Impact of Thermotherapy and Short-Term Storage on Quercus robur L. Acorn Mycobiota and Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing of Acorn Germination at Different Temperatures
2.2. Thermotherapy Treatment and Storage Conditions
2.3. Isolation and Identification of Fungi
2.4. Nursery Trial
3. Results
3.1. Impact of Temperature on Acorn Germination in Controlled Conditions
3.2. Impact of Thermotherapy and Storage on Acorn Mycobiota
3.3. Impact of Thermotherapy and Storage on Acorn Germination in A Nursery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Closest BLAST Match | GenBank Accession No. | Control C | 41 °C, 2.5 h T1 | 41 °C, 5 h T2 | 45 °C, 2.5 h T3 | 45 °C, 5 h T4 | No. Isol 1 | No. Gro 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | −1 °C | 3 °C | No | −1 °C | 3 °C | No | −1 °C | 3 °C | No | −1 °C | 3 °C | No | −1 °C | 3 °C | ||||
Penicillium glandicola | MW540446MW540447 | 26 | 20 | 28 | 34 | 27 | 117 | 2 | 92 | 99 | 14 | 19 | 112 | 6 | 50 | 120 | 766 | 14 |
Penicillium glabrum | MW540448MW531879 | 10 | 25 | 29 | 32 | 7 | 3 | 25 | 4 | 25 | 2 | 3 | 11 | 3 | 179 | 13 | ||
Truncatella angustata | MW540450 | 1 | 2 | 1 | 6 | 1 | 2 | 7 | 12 | 32 | 8 | |||||||
Tubakia dryina | MW540456 | 3 | 4 | 4 | 1 | 1 | 13 | 5 | ||||||||||
Diplodia seriata | MW540462 | 1 | 2 | 3 | 2 | 1 | 9 | 5 | ||||||||||
Fusarium solani | MW540452 MW540453 | 1 | 13 | 1 | 1 | 16 | 4 | |||||||||||
Trichoderma citrinoviride | MW540463 | 1 | 2 | 2 | 1 | 6 | 4 | |||||||||||
Alternaria alternata | MW540457 | 3 | 7 | 1 | 11 | 3 | ||||||||||||
Talaromyces sp. | MW540451 | 2 | 21 | 23 | 2 | |||||||||||||
Fusarium avenaceum | MW540454 MW540455 | 10 | 3 | 13 | 2 | |||||||||||||
Talaromyces marneffei | MW540464 | 1 | 4 | 5 | 2 | |||||||||||||
Cucurbitariaceae sp. | MW540466 | 2 | 1 | 3 | 2 | |||||||||||||
Epicoccum nigrum | MW540468 | 1 | 2 | 3 | 2 | |||||||||||||
Stereum hirsutum | MW540470 | 2 | 1 | 3 | 2 | |||||||||||||
Gnomoniopsis sp. | MW540473 | 1 | 1 | 2 | 2 | |||||||||||||
Penicillium vulpinum | MW540477 MW531882 | 1 | 1 | 2 | 2 | |||||||||||||
Unidentified mycelium 1 | 12 | 12 | 1 | |||||||||||||||
Alternaria sp. 1 | MW540459 | 4 | 4 | 1 | ||||||||||||||
Didymellaceae sp. | MW540465 | 4 | 4 | 1 | ||||||||||||||
Alternaria sp. 2 | MW540458 | 3 | 3 | 1 | ||||||||||||||
Cladosporium sp. 1 | MW540469 | 3 | 3 | 1 | ||||||||||||||
Diaporthe sp. | MW540471 | 3 | 3 | 1 | ||||||||||||||
Fusarium graminearum | MW540467 | 3 | 3 | 1 | ||||||||||||||
Unidentified mycelium 2 | 3 | 3 | 1 | |||||||||||||||
Apiognomonia sp. | MW540476 | 2 | 2 | 1 | ||||||||||||||
Penicillium concentricum | MW540478 MW531881 | 2 | 2 | 1 | ||||||||||||||
Penicillium polonicum | MW540475 MW531880 | 2 | 2 | 1 | ||||||||||||||
Pleurostoma sp. 1 | MW540474 | 2 | 2 | 1 | ||||||||||||||
Tubakia iowensis | MW540472 | 2 | 2 | 1 | ||||||||||||||
Unidentified mycelium 3 | 2 | 2 | 1 | |||||||||||||||
Alternaria sp. 3 | MW540460 | 1 | 1 | 1 | ||||||||||||||
Alternaria sp. 4 | MW540461 | 1 | 1 | 1 | ||||||||||||||
Cladosporium sp. 2 | MW540486 | 1 | 1 | 1 | ||||||||||||||
Clonostachys rosea | MW540489 | 1 | 1 | 1 | ||||||||||||||
Coryneliaceae sp. | MW540485 | 1 | 1 | 1 | ||||||||||||||
Pestalotiopsis sp. | MW540479 | 1 | 1 | 1 | ||||||||||||||
Phaeoacremonium hungaricum | MW540480 | 1 | 1 | 1 | ||||||||||||||
Phaeoacremonium tuscanicum | MW540482 | 1 | 1 | 1 | ||||||||||||||
Pleosporales sp. 1 | MW540488 | 1 | 1 | 1 | ||||||||||||||
Pleosporales sp. 2 | MW540484 | 1 | 1 | 1 | ||||||||||||||
Pleurostoma sp. 2 | MW540481 | 1 | 1 | 1 | ||||||||||||||
Psathyrellaceae sp. | MW540487 | 1 | 1 | 1 | ||||||||||||||
Talaromyces minioluteus | MW540483 | 1 | 1 | 1 | ||||||||||||||
Unidentified mycelium 4 | 1 | 1 | 1 | |||||||||||||||
Unidentified mycelium 5 | 1 | 1 | 1 | |||||||||||||||
Unidentified mycelium 6 | 1 | 1 | 1 | |||||||||||||||
TOTAL | 72 | 72 | 97 | 76 | 45 | 120 | 35 | 97 | 120 | 44 | 38 | 118 | 28 | 67 | 120 | 1149 |
References
- Eaton, E.; Caudullo, G.; Oliveira, S.; De Rigo, D. Quercus robur and Quercus petraea in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; Publications Office of the EU: Luxembourg, 2016; pp. 160–163. [Google Scholar]
- Mölder, A.; Meyer, P.; Nagel, R.-V. Integrative Management to Sustain Biodiversity and Ecological Continuity in Central European Temperate Oak (Quercus robur, Q. petraea) Forests: An Overview. For. Ecol. Manag. 2019, 437, 324–339. [Google Scholar] [CrossRef]
- Dobrosavljević, J.; Marković, Č.; Marjanović, M.; Milanović, S. Pedunculate Oak Leaf Miners’ Community: Urban vs. Rural Habitat. Forests 2020, 11, 1300. [Google Scholar] [CrossRef]
- Bzdyk, R.M.; Olchowik, J.; Studnicki, M.; Nowakowska, J.A.; Oszako, T.; Urban, A.; Hilszczańska, D. Ectomycorrhizal Colonisation in Declining Oak Stands on the Krotoszyn Plateau, Poland. Forests 2019, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Thomas, F.M.; Blank, R.; Hartmann, G. Abiotic and Biotic Factors and Their Interactions as Causes of Oak Decline in Central Europe. For. Pathol. 2002, 32, 277–307. [Google Scholar] [CrossRef]
- Delb, H. Folgewirkungen der Schwammspinner-Kalamität von 1992 Bis 1995 (Lymantria dispar L.) in Einem Mitteleuropäischen Eichenwaldgebiet Am Beispiel des Bienwaldes in Rheinland-Pfalz. Ph.D Thesis, Faculty of Forest Sciences, University Göttingen, Göttingen, Germany, 1999. [Google Scholar]
- Demeter, L.; Molnár, Á.P.; Öllerer, K.; Csóka, G.; Kiš, A.; Vadász, C.; Horváth, F.; Molnár, Z. Rethinking the Natural Regeneration Failure of Pedunculate Oak: The Pathogen Mildew Hypothesis. Biol. Conserv. 2021, 253, 108928. [Google Scholar] [CrossRef]
- Csóka, G.; Hirka, A.; Mutun, S.; Glavendekić, M.; Mikó, Á.; Szőcs, L.; Paulin, M.; Eötvös, C.B.; Gáspár, C.; Csepelényi, M. Spread and Potential Host Range of the Invasive Oak Lace Bug [Corythucha arcuata (Say, 1832)–Heteroptera: Tingidae] in Eurasia. Agric. For. Entomol. 2020, 22, 61–74. [Google Scholar] [CrossRef]
- Oršanić, M.; Drvodelić, D. Natural Regeneration of Pedunculate Oak. In Proceedings of the Forest Management Systems and Regeneration of Floodplain Forest Sites, Mendel University of Agriculture and Forestry, Brno, Czech Republic, 9 October 2007; pp. 99–106. [Google Scholar]
- Vasić, V.; Konstantinović, B.; Orlović, S. Application of Post-Emergence Herbicides in the Regeneration of Pedunculate Oak (Quercus robur L.) Forests. For. Int. J. For. Res. 2014, 87, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Novak Agbaba, S. Mycoflora of Pedunculate Oak (Quercus robur L.) in Croatia. Ph.D. Thesis, Faculty of Forestry, University of Zagreb, Zagreb, Croatia, 2006. [Google Scholar]
- Devetaković, J.R.; Nonić, M.; Prokić, B.; Šijačić-Nikolić, M.; Popović, V. Acorn Size Influence on the Quality of Pedunculate Oak (Quercus robur L.) One-Year Old Seedlings. Reforesta 2019, 17–24. [Google Scholar] [CrossRef]
- Nikolić, N.; Orlović, S.; Krstić, B.; Kevrešan, Ž. Variability of Acorn Nutrient Concentrations in Pedunculate Oak (Quercus robur L.) Genotypes. J. For. Sci. 2006, 52, 51–60. [Google Scholar] [CrossRef]
- Welander, N.T.; Ottosson, B. The Influence of Shading on Growth and Morphology in Seedlings of Quercus robur L. and Fagus sylvatica L. For. Ecol. Manag. 1998, 107, 117–126. [Google Scholar] [CrossRef]
- Nilsson, U.; Gemmel, P.; Löf, M.; Welander, T. Germination and Early Growth of Sown Quercus robur L. in Relation to Soil Preparation, Sowing Depths and Prevention against Predation. New For. 1996, 12, 69–86. [Google Scholar] [CrossRef]
- Phillips, R.L. Environmental Factors Contribute to Acorn Quality: Elevation, on- or off-Tree Collection Influence the Viability of Blue Oak Acorns. Calif. Agric. 1992, 46, 30–32. [Google Scholar] [CrossRef]
- Hendry, G.A.; Finch-Savage, W.E.; Thorpe, P.C.; Atherton, N.M.; Buckland, S.M.; Nilsson, K.A.; Seel, W.E. Free Radical Processes and Loss of Seed Viability during Desiccation in the Recalcitrant Species Quercus Robur L. New Phytol. 1992, 122, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A. Seed Dormancy, Seed Treatment and Seed Sowing. Bulletin 1992, 83, 116–121. [Google Scholar]
- Aniszewska, M.; Błuszkowska, U.; Zychowicz, W.; Brzózko, J. Impact of Mechanical Treatment of Pedunculate Oak (Quercus robur L.) Seeds on Germination Time and Seedling Quality. J. For. Res. 2020, 25, 420–425. [Google Scholar] [CrossRef]
- Connor, K.F.; Sowa, S. Recalcitrant Behavior of Temperate Forest Tree Seeds: Storage, Biochemistry, and Physiology. In Proceedings of the 11th Biennial Southern Silvicultural Research Conference, Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, USA, 20–22 March 2002; pp. 47–50. [Google Scholar]
- Suszka, B.; Muller, C.; Bonnet-Masimbert, M. Seeds of Forest Broadleaves: From Harvest to Sowing; INRA: Paris, France, 1996; ISBN 2-7380-0659-0. [Google Scholar]
- Özbingöl, N.; O’reilly, C. Increasing Acorn Moisture Content Followed by Freezing-Storage Enhances Germination in Pedunculate Oak. Forestry 2005, 78, 73–81. [Google Scholar] [CrossRef]
- Gosling, P.G. The Effect of Drying Quercus robur Acorns to Different Moisture Contents, Followed by Storage, Either with or without Imbibition. For. Int. J. For. Res. 1989, 62, 41–50. [Google Scholar] [CrossRef]
- Doody, C.N.; O’Reilly, C. Drying and Soaking Pretreatments Affect Germination in Pedunculate Oak. Ann. For. Sci. 2008, 65, 1. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, K.M. Seed Storage Physiology of Recalcitrant Acorns from the Pedunculate Oak (Quercus robur L.) and Orthodox Nuts from the European Beech (Fagus sylvatica L.). Ph.D. Thesis, Royal Vetrinary and Agricultural University, Copenhagen, Denmark, 1992. [Google Scholar]
- Suszka, B.; Tylkowski, T. Storage of Acorns of the English Oak (Quercus robur L.) over 1-5 Winters. Arbor. Kórn. 1980, 25, 199–229. [Google Scholar]
- Knudsen, I.; Thomsen, K.; Jensen, B.; Poulsen, K. Effects of Hot Water Treatment, Biocontrol Agents, Disinfectants and a Fungicide on Storability of English Oak Acorns and Control of the Pathogen, Ciboria Batschiana. For. Pathol. 2004, 34, 47–64. [Google Scholar] [CrossRef]
- Sutterland, J.; Diekmann, M.; Berjak, P. Forest Tree Seed Health for Germplasm Conservation. IPGRI Tech. Bull. Rome 2002, 6, 1–85. [Google Scholar]
- Cram, M.; Fraedrich, S. Seed Diseases and Seedborne Pathogens of North America. Tree Plant. Notes 2010, 53, 35–44. [Google Scholar]
- Mittal, R.; Wang, B. Fungi Associated with Seeds of Eastern White Pine and White Spruce during Cone Processing and Seed Extraction. Can. J. For. Res. 1987, 17, 1026–1034. [Google Scholar] [CrossRef]
- Fort, T.; Pauvert, C.; Zanne, A.; Ovaskainen, O.; Caignard, T.; Barret, M.; Compant, S.; Hampe, A.; Delzon, S.; Vacher, C. Maternal Effects Shape the Seed Mycobiome in Quercus petraea. New Phytol. 2020. [Google Scholar] [CrossRef]
- Jankowiak, R. Fungi Occurring in Acorn of Quercus robur L. Infested by Insects. Acta Sci. Pol. Silvarum Cal. Ratio Ind. Lignaria 2008, 7, 19–29. [Google Scholar]
- Oskay, F.; Bora İmal, F.O.; Meşe, Ö. Preliminary Results on The Fungi Damaging Pedunculate Oak (Quercus robur L.) Acorns. In Proceedings of the Diseases and Insects in Forest Nurseries, IUFRO Working Party 7.03.04, Kuşadası, Turkey, 21 October 2018; Volume 7, pp. 17–22. [Google Scholar]
- Swiecki, T.J.; Bernhardt, E.A.; Arnold, R.A. Insect and Disease Impacts on Blue Oak Acorns and Seedlings. In Proceedings of the Symposium on Oak Woodlands and Hardwood Rangeland Management, US Department of Agriculture, Pacific Southwest Research Station, Davis, CA, USA, 31 October–2 November 1991; Volume 126, pp. 149–155. [Google Scholar]
- Washington, D.M. Fungi Associated with Northern Red Oak (Quercus rubra) Acorns. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2003. [Google Scholar]
- Winston, P.W. The Acorn Microsphere, with Special Reference to Arthropods. Ecology 1956, 37, 120–132. [Google Scholar] [CrossRef]
- Szynkiewicz, A.; Kwaśna, H. The Effects of Fungi from Acorns with Symptoms of Black Rot and Necrotic Twigs of Oak on Quercus Seedlings. Phytopathol. Pol. 2004, 32, 49–59. [Google Scholar]
- Andersson, C. The Effect of Weevil and Fungal Attacks on the Germination of Quercus robur Acorns. For. Ecol. Manag. 1992, 50, 247–251. [Google Scholar] [CrossRef]
- Schröder, T.; Kehr, R.; Procházková, Z.; Sutherland, J. Practical Methods for Estimating the Infection Rate of Quercus robur Acorn Seedlots by Ciboria batschiana. For. Pathol. 2004, 34, 187–196. [Google Scholar] [CrossRef]
- Delatour, C.; Muller, C.; Bonnet-Masimbert, M. Progress in Acorns Treatment in a Long Term Storage Prospect. In Proceedings of the International Symposium on Forest Tree Storage, IUFRO Working Party on Seed Problems, Chalk River, ON, Canada, 23–27 September 1980; pp. 126–133. [Google Scholar]
- Delatour, C. A curative control method for Ciboria batschiana on acorns. Eur. J. For. Pathol. 1978, 8, 193–200. [Google Scholar] [CrossRef]
- Finch-Savage, W.; Clay, H.; Budge, S.; Dent, K.; Clarkson, J.; Whipps, J. Biological Control of Sclerotinia pseudotuberosa and Other Fungi during Moist Storage of Quercus Robur Seeds. Eur. J. Plant Pathol. 2003, 109, 615–624. [Google Scholar] [CrossRef]
- Tylkowski, T. Height Increment of 1-Year Shoots of the English Oak (Quercus Robur L.) and the Northern Red Oak (Q. borealis Michx. = Q. rubra L.) on 4-Year-Old Roots of Seedlings Raised from Acorns Stored over 1–5 Winters. Arbor. Korn. 1982, 27, 357–365. [Google Scholar]
- Kehr, R.D.; Schroeder, T. Long-Term Storage of Oak Seeds-New Methods and Mycological Aspects. In Proceedings of the Tree Seed Pathology Meeting, Opocno, Czech Republic, 9–11 October 1996; pp. 50–61. [Google Scholar]
- Grondeau, C.; Samson, R.; Sands, D. A Review of Thermotherapy to Free Plant Materials from Pathogens, Especially Seeds from Bacteria. Crit. Rev. Plant Sci. 1994, 13, 57–75. [Google Scholar] [CrossRef]
- Schröder, T. Über Die Eignung Verschiedener Physikalisch-Technischer Verfahren Zur Phytosanitären Behandlung Und Zur Lagerung von Forstsaatgut Unter Besonderer Berücksichtigung Der Stiel- Und Traubeneiche; Parey Buchverlag: Berlin, Germany, 1999; ISBN 3-8263-3244-X. [Google Scholar]
- Baker, R. Thermotherapy of Planting Material. Phytopathology 1962, 52, 1244–1255. [Google Scholar]
- Belletti, P.; Monteleone, I.; Cartarasa, M. Optimisation of Stone-Oak Seed Management Aimed at Nursery Production of High Quality Seedlings for Reforestation. In Proceedings of the International Conference “Forest Research: A challenge for an Integrated European Approach”, NAGEF-Forest Research Institute, Thessaloniki, Greece, 27 August–1 September 2001; pp. 413–416. [Google Scholar]
- Gradečki–Poštenjak, M.; Liović, B.; Agbaba, S.N. Investigation of Conditions for Processing and Storage of Pedunculate Oak Acorns (Quercus Robur L.) and Acorn Quality During Storage. In Proceedings of the International Conference on Natural Resources, Green Technology & Sustainable Development, University of Zagreb Faculty of Food Technology and Biotechnology, Zagreb, Croatia, 26–28 November 2014; p. 135. [Google Scholar]
- ISTA (International Seed Testing Association). The Germination Test. In International Rules for Seed Testing, January 2006 ed.; ISTA: Bassersdorf, Switzerland, 2011. [Google Scholar]
- Ježić, M.; Krstin, L.; Rigling, D.; Ćurković-Perica, M. High Diversity in Populations of the Introduced Plant Pathogen, Cryphonectria parasitica, due to Encounters between Genetically Divergent Genotypes. Mol. Ecol. 2012, 21, 87–99. [Google Scholar] [CrossRef]
- Kranjec, J.; Milotić, M.; Hegol, M.; Diminić, D. Gljivama Slični Organizmi u Tlu Odumirućih Sastojina Poljskog Jasena (Fraxinus angustifolia Vahl). Šumar. List 2017, 141, 115–122. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS Primers with Enhanced Specificity for Basidiomycetes-application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Elsevier BV: Amsterdam, The Netherlands, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Stielow, J.B.; Levesque, C.A.; Seifert, K.A.; Meyer, W.; Iriny, L.; Smits, D.; Renfurm, R.; Verkley, G.; Groenewald, M.; Chaduli, D. One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes. Pers. Mol. Phylogeny Evol. Fungi. 2015, 35, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehner, S.A.; Buckley, E. A Beauveria Phylogeny Inferred from Nuclear ITS and EF1-α Sequences: Evidence for Cryptic Diversification and Links to Cordyceps Teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, U.; Nakashima, C.; Crous, P.; Groenewald, J.; Moreno-Rico, O.; Rooney-Latham, S.; Blomquist, C.; Haas, J.; Marmolejo, J. Phylogeny and Taxonomy of the Genus Tubakia s. Lat. Fungal Syst. Evol. 2018, 1, 41. [Google Scholar] [CrossRef] [Green Version]
- Branco, M.; Branco, C.; Merouani, H.; Almeida, M.H. Germination Success, Survival and Seedling Vigour of Quercus suber Acorns in Relation to Insect Damage. For. Ecol. Manag. 2002, 166, 159–164. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Tylek, P. Influence of Scarification on the Germination Capacity of Acorns Harvested from Uneven-Aged Stands of Pedunculate Oak (Quercus robur L.). Forests 2018, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Giertych, M.J.; Suszka, J. Consequences of Cutting off Distal Ends of Cotyledons of Quercus robur Acorns before Sowing. Ann. For. Sci. 2011, 68, 433–442. [Google Scholar] [CrossRef] [Green Version]
- van’t Hoff, J.H. A Suggestion Looking to the Extension into Space of the Structural Formulas at Present Used in Chemistry, and a Note upon the Relation between the Optical Activity and the Chemical Constitution of Organic Compounds. Arch. Neerl. Sci. Exact Nat. 1874, 9, 445–454. [Google Scholar]
- Drvodelić, D.; Oršanić, M. Problematika sjemenarstva i rasadničarske proizvodnje sadnica poljskog jasena (Fraxinus angustifolia Vahl) i hrasta lužnjaka (Quercus robur L.). In Ekologija, obnova i zaštita poplavnih šuma Posavine; University of Zagreb Faculty of Forestry: Zagreb, Croatia, 2020; ISBN 978-953-292-061-1. [Google Scholar]
- Vasinauskienė, R.; Silingiene, G.; Sinkevičienė, J. Surface Sterilization of English Oak (Quercus Robur L.) Acorns Using Wet Water Steam. Balt. For. 2020, 26. [Google Scholar] [CrossRef]
- Alidadi, A.; Kowsari, M.; Javan-Nikkhah, M.; Karami, S. First Report of Leaf Spot Caused by Truncatella angustata on Persian Oak (Quercus brantii) in Iran. Plant Dis. 2018, 102, 1173. [Google Scholar] [CrossRef]
- Wenneker, M.; Pham, K.; Boekhoudt, L.; de Boer, F.; van Leeuwen, P.; Hollinger, T.; Thomma, B. First Report of Truncatella angustata Causing Postharvest Rot on ‘Topaz’Apples in the Netherlands. Plant Dis. 2017, 101, 508. [Google Scholar] [CrossRef]
- Eken, C.; Spanbayev, A.; Tulegenova, Z.; Abiev, S. First Report of Truncatella angustata Causing Leaf Spot on Rosa canina in Kazakhstan. Australas. Plant Dis. Notes 2009, 4, 44–45. [Google Scholar]
- Arzanlou, M.; Torbati, M.; Jafary, H. Fruit Rot of Olive (Olea europaea) Caused by Truncatella angustata. Plant Pathol. Quar. 2012, 2, 117–123. [Google Scholar] [CrossRef]
- Kowalski, T. Tubakia dryina, Symptoms and Pathogenicity to Quercus robur. Acta Mycol. 2006, 41, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Elena, G.; Garcia-Figueres, F.; Reigada, S.; Luque, J. Intraspecific Variation in Diplodia seriata Isolates Occurring on Grapevines in Spain. Plant Pathol. 2015, 64, 680–689. [Google Scholar] [CrossRef]
- Kaliterna, J.; Miličević, T.; Ivić, D.; Benčić, D.; Mešić, A. First Report of Diplodia seriata as Causal Agent of Olive Dieback in Croatia. Plant Dis. 2012, 96, 290. [Google Scholar] [CrossRef]
- Panzavolta, T.; Panichi, A.; Bracalini, M.; Croci, F.; Ginetti, B.; Ragazzi, A.; Tiberi, R.; Moricca, S. Dispersal and Propagule Pressure of Botryosphaeriaceae Species in a Declining Oak Stand is Affected by Insect Vectors. Forests 2017, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Slippers, B.; Smit, W.; Crous, P.W.; Coutinho, T.A.; Wingfield, B.D.; Wingfield, M.J. Taxonomy, Phylogeny and Identification of Botryosphaeriaceae Associated with Pome and Stone Fruit Trees in South Africa and Other Regions of the World. Plant Pathol. 2007, 56, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Prochazkova, Z.; Sikorova, A.; Peskova, V. Preliminary Observations on the Occurrence of Ciboria batschiana (Zopf) Buchwald in the Czech Republic. Work Pap. Finn. Res. Inst. 2005, 11, 13–18. [Google Scholar]
- Schröder, T. On the Geographic Variation of Ciboria batschiana (Zopf) Buchwald, the Main Pathogenic Fungus on Acorns of Quercus Robur and Q. petraea in Europe. Dendrobiology 2002, 47, 13–19. [Google Scholar]
- Guthke, J.; Spethmann, W. Physiological and Pathological Aspects of Long-Term Storage of Acorns. Ann. des Sci. For. 1993, 50, 384s–387s. [Google Scholar] [CrossRef]
- Noland, T.L.; Morneault, A.E.; Dey, D.C.; Deugo, D. The Effect of Storage Temperature and Duration on Northern Red Oak Acorn Viability and Vigour. For. Chron. 2013, 89, 769–776. [Google Scholar] [CrossRef] [Green Version]
Control | 41 °C, 2.5 h | 41 °C, 5 h | 45 °C, 2.5 h | 45 °C, 5 h | |
---|---|---|---|---|---|
Control | <0.001 | <0.001 | <0.001 | <0.001 | |
41 °C, 2.5 h | <0.001 | 1.000 | 0.600 | 0.465 | |
41 °C, 5 h | <0.001 | 1.000 | 0.345 | 0.264 | |
45 °C, 2.5 h | <0.001 | 0.600 | 0.345 | 1.000 | |
45 °C, 5 h | <0.001 | 0.465 | 0.264 | 1.000 |
Penicillium glandicola | Penicillium glabrum | Truncatella angustata | Tubakia dryina | Diplodia seriata | Fusarium solani | Trichoderma citrinoviride | Alternaria alternata | |
---|---|---|---|---|---|---|---|---|
Germination | 0.344 | −0.201 | −0.329 | −0.118 | −0.487 | −0.438 | −0.079 | 0.294 |
p = 0.331 | p = 0.577 | p = 0.353 | p = 0.746 | p = 0.154 | p = 0.206 | p = 0.828 | p = 0.410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kranjec Orlović, J.; Drvodelić, D.; Vukelić, M.; Rukavina, M.; Diminić, D.; Oršanić, M. Impact of Thermotherapy and Short-Term Storage on Quercus robur L. Acorn Mycobiota and Germination. Forests 2021, 12, 528. https://doi.org/10.3390/f12050528
Kranjec Orlović J, Drvodelić D, Vukelić M, Rukavina M, Diminić D, Oršanić M. Impact of Thermotherapy and Short-Term Storage on Quercus robur L. Acorn Mycobiota and Germination. Forests. 2021; 12(5):528. https://doi.org/10.3390/f12050528
Chicago/Turabian StyleKranjec Orlović, Jelena, Damir Drvodelić, Marko Vukelić, Matea Rukavina, Danko Diminić, and Milan Oršanić. 2021. "Impact of Thermotherapy and Short-Term Storage on Quercus robur L. Acorn Mycobiota and Germination" Forests 12, no. 5: 528. https://doi.org/10.3390/f12050528
APA StyleKranjec Orlović, J., Drvodelić, D., Vukelić, M., Rukavina, M., Diminić, D., & Oršanić, M. (2021). Impact of Thermotherapy and Short-Term Storage on Quercus robur L. Acorn Mycobiota and Germination. Forests, 12(5), 528. https://doi.org/10.3390/f12050528