Super-Resolution Reconstruction of Particleboard Images Based on Improved SRGAN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Establishment of Dataset
2.3. Improvement of Image Processing Algorithm
2.3.1. Removed Batch Normalization
2.3.2. Improved Convolutional Block Attention Module
2.3.3. Construction of Generator
2.3.4. Construction of Discriminator
2.3.5. Loss Function
3. Results
3.1. Evaluation Index
3.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baharuddin, M.; Zain, N.M.; Harun, W.; Roslin, E.N.; Ghazali, F.A.; Som, S.N.M. Development and performance of particleboard from various types of organic waste and adhesives: A review. Int. J. Adhes. Adhes. 2023, 124, 103378. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Ferrández-García, C.-E.; Ferrández-García, A.; Ferrández-Villena, M.; Hidalgo-Cordero, J.F.; García-Ortuño, T.; Ferrández-García, M.-T. Physical and Mechanical Properties of Particleboard Made from Palm Tree Prunings. Forests 2018, 9, 755. [Google Scholar] [CrossRef]
- Copak, A.; Jirouš-Rajković, V.; Španić, N.; Miklečić, J. The Impact of Post-Manufacture Treatments on the Surface Characteristics Important for Finishing of OSB and Particleboard. Forests 2021, 12, 975. [Google Scholar] [CrossRef]
- Owodunni, A.A.; Lamaming, J.; Hashim, R.; Taiwo, O.F.A.; Hussin, M.H.; Kassim, M.H.M.; Bustami, Y.; Sulaiman, O.; Amini, M.H.M.; Hiziroglu, S. Adhesive application on particleboard from natural fibers: A review. Polym. Compos. 2020, 41, 4448–4460. [Google Scholar] [CrossRef]
- Particle Board Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028. Available online: https://www.imarcgroup.com/particle-board-market (accessed on 20 July 2023).
- Iswanto, A.H.; Sucipto, T.; Suta, T.F. Effect of Isocyanate Resin Level on Properties of Passion Fruit Hulls (PFH) Particleboard. IOP Conf. Series Earth Environ. Sci. 2019, 270, 012021. [Google Scholar] [CrossRef]
- Shu, Y.; Xiong, C.; Fan, S. Interactive design of intelligent machine vision based on human-computer interaction mode. Microprocess. Microsyst. 2020, 75, 103059. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, X.; Zhou, Y.; Sun, Q.; Ge, Z.; Liu, D. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection. Sci. Rep. 2021, 11, 21777. [Google Scholar] [CrossRef]
- Zhao, Z.; Ge, Z.; Jia, M.; Yang, X.; Ding, R.; Zhou, Y. A Particleboard Surface Defect Detection Method Research Based on the Deep Learning Algorithm. Sensors 2022, 22, 7733. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Wang, P.; Lv, Y. Research on the Identification of Particleboard Surface Defects Based on Improved Capsule Network Model. Forests 2023, 14, 822. [Google Scholar] [CrossRef]
- Ye, S.; Zhao, S.; Hu, Y.; Xie, C. Single-Image Super-Resolution Challenges: A Brief Review. Electronics 2023, 12, 2975. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. Lect. Notes Comput. Sci. 2014, 8692, 184–199. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Xiong, Y.; Guo, S.; Chen, J.; Deng, X.; Sun, L.; Zheng, X.; Xu, W. Improved SRGAN for Remote Sensing Image Super-Resolution Across Locations and Sensors. Remote Sens. 2020, 12, 1263. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, Y.; Hou, S.; Wang, B.; Liu, Y.; Geng, J.; Fan, S.; Wang, D.; Zhang, X. Super-resolution reconstruction method of infrared images of composite insulators with abnormal heating based on improved SRGAN. IET Gener. Transm. Distrib. 2022, 16, 2063–2073. [Google Scholar] [CrossRef]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar] [CrossRef]
- Xie, W.; Wei, S.; Yang, D. Morphological measurement for carrot based on three-dimensional reconstruction with a ToF sensor. Postharvest Biol. Technol. 2023, 197, 112216. [Google Scholar] [CrossRef]
- Çelik, G.; Talu, M.F. Resizing and cleaning of histopathological images using generative adversarial networks. Phys. A Stat. Mech. Its Appl. 2020, 554, 122652. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; Volume 11211, pp. 3–19. [Google Scholar] [CrossRef]
- Song, Y.; Li, J.; Hu, Z.; Cheng, L. DBSAGAN: Dual Branch Split Attention Generative Adversarial Network for Super-Resolution Reconstruction in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3266325. [Google Scholar] [CrossRef]
- Zhang, W.; Ke, W.; Yang, D.; Sheng, H.; Xiong, Z. Light field super-resolution using complementary-view feature attention. Comput. Vis. Media 2023, 9, 843–858. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Tang, Y.; Tang, J.; Wu, G. Residual Feature Aggregation Network for Image Super-Resolution. In Proceedings of the 2020 IEEE/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr), Seattle, WA, USA, 13–19 June 2020; pp. 2356–2365. [Google Scholar] [CrossRef]
- Qian, H.; Zheng, J.; Wang, Y.; Jiang, D. Fatigue Life Prediction Method of Ceramic Matrix Composites Based on Artificial Neural Network. Appl. Compos. Mater. 2023, 30, 1251–1268. [Google Scholar] [CrossRef]
- Jin, X.; McCullough, P.E.; Liu, T.; Yang, D.; Zhu, W.; Chen, Y.; Yu, J. A smart sprayer for weed control in bermudagrass turf based on the herbicide weed control spectrum. Crop Prot. 2023, 170, 106270. [Google Scholar] [CrossRef]
- Lu, E.; Hu, X. Image super-resolution via channel attention and spatial attention. Appl. Intell. 2021, 52, 2260–2268. [Google Scholar] [CrossRef]
- Brahimi, S.; Ben Aoun, N.; Benoit, A.; Lambert, P.; Ben Amar, C. Semantic segmentation using reinforced fully convolutional densenet with multiscale kernel. Multimed. Tools Appl. 2019, 78, 22077–22098. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Chaalia, N.; Abusitta, A.; Devailly, F.-X.; Maazoun, W.; Cardinal, P. Bi-discriminator GAN for tabular data synthesis. Pattern Recognit. Lett. 2022, 159, 204–210. [Google Scholar] [CrossRef]
- Gnanha, A.T.; Cao, W.; Mao, X.; Wu, S.; Wong, H.-S.; Li, Q. αβ-GAN: Robust generative adversarial networks. Inf. Sci. 2022, 593, 177–200. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Vinayahalingam, S.; Mahmoudinia, E.; Soltani, P.; Bergé, S.J.; Krois, J.; Schwendicke, F. Super-Resolution of Dental Panoramic Radiographs Using Deep Learning: A Pilot Study. Diagnostics 2023, 13, 996. [Google Scholar] [CrossRef]
- Gourdeau, D.; Duchesne, S.; Archambault, L. On the proper use of structural similarity for the robust evaluation of medical image synthesis models. Med. Phys. 2022, 49, 2462–2474. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the 2018 IEEE/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr), Salt Lake City, UT, USA, 18–22 June 2018; pp. 586–595. [Google Scholar] [CrossRef]
- Li, Z.; Wang, D.; Zhu, T.; Ni, C.; Zhou, C. SCNet: A deep learning network framework for analyzing near-infrared spectroscopy using short-cut. Infrared Phys. Technol. 2023, 132, 104731. [Google Scholar] [CrossRef]
- Xue, F.; Zhou, M.; Zhang, C.; Shao, Y.; Wei, Y.; Wang, M. Rt-swinir: An improved digital wallchart image super-resolution with attention-based learned text loss. Vis. Comput. 2023, 39, 3467–3479. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 2019, 187, 115804. [Google Scholar] [CrossRef]
- Xie, C.; Tang, H.; Fei, L.; Zhu, H.; Hu, Y. IRNet: An Improved Zero-Shot Retinex Network for Low-Light Image Enhancement. Electronics 2023, 12, 3162. [Google Scholar] [CrossRef]
- Rofii, M.N.; Yumigeta, S.; Kojima, Y.; Suzuki, S. Utilization of High-density Raw Materials for Panel Production and Its Performance. Procedia Environ. Sci. 2014, 20, 315–320. [Google Scholar] [CrossRef]
Device | Item | Parameter |
---|---|---|
Camera | Product Model | HIKROBOT MV-CL086-91GC |
Resolution | 8192 × 6 pixel | |
Pixel Size | 5 µm | |
Maximum Line Frequency | 4.7 kHz | |
Sensor Type | CMOS | |
Spectrum | Color | |
Exposure Time | 3 μs–10 ms | |
Data Interface | Gige | |
Lens | Product Model | LD21S01 |
Focus Distance | 35 mm ± 5% | |
Aperture | F2.8–F16 | |
Adapter ring | Product Model | M72-F T34.5 |
Light Source | Product Model | HIKROBOT MV-LTHS-1300-W |
Overall Dimension | 1370 mm × 58 mm × 90.1 mm | |
Type | Linear light source | |
Power | 576 W | |
Color Temperature | 6000–7000 K |
Item | Parameter |
---|---|
Size | 12,200 mm × 24,400 mm × 18 mm |
Raw Material Tree Species | Pinus |
Adhesive | Urea-formaldehyde resin |
Density Deviation | <4% |
Hot-pressing Temperature | 160–200 °C |
Configuration Platform | Item | Parameter |
---|---|---|
Hardware Configuration | System | Windows 10 × 64 |
CPU | Intel(R) Core(TM) I9 [email protected] GHz | |
GPU | NVIDIA GeForce RTX 2080 Ti | |
Memory | KHX2666C16/16G × 2 | |
Software Configuration | IDE | PyCharm Community Edition |
Programing Language | Python3.7 | |
Computing Platform | CUDA10.1 | |
GPU Accelerate library | CuDNN7604 |
Improvements and Indexes | 1st | 2nd | 3rd | 4th |
---|---|---|---|---|
BN | √ | × | × | × |
Improved CBAM | × | × | √ | √ |
Densely skip connection | × | × | × | √ |
PSNR(dB) ↑ | 27.46 | 28.12 | 29.66 | 30.71 |
SSIM ↑ | 0.7024 | 0.7371 | 0.7832 | 0.8146 |
LPIPS ↓ | 0.3946 | 0.3527 | 0.3035 | 0.2881 |
Algorithm | PSNR (dB) ↑ | SSIM ↑ | LPIPS ↓ |
---|---|---|---|
BICUBIC | 25.83 | 0.6517 | 0.4829 |
SRGAN | 27.46 | 0.7024 | 0.3946 |
SWINIR | 28.03 | 0.7498 | 0.3530 |
SRDAGAN | 30.71 | 0.8146 | 0.2881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Zhou, H.; Liu, Y.; Yang, Y.; Shen, Y. Super-Resolution Reconstruction of Particleboard Images Based on Improved SRGAN. Forests 2023, 14, 1842. https://doi.org/10.3390/f14091842
Yu W, Zhou H, Liu Y, Yang Y, Shen Y. Super-Resolution Reconstruction of Particleboard Images Based on Improved SRGAN. Forests. 2023; 14(9):1842. https://doi.org/10.3390/f14091842
Chicago/Turabian StyleYu, Wei, Haiyan Zhou, Ying Liu, Yutu Yang, and Yinxi Shen. 2023. "Super-Resolution Reconstruction of Particleboard Images Based on Improved SRGAN" Forests 14, no. 9: 1842. https://doi.org/10.3390/f14091842