Mechanism and Evolution of Soil Organic Carbon Coupling with Rocky Desertification in South China Karst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Research Design
2.3. Soil Sampling and Field Investigation
2.4. SOC Determination and Statistical Analysis
2.4.1. The Calculation of SBD and SOC
2.4.2. Analysis Methods
3. Results
3.1. Soil Properties in Different Karst Landforms
3.2. The Statistics of SOC and SOCD in Different Karst Landforms
3.3. The Spatial Distribution Characteristics of Rocky Desertification
3.4. Factors Affecting the Distribution Characteristics of SBD
3.5. The SOC Content Response to Different Factors
3.6. The SOCD Spatial Distribution Characteristics
3.7. The Evolution Characteristics of SOC Storage Capability
4. Discussion
4.1. The Relationships among SOC, SBD and Rocky Desertification Processes in Karst Areas
4.2. The Transformation of SOC Storage Capacity during the Development of Karst Landforms
4.3. The Reliability of Geographic Environmental Factors in SOC Spatial Reconstruction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigo-Comino, J.; Senciales, J.M.; Cerda, A.; Brevik, E.C. The multidisciplinary origin of soil geography: A review. Earth-Sci. Rev. 2018, 177, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Stephen, Y.; Cai, L.Q.; Zhang, R.Z.; Qi, P.; Luo, Z.Z.; Li, L.L.; Xie, J.H.; Dong, B. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern china. J. Arid L. 2019, 11, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Hobley, E.; Willgoose, G.R.; Frisia, S.; Jacobsen, G. Stability and storage of soil organic carbon in a heavy-textured karst soil from south-eastern Australia. Soil Res. 2014, 52, 476–482. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, A.K.; Sharma, B.K.; Tarafdar, J.C. Carbon stock and organic carbon dynamics in soils of rajasthan, india. J. Arid Environ. 2007, 68, 408–421. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; Leeuw, J.D.; Okx, J.; Molenaar, C.; Cleen, M.D.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Visser, S.M.; Keesstra, S.; Maas, G.; Cleen, M.D.; Molenaar, C. Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030. Sustainability 2019, 11, 6792. [Google Scholar] [CrossRef] [Green Version]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Akpa, S.I.C.; Odeh, I.O.A.; Bishop, T.F.A.; Hartemink, A.E.; Amapu, I.Y. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma 2016, 271, 202–215. [Google Scholar] [CrossRef]
- Weissert, L.F.; Salmond, J.A.; Schwendenmann, L. Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types. Geoderma 2016, 271, 80–90. [Google Scholar] [CrossRef]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil carbon pools and fuxes in urban ecosystems. Env. Pollut. 2002, 116 (Suppl. S1), S107–S118. [Google Scholar] [CrossRef]
- Niu, X.; Gao, P.; Li, Y.X.; Li, X. Impact of different afforestation systems on soil organic carbon distribution characteristics of limestone mountains. Pol. J. Env. Stud. 2015, 24, 2543–2552. [Google Scholar]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. The soil organic carbon stock and its influencing factors in a mountainous karst basin in P. R. China. Carbonates Evaporites 2019, 34, 1031–1043. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. Change in SOC Content in a Small Karst Basin for the Past 35 years and its Influencing Factors. Arch. Agron. Soil Sci. 2018, 64, 1474520. [Google Scholar] [CrossRef]
- Wang, X.F.; Huang, X.F.; Hu, J.W.; Zhang, Z.M. The Spatial Distribution Characteristics of Soil Organic Carbon and Its Effects on Topsoil under Different Karst Landforms. Int. J. Environ. Res. Public Health 2020, 17, 2889. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.H.; Zhou, C.Y.; Wen, A.B.; Liu, X.Z.; Chu, G.W.; Li, K. Relationship between Soil Organic Carbon and Soil Bulk Density in the Rocky Desertification Process of Karst Ecosystem in Guizhou. J. Trop. Subtrop. Bot. 2011, 19, 273–278. [Google Scholar]
- Tian, Z.; Wu, X.Q.; Dai, E.F.; Zhao, D.S. SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China. J. Arid Land 2016, 8, 364–374. [Google Scholar] [CrossRef]
- Huang, X.F.; Zhou, Y.C.; Zhang, Z.M. Carbon Sequestration Anticipation Response to land use change in a mountainous karst basin in China. J. Environ. Manag. 2018, 228, 40–46. [Google Scholar] [CrossRef]
- Huang, X.F.; Zhou, Y.C.; Zhang, Z.M. Distribution characteristics of Soil Organic Carbon under different land uses in a karst rocky desertification area. J. Soil Water Conserv. 2017, 31, 215–221. [Google Scholar]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. Estimation of soil organic carbon storage and its fractions in a small karst watershed. Acta Geochim. 2018, 37, 113–124. [Google Scholar] [CrossRef]
- Wang, X.F.; Huang, X.F.; Hu, J.W.; Zhang, Z.M. Relationship Among Soil Organic Carbon and Small Environment and Lithology in the Rocky Desertification process in Different Karst Landforms. J. Soil Water Conserv. 2020, 34, 295–303. [Google Scholar]
- Huang, X.F.; Wang, S.J.; Zhou, Y.C. Soil organic carbon change relating to the prevention and control of rocky desertification in Guizhou Province, SW China. Int. J. Glob. Warm. 2018, 15, 315–332. [Google Scholar] [CrossRef]
- Hou, G.L.; Delang, C.; Lu, X.X. Afforestation changes soil organic carbon stocks on sloping land: The role of previous land cover and tree type. Ecol. Eng. 2020, 152, 105860. [Google Scholar] [CrossRef]
- Zhang, X.F.; Adamowski, J.F.; Liu, C.F.; Zhou, J.J.; Zhu, G.F.; Dong, X.G.; Gao, J.J.; Feng, Q. Which slope aspect and gradient provides the best afforestation-driven soil carbon sequestration on the China’s Loess Plateau. Ecol. Eng. 2020, 147, 105782. [Google Scholar] [CrossRef]
- Liu, S.L.; Dong, Y.H.; Cheng, F.Y.; Yin, Y.J.; Zhang, Y.Q. Variation of soil organic carbon and land use in a dry valley in Sichuan province, Southwestern China. Ecol. Eng. 2016, 95, 501–504. [Google Scholar] [CrossRef]
- Huang, X.F.; Zhou, Y.C.; Zhang, Z.M. Characteristics and Affecting factors of Soil Organic Carbon Under land Uses: A Case Study in Houzhai River Basin. J. Nat. Resour. 2018, 33, 1056–1067. [Google Scholar]
- Wang, X.F.; Huang, X.F.; Hu, J.W.; Zhang, Z.M. The soil organic carbon density spatial heterogeneity and its impact factors under different karst landforms. Int. J. Glob. Warm. 2020, 22, 174–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.Z.; Zhao, Y.C.; Yu, D.S.; Wang, H.J.; Sun, W.X. Estimates and Affecting Factors of Soil Organic Carbon Storage in Yunnan- Guizhou-Guangxi Region of China. Environ. Sci. 2008, 29, 2314–2319. [Google Scholar]
- Zhang, X.B.; Wang, S.J.; He, X.B.; Wang, Y.C.; Wen, A.B. A preliminary discussion on the rocky desertification classification for slope land in karst mountain areas of southwest China. Earth Environ. 2007, 35, 188–192. [Google Scholar]
- Fisher, R.A. Statistical Methods and Scientific Inference; Oliver and Boyd: London, UK, 1956. [Google Scholar]
- Haining, R. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hedley, C.B.; Payton, I.J.; Lynn, I.H.; Carrick, S.T.; Webb, T.H.; Mcneill, S. Random sampling of stony and non-stony soils for testing a national soil carbon monitoring system. Soil Res. 2012, 50, 18–29. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. Soil organic carbon density spatial distribution and influencing factors in a karst mountainous basin. Pol. J. Environ. 2017, 26, 2363–2374. [Google Scholar] [CrossRef]
- Wu, H.B.; Guo, Z.T.; Peng, C.H. Distribution and storage of soil organic carbon in China. Glob. Biogeochem. Cycles 2003, 17, 1048. [Google Scholar] [CrossRef]
- Li, Z.P.; Han, F.X.; Su, Y.; Zhang, T.L.; Sun, B.; Monts, D.L.; Plodinec, J. Assessment of soil organic and carbonate carbon storage in China. Geoderma 2007, 138, 119–126. [Google Scholar] [CrossRef]
- Wang, X.G.; Zhu, B.; Hua, K.K.; Luo, Y.; Zhang, J.; Zhang, A.B. Assessment of soil organic carbon stock in the upper Yangtze River Basin. J. Mt. Sci. 2013, 10, 866–872. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Agronomy, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA and SSSA: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- Wang, Z.P.; Han, X.G.; Li, L.H. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia. J. Environ. Manag. 2008, 86, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Li, Y.; Ye, X.H.; Chu, Y.; Wang, X.P. Profile storage of organic/inorganic carbon in soil: From forest to desert. Sci. Total Environ. 2010, 408, 1925–1931. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Chen, Y.; Chen, Y.; Chen, D. Study on the Determination of Soil organic Carbon by Potassium Dichromate-Dryer Heating Methods. J. Chang. Univ. Nat. Sci. Ed. 2019, 31, 15–20. [Google Scholar]
- Zhang, W.; Wang, K.L.; Chen, H.S.; He, X.Y.; Zhang, J.G. Ancillary information improves kriging on soil organic carbon data for a typical karst peak cluster depression landscape. J. Sci. Food Agric. 2012, 92, 1094–1102. [Google Scholar] [CrossRef]
- Yuan, D.X. Carbon cycle in earth system and its effects on environment and resources. Quat. Sci. 2001, 21, 223–232. [Google Scholar]
- Hu, L.N.; Su, Y.R.; He, X.Y.; Wu, J.S.; Zheng, H.; Li, Y.; Wang, A.H. Response of soil organic carbon mineralization in typical Karst soils following the addition of 14C-labeled rice straw and CaCO3. J. Sci. Food Agric. 2012, 92, 1112–1118. [Google Scholar] [CrossRef]
- Bai, Y.X.; Sheng, M.Y.; Hu, Q.J.; Zhao, C.; Wu, J.; Zhang, M.S. Effects of land use change on soil organic carbon and its components in karst rocky desertification of southwest China. Chin. J. Appl. Ecol. 2020, 31, 1607–1616. [Google Scholar]
- Wang, S.Q.; Zhou, C.H.; Li, K.R.; Zhu, S.L.; Huang, F.H. Analysis on Spatial Distribution Characteristics of Soil Organic Carbon Reservoir in China. Acta Geogr. Sin. 2000, 55, 533–544. [Google Scholar]
- Mi, N.; Wang, S.Q.; Liu, J.Y.; Yu, G.R.; Zhang, W.J.; Jobbágy, E. Soil inorganic carbon storage pattern in China. Glob. Change Biol. 2008, 14, 2380–2387. [Google Scholar] [CrossRef]
- Subramanian, B.; Zhou, W.J.; Ji, H.L.; Grace, J.; Bai, X.L.; Song, Q.H.; Liu, Y.T.; Sha, L.Q.; Fei, X.H.; Zhang, X.; et al. Environmental and management controls of soil carbon storage in grasslands of southwestern China. J. Environ. Manag. 2020, 254, 109810. [Google Scholar] [CrossRef] [PubMed]
Class | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Percentage of rock outcrops (%) | 0 ≤ X < 20 | 20 ≤ X < 40 | 40 ≤ X < 60 | 60 ≤ X < 80 | 80 ≤ X ≤ 100 |
Type of ground material composition | Soil | Soil-based | Soil and stone | Stone-based | Stone |
Rocky desertification degree | Low | Low to moderate | Moderate | Medium to high | High |
Depth (cm) | KLH | KPCD | KC | KPB | KTV | Mean |
---|---|---|---|---|---|---|
SOC (g·kg−1) | ||||||
0–5 | 38.20 ± 3.12eE | 27.08 ± 3.13fB | 35.17 ± 3.57gD | 23.79 ± 2.39fA | 37.85 ± 3.95hED | 30.02 ± 2.95gC |
5–10 | 32.39 ± 3.35dC | 24.03 ± 2.91eBA | 28.47 ± 3.29fCB | 21.61 ± 2.57eA | 32.08 ± 3.37gC | 26.86 ± 2.32fB |
10–15 | 29.77 ± 2.83dD | 20.64 ± 2.59 dB | 25.19 ± 3.36eC | 17.56 ± 2.36dA | 28.34 ± 2.62fD | 23.12 ± 2.63eCB |
15–20 | 27.79 ± 2.66dE | 17.86 ± 2.12cB | 22.91 ± 2.63edDC | 14.47 ± 2.53cA | 24.87 ± 2.75eD | 20.29 ± 2.75dC |
20–30 | 20.58 ± 2.57cC | 14.36 ± 2.05cbBA | 19.77 ± 2.15dC | 12.31 ± 2.12cbA | 20.52 ± 2.38dC | 16.32 ± 2.16cB |
30–40 | 13.98 ± 1.59bB | 10.63 ± 2.23bA | 14.78 ± 2.07cB | 10.07 ± 2.08bA | 14.16 ± 2.14cB | 11.79 ± 1.97bA |
40–50 | 10.97 ± 1.67baCB | 9.78 ± 1.69baB | 11.48 ± 2.12cbC | 7.76 ± 1.39baA | 11.47 ± 1.56bC | 9.39 ± 1.65baB |
50–60 | 9.62 ± 1.82baC | 8.31 ± 1.57baB | 10.74 ± 1.99bC | 6.16 ± 1.67aA | 8.66 ± 1.69baB | 7.99 ± 1.44baB |
60–70 | 7.69 ± 1.53aB | 7.68 ± 1.39baB | 9.63 ± 2.31baC | 5.79 ± 1.69aA | 6.92 ± 1.33aB | 7.05 ± 1.41baB |
70–80 | 7.56 ± 1.39aC | 7.22 ± 1.67aC | 9.35 ± 2.12baD | 5.45 ± 1.35aA | 5.29 ± 1.25aA | 6.50 ± 1.37aB |
80–90 | 7.05 ± 1.30aC | 7.08 ± 1.66aC | 7.82 ± 1.98aD | 5.10 ± 1.52aA | 5.07 ± 1.30aA | 6.17 ± 1.52aB |
90–100 | 6.16 ± 1.35aB | 6.43 ± 1.35aB | 6.28 ± 1.34aB | 4.62 ± 1.28aA | 4.64 ± 1.07aA | 5.72 ± 1.29aBA |
SOCD (kg·m−2) | ||||||
0–10 | 2.51 ± 0.63aA | 2.39 ± 0.61aA | 2.04 ± 0.68aA | 2.18 ± 0.51aA | 2.79 ± 0.62aA | 2.35 ± 0.65aA |
0–20 | 4.56 ± 0.93bB | 4.35 ± 0.69bBA | 3.62 ± 0.94baA | 3.85 ± 0.75bA | 4.86 ± 0.78bB | 4.19 ± 0.82bBA |
0–30 | 5.70 ± 1.12cbBA | 5.72 ± 1.23cbBA | 4.86 ± 1.13bA | 5.11 ± 0.98cA | 6.2 ± 1.39cbB | 5.45 ± 1.15cbBA |
0–40 | 6.30 ± 1.05cBA | 6.76 ± 1.12cB | 5.66 ± 1.01cbA | 6.13 ± 1.30dcBA | 6.73 ± 1.67cB | 6.28 ± 1.21cBA |
0–50 | 6.73 ± 1.37dcBA | 7.60 ±1.37dc B | 6.11 ± 1.25cA | 6.79 ± 1.65dBA | 7.12 ± 1.25dcBA | 6.85 ± 1.39cBA |
0–60 | 6.97 ± 1.69dcBA | 8.31 ± 1.39dC | 6.48 ± 1.68cA | 7.23 ± 2.32dB | 7.32 ± 2.12dcB | 7.24 ± 1.95dcB |
0–70 | 7.14 ± 2.12dBA | 8.97 ± 1.25dC | 6.67 ± 2.01cA | 7.61 ± 2.07edB | 7.47 ± 2.01dB | 7.56 ± 2.08dcB |
0–80 | 7.22 ± 1.98dBA | 9.58 ± 2.33edC | 6.83 ± 2.32cA | 7.95 ± 1.95eB | 7.60 ±2.33dB | 7.83 ± 2.12dB |
0–90 | 7.31 ± 2.03dA | 10.21 ± 2.59eC | 6.94 ± 2.17dcA | 8.25 ± 2.32eB | 7.73 ± 1.95dA | 8.09 ± 2.31dB |
0–100 | 7.37 ± 2.37dA | 10.79 ± 2.91eC | 7.06 ± 2.63dA | 8.51 ± 2.56eB | 7.84 ± 2.30dBA | 8.31 ± 2.44dB |
Rock Outcrops | SBD | SOC | SOCD | |
---|---|---|---|---|
Rock outcrops | 1 | |||
SBD | −0.231 ** | 1 | ||
SOC | 0.052 | −0.367 ** | 1 | |
SOCD | −0.172 | 0.076 ** | 0.520 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Huang, X.; Xiong, K.; Hu, J.; Zhang, Z.; Zhang, J. Mechanism and Evolution of Soil Organic Carbon Coupling with Rocky Desertification in South China Karst. Forests 2022, 13, 28. https://doi.org/10.3390/f13010028
Wang X, Huang X, Xiong K, Hu J, Zhang Z, Zhang J. Mechanism and Evolution of Soil Organic Carbon Coupling with Rocky Desertification in South China Karst. Forests. 2022; 13(1):28. https://doi.org/10.3390/f13010028
Chicago/Turabian StyleWang, Xingfu, Xianfei Huang, Kangning Xiong, Jiwei Hu, Zhenming Zhang, and Jiachun Zhang. 2022. "Mechanism and Evolution of Soil Organic Carbon Coupling with Rocky Desertification in South China Karst" Forests 13, no. 1: 28. https://doi.org/10.3390/f13010028