Effects of Elevated Atmospheric CO2 Concentration on Insect Herbivory and Nutrient Fluxes in a Mature Temperate Forest
Abstract
:1. Introduction
1.1. Forests, Climate and CO2
1.2. FACE Experiments
1.3. Herbivory and CO2
- How does eCO2 affect leaf-level insect herbivory?
- Do eCO2 effects on leaf-level herbivory vary among tree species and years?
- How and why does eCO2 affect the herbivore-mediated transfer of C and N from the forest canopy to the ground?
2. Materials and Methods
2.1. Study Site
2.2. Leaf Herbivory
2.3. Leaf nutrients and Production
2.4. Calculations of Herbivore-Mediated Nutrient Fluxes
2.5. Statistical Analysis
3. Results
3.1. Leaf-Level Insect Herbivory
3.2. Estimated Carbon and Nitrogen Fluxes from Insect Herbivory
4. Discussion
4.1. Leaf-Level Insect Herbivory
4.2. Plant Nutrients and Insect Herbivory
4.3. Ecosystem Responses to Insect Herbivory
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Candell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B.; et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature Lett. 2016, 531, 225–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handel, D.; Risbey, J.S. Reflection on more than a century of climate change research. Clim. Change 1992, 21, 91–96. [Google Scholar] [CrossRef]
- Berner, R.A. Weathering, plants, and the long-term carbon cycle. Geochimica et Cosmochimica Acta 1992, 56, 3225–3232. [Google Scholar] [CrossRef]
- McGuire, A.D.; Melillo, J.M.; Kicklighter, D.W.; Joyce, L.A. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeog. 1995, 22, 785–796. [Google Scholar] [CrossRef]
- Manabe, S.; Spelman, M.J.; Stouffer, R.J. Transient Responses of a Coupled Ocean-Atmosphere Model to Gradual Changes of Atmospheric CO2. Part II: Seasonal Response. J. Clim. 1992, 5, 105–126. [Google Scholar] [CrossRef] [Green Version]
- Rochefort, L.; Woodward, F.I. Effects of climate change and doubling of CO2 on vegetation diversity. J. Exp. Bot. 1992, 43, 1169–1180. [Google Scholar] [CrossRef]
- Besford, R.T. The greenhouse effect: Acclimation of tomato plants growing in high CO2, relative changes in Calvin Cycle enzymes. J. Plant Physiol. 1990, 136, 458–463. [Google Scholar] [CrossRef]
- Keenan, T.F.; Luo, X.; De Kauwe, M.G.; Medlyn, B.E.; Prentice, I.C.; Stocker, B.D.; Smith, N.G.; Terrer, C.; Wang, H.; Zhang, Y.; et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 2021, 600, 253–258. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global Carbon Budget. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- Gaubert, B.; Stephens, B.B.; Basu, S.; Chevallier, F.; Deng, F.; Kort, E.A.; Patra, P.K.; Peters, W.; Rödenbeck, C.; Saeki, T.; et al. Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences 2019, 16, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Luyssaert, S.; Schulze, E.-D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zeng, H.; Myneni, R.B.; Chen, C.; Ahao, Q.; Zha, J.; Zhan, S.; MacLachlan, I. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis.” Science. Technical Comments. 2021. Available online: https://www.science.org/doi/epdf/10.1126/science.abg5673 (accessed on 1 December 2021).
- Arora, V.K.; Boer, G.J.; Friedlingstein, P.; Eby, M.; Jones, C.D.; Christian, J.R.; Bonan, G.; Bopp, L.; Brovkin, V.; Cadule, P.; et al. Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models. J. Clim. 2013, 26, 5289–5314. Available online: https://journals.ametsoc.org/view/journals/clim/26/15/jcli-d-12-00494.1.xml (accessed on 10 September 2021).
- Martin, P.H.; Nabuurs, G.-J.; Aubinet, M.; Karjalainen, T.; Vine, E.L.; Kinsman, J.; Heath, L.S. Carbon sinks in temperate forests. Annu. Rev. Ecol. Evol. Syst. 2001, 26, 435–465. [Google Scholar] [CrossRef]
- Basset, Y.; Lamarre, G.P.A. Toward a world that values insects. Science 2019, 364, 1230–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, J.; Brandl, R.; Brändle, M.; Förster, B.; De Araujo, B.C.; Gossner, M.M.; Ladas, A.; Wagner, M.; Maraun, M.; Schall, P.; et al. LiDAR-derived canopy structure supports the more-individuals hypothesis for arthropod diversity in temperate forests. Oikos 2018, 127, 814–824. [Google Scholar] [CrossRef]
- Norby, R.J.; Zak, D.R. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 181–203. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.G.; Scullion, J.; Ostle, N.; Levy, P.E.; Gwynn-Jones, D. Completing the FACE of elevated CO2 research. Environ. Int. 2014, 73, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Norby, R.J.; De Kauwe, M.G.; Domingues, T.F.; Duursma, R.A.; Ellsworth, D.S.; Goll, D.S.; Lapola, D.M.; Luus, K.A.; MacKenzie, A.R.; Medlyn, B.E.; et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 2015, 209, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Couture, J.J.; Meehan, T.D.; Kruger, E.L.; Lindroth, R.L. Insect herbivory alters impact of atmospheric change on northern temperate forests. Nat. Plants 2015, 1, 15016. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Wardle, D. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 2003, 85, 2258–2268. [Google Scholar] [CrossRef]
- Hartley, S.E.; Jones, T.H. Insect herbivores, nutrient cycling and plant productivity. Book-Insects Ecosyst. Funct. 2004, 173, 27–52. [Google Scholar] [CrossRef]
- Lill, J.T.; Marquis, R.J. The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia 2001, 126, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Stone, C. Reducing the impact of insect herbivory in eucalypt plantations through management of extrinsic influences on tree vigour. Austral Ecol. 2001, 26, 482–488. [Google Scholar] [CrossRef]
- Coley, P.D.; Bryant, J.P.; Chapin, F.S., III. Resource availability and plant antiherbivore defense. Science 1985, 230, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, M.V.; Klemola, T. Hemispheric asymmetries in herbivory: Do they exist? J. Ecol. 2017, 105, 1571–1574. [Google Scholar] [CrossRef]
- Zavala, J.A.; Nabity, P.D.; DeLucia, E.H. An Emerging Understanding of Mechanisms Governing Insect Herbivory Under Elevated CO2. Annu. Rev. Entomol. 2013, 58, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Gherlenda, A.N.; Moore, B.D.; Haigh, A.M.; Johnson, S.N.; Riegler, M. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment. BMC Ecol. 2016, 16, 47. [Google Scholar] [CrossRef] [Green Version]
- Roth, S.K.; Lindroth, R.L. Elevated atmospheric CO2: Effects on phytochemistry, insect performance and insect-parasitoid interactions. Glob. Change Biol. 1995, 1, 173–182. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Jones, T.H. Plant-insect herbivore interactions in elevated atmospheric CO2: Quantitative analyses and guild effects. Oikos 1998, 82, 212–222. [Google Scholar] [CrossRef]
- Bazzaz, F.A. The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst. 1990, 21, 167–196. [Google Scholar] [CrossRef]
- Bowes, G. Facing the inevitable: Plants and increasing atmosphere CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 309–332. [Google Scholar] [CrossRef]
- Stitt, M.; Krapp, A. The Interaction between Elevated Carbon Dioxide and Nitrogen Nutrition: The Physiological and Molecular Background. Plant Cell Environ. 1999, 22, 583–621. [Google Scholar] [CrossRef]
- Robinson, E.A.; Ryan, G.D.; Newman, J.A. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 2012, 194, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Knepp, R.G.; Hamilton, J.G.; Mohan, J.E.; Zangerl, A.R.; Berenbaum, M.R.; DeLucia, E.H. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 2005, 167, 2017–2218. [Google Scholar] [CrossRef]
- Stiling, P.; Cattell, M.; Moon, D.C.; Rossi, A.; Hungate, B.A.; Hymuss, G.; Drakes, B. Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates. Glob. Change Biol. 2002, 8, 658–667. [Google Scholar] [CrossRef]
- Crowley, L.M.; Sadler, J.P.; Pritchard, J.; Hayward, S.A.L. Elevated CO2 Impacts on Plant–Pollinator Interactions: A Systematic Review and Free Air Carbon Enrichment Field Study. Insects 2021, 12, 512. [Google Scholar] [CrossRef]
- Hart, K.M.; Curioni, G.; Blaen, P.; Harper, N.J.; Miles, P.; Lewin, K.F.; Nagy, J.; Bannister, E.J.; Cai, X.M.; Thomas, R.M.; et al. Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest. Glob. Change Biol. 2019, 26, 1023–1037. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106. FAO: Rome, Italy, 2015. [Google Scholar]
- MacKenzie, A.R. Characteristics of a mature northern temperate broadleaf forest and its conjectured response to free-air CO2 enrichment. 2019; Unpublished work. [Google Scholar]
- Kozlov, M.V.; Lanta, V.; Zverev, V.; Zvereva, E.L. Background losses of woody plant foliage to insects show variable relationships with plant functional traits across the globe. J. Ecol. 2015, 103, 1519–1528. [Google Scholar] [CrossRef]
- Gardner, A.; Ellsworth, D.S.; Crous, K.Y.; Pritchard, J.; MacKenzie, A.R. Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur? Tree Physiol. 2022, 42, 130–144. [Google Scholar] [CrossRef]
- Metcalfe, D.B.; Crutsinger, G.M.; Kumordzi, B.B.; Wardle, D.A. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology 2016, 97, 124–132. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com (accessed on 23 September 2021).
- Friedrich, S.; Konietschke, F.; Pauly, M. MANOVA.RM. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 7 January 2021).
- Ode, P.J.; Johnson, S.N.; Moore, B.D. Atmospheric change and induced plant secondary metabolites–are we reshaping the building blocks of multi-trophic interactions? Curr. Opin. Insect Sci. 2014, 5, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Stiling, P.; Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 2007, 13, 1823–1842. [Google Scholar] [CrossRef]
- Kuchenbecker, J.; Macedo-Reis, L.E.; Fagundes, M.; Neves, F.S. Spatiotemporal Distribution of Herbivorous Insects Along Always-Green Mountaintop Forest Islands. Front. For. Glob. Ch. 2021, 4, 709403. [Google Scholar] [CrossRef]
- Kristensen, J.A.; Rousk, J.; Metcalfe, D.B. Below-ground responses to insect herbivory in ecosystem with woody plant canopies: A meta-analysis. J. Ecol. 2019, 108, 917–930. [Google Scholar] [CrossRef]
- Shaw, D.C.; Ernest, K.A.; Rinker, H.B.; Lowman, M.D. Stand-level herbivory in an old-growth conifer forest canopy. West. North Am. Nat. 2006, 66, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.J.; Allen, T.F.H. The importance of scale in evaluating herbivory impacts. Oikos 1989, 54, 189–194. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhang, Z.; Li, X. Influences of environmental factors of leaf morphology. PLoS ONE 2015, 10, e0127825. [Google Scholar]
- Chapman, S.; Schweitzer, J.A.; Whitham, T.G. Herbivory differently alters plant litter dynamics of evergreen and deciduous trees. Oikos 2006, 114, 3. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, Y.; Zhao, K.; Niklaus, P.A.; Schmid, B.; He, J.S. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J. Plant Ecol. 2017, 11, 28–35. [Google Scholar] [CrossRef] [Green Version]
Parameter | Wilk’s Lambda | p-Value | DF |
---|---|---|---|
All Between | 4.35 *** | 0.0009 | 7 |
All Within | 2.71 ** | 0.0022 | 14 |
Year | 12.5 *** | <0.0001 | 2 |
Treatment | 0.11 | 0.7385 | 1 |
Species | 8.4 *** | 0.0001 | 3 |
Treatment × Species | 1.3 | 0.2924 | 3 |
Year × Treatment | 0.09 | 0.9129 | 2 |
Year × Species | 3.31 ** | 0.0053 | 6 |
Year × Treatment × Species | 2.2 * | 0.0500 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, A.J.; Crowley, L.M.; Sadler, J.P.; Nguyen, T.T.T.; Gardner, A.M.; Hayward, S.A.L.; Metcalfe, D.B. Effects of Elevated Atmospheric CO2 Concentration on Insect Herbivory and Nutrient Fluxes in a Mature Temperate Forest. Forests 2022, 13, 998. https://doi.org/10.3390/f13070998
Roberts AJ, Crowley LM, Sadler JP, Nguyen TTT, Gardner AM, Hayward SAL, Metcalfe DB. Effects of Elevated Atmospheric CO2 Concentration on Insect Herbivory and Nutrient Fluxes in a Mature Temperate Forest. Forests. 2022; 13(7):998. https://doi.org/10.3390/f13070998
Chicago/Turabian StyleRoberts, Aradhana J., Liam M. Crowley, Jon P. Sadler, Tien T. T. Nguyen, Anna M. Gardner, Scott A. L. Hayward, and Daniel B. Metcalfe. 2022. "Effects of Elevated Atmospheric CO2 Concentration on Insect Herbivory and Nutrient Fluxes in a Mature Temperate Forest" Forests 13, no. 7: 998. https://doi.org/10.3390/f13070998
APA StyleRoberts, A. J., Crowley, L. M., Sadler, J. P., Nguyen, T. T. T., Gardner, A. M., Hayward, S. A. L., & Metcalfe, D. B. (2022). Effects of Elevated Atmospheric CO2 Concentration on Insect Herbivory and Nutrient Fluxes in a Mature Temperate Forest. Forests, 13(7), 998. https://doi.org/10.3390/f13070998