504 | 0.056 |
HB | 81 | 74 | 2.859 | 1.066 | 0.479 | 0.495 | 0.498 | −0.002 |
WY | 51 | 61 | 2.94 | 1.07 | 0.467 | 0.513 | 0.518 | 0.057 |
LX | 40 | 65 | 2.785 | 1.07 | 0.457 | 0.507 | 0.513 | 0.112 |
SGL | 27 | 54 | 2.244 | 0.956 | 0.424 | 0.482 | 0.491 | 0.128 |
Mean | 314 | 93 | 3.067 | 1.153 | 0.456 | 0.522 | 0.523 | 0.11 |
Core Sets | 1 | 2 | 3 | 4 | 5 | 6 | Entire Pop |
---|---|---|---|---|---|---|---|
Na | 93.000 | 75.000 | 45.000 | 93.000 | 52.000 | 93.000 | 93.000 |
Ne | 3.197 | 4.479 | 2.424 | 3.749 | 2.596 | 3.687 | 3.067 |
I | 1.156 | 1.453 | 0.881 | 1.287 | 0.971 | 1.274 | 1.153 |
Ho | 0.460 | 0.568 | 0.465 | 0.493 | 0.444 | 0.494 | 0.456 |
He | 0.528 | 0.668 | 0.434 | 0.571 | 0.479 | 0.567 | 0.522 |
MD/% | 1.521 | 3.746 | 6.529 | 0.935 | 4.468 | 1.224 | 0.000 |
CR/% | 92.609 | 52.091 | 49.569 | 83.724 | 94.364 | 98.788 | 100.000 |
VD/% | 8.766 | 37.769 | 33.710 | 11.537 | 128.377 | 12.810 | 0.000 |
VR/% | 105.602 | 77.714 | 101.338 | 94.532 | 148.626 | 105.131 | 100.000 |
H | 2.006 | 1.876 | 1.523 | 2.038 | 1.891 | 2.027 | 2.051 |
Score | 2.537 | 2.549 | 2.072 | 2.622 | 2.551 | 2.652 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Zhang, L.; Hao, J.; Sun, G.; Hu, Z.; Wang, J.; Wang, R.; Li, Z.; Zhang, H. Construction of a Core Collection of Korean Pine (Pinus koraiensis) Clones Based on Morphological and Physiological Traits and Genetic Analysis. Forests 2024, 15, 534. https://doi.org/10.3390/f15030534
Yan P, Zhang L, Hao J, Sun G, Hu Z, Wang J, Wang R, Li Z, Zhang H. Construction of a Core Collection of Korean Pine (Pinus koraiensis) Clones Based on Morphological and Physiological Traits and Genetic Analysis. Forests. 2024; 15(3):534. https://doi.org/10.3390/f15030534
Chicago/Turabian StyleYan, Pingyu, Lei Zhang, Junfei Hao, Guofei Sun, Zhenyu Hu, Jiaxing Wang, Ruiqi Wang, Zhixin Li, and Hanguo Zhang. 2024. "Construction of a Core Collection of Korean Pine (Pinus koraiensis) Clones Based on Morphological and Physiological Traits and Genetic Analysis" Forests 15, no. 3: 534. https://doi.org/10.3390/f15030534
APA StyleYan, P., Zhang, L., Hao, J., Sun, G., Hu, Z., Wang, J., Wang, R., Li, Z., & Zhang, H. (2024). Construction of a Core Collection of Korean Pine (Pinus koraiensis) Clones Based on Morphological and Physiological Traits and Genetic Analysis. Forests, 15(3), 534. https://doi.org/10.3390/f15030534