Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Penicillium glabrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4334 KiB  
Article
Phytochemical Analysis and Multifaceted Biomedical Activities of Nitraria retusa Extract as Natural Product-Based Therapies
by Manal M. Khowdiary, Zinab Alatawi, Amirah Alhowiti, Mohamed A. Amin, Hussam Daghistani, Faisal Miqad K. Albaqami, Mohamed Ali Abdel-Rahman, Ahmed Ghareeb, Nehad A. Shaer, Ahmed M. Shawky and Amr Fouda
Life 2024, 14(12), 1629; https://doi.org/10.3390/life14121629 - 9 Dec 2024
Cited by 3 | Viewed by 1293
Abstract
This study examined the phytochemical profile and biomedical activities of Nitraria retusa, a halophytic and drought-resistant shrub. HPLC analysis showed gallic acid (1905.1 μg/g), catechin (1984.1 μg/g), and ellagic acid (2671.1 μg/g) as the primary constituents, while FT-IR analysis revealed a complex [...] Read more.
This study examined the phytochemical profile and biomedical activities of Nitraria retusa, a halophytic and drought-resistant shrub. HPLC analysis showed gallic acid (1905.1 μg/g), catechin (1984.1 μg/g), and ellagic acid (2671.1 μg/g) as the primary constituents, while FT-IR analysis revealed a complex organic profile with significant functional groups. The extract demonstrated strong antioxidant activity in DPPH assays, outperforming ascorbic acid (IC50 = 18.7 ± 1.0 μg/mL) with an IC50 of 16.4 ± 4.4 μg/mL. It demonstrated specific antiproliferative effects on cancer cell lines as it showed selective cytotoxicity against cancer cell lines; normal WI38 cells were largely unaffected, showing 50.0% viability at 125 μg/mL. The most sensitive cell line was Caco2, which showed 50.0% viability at 125 μg/mL. Anti-diabetic properties were exhibited by means of inhibition of α-amylase (IC50 = 68.2 ± 4.2 μg/mL) and α-glucosidase (IC50 = 22.8 ± 3.3 μg/mL). Additionally, antimicrobial activity was observed to be broad-spectrum, and it was most effective against E. coli (32.6 mm inhibition zone at 400 μg/mL) and Penicillium glabrum (35.3 mm at 400 μg/mL). These findings highlight the potential of N. retusa in developing plant-based therapeutic approaches. Full article
(This article belongs to the Special Issue Advances in the Biomedical Applications of Plants and Plant Extracts)
Show Figures

Figure 1

13 pages, 2888 KiB  
Article
Limited Effectiveness of Penicillium camemberti in Preventing the Invasion of Contaminating Molds in Camembert Cheese
by Nicole Ollinger, Alexandra Malachová, Alexandra Schamann, Michael Sulyok, Rudolf Krska and Julian Weghuber
Foods 2024, 13(18), 2865; https://doi.org/10.3390/foods13182865 - 10 Sep 2024
Cited by 3 | Viewed by 2538
Abstract
Mold-ripened cheese acquires a distinctive aroma and texture from mold cultures that mature on a fresh cheese wheel. Owing to its high moisture content (aw = 0.95) and pliability, soft cheese is prone to contamination. Many contaminating mold species are unable to [...] Read more.
Mold-ripened cheese acquires a distinctive aroma and texture from mold cultures that mature on a fresh cheese wheel. Owing to its high moisture content (aw = 0.95) and pliability, soft cheese is prone to contamination. Many contaminating mold species are unable to grow at colder temperatures, and the lactic acid produced by the cheese bacteria inhibits further infiltration. Thus, Camembert cheese is generally well protected against contamination by a wide range of species. In this study, cocultures of Penicillium camemberti and widely distributed mycotoxin-producing mold species were incubated on different types of agars, and purchased Camembert samples were deliberately contaminated with mycotoxin-producing mold species capable of growing at both 25 °C and 4 °C. The production of mycotoxins was then monitored by the extraction of the metabolites and their subsequent measurement by means of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) based targeted metabolite profiling approach. The production of cyclopiazonic acid (CPA) was highly dependent on the species cocultivated with Penicillium camemberti, the temperature and the substrate. Contamination of Camembert cheese with Penicillium chrysogenum, Mucor hiemalis, or Penicillium glabrum induced CPA production at 25 °C. Although mold growth on cheese was not always evident on biofilms for certain cultures, except for Penicillium citrinum, which stained the monosaccharide agar yellow, mycotoxins were detected in many agar and cheese samples, as in all monosaccharide agar samples. In conclusion, cheese should be immediately discarded upon the first appearance of mold. Full article
Show Figures

Figure 1

18 pages, 2852 KiB  
Article
Halophilic Plant Growth-Promoting Rhizobacteria as Producers of Antifungal Metabolites under Salt Stress
by Karima Ould Ouali, Karim Houali, Cristina Cruz, Juliana Melo, Yasmina Benakli, Lila Ousmer, Zahia Madani and El-Hafid Nabti
Agronomy 2024, 14(4), 845; https://doi.org/10.3390/agronomy14040845 - 18 Apr 2024
Cited by 8 | Viewed by 2283
Abstract
Salinity is one of the main factors causing soil deterioration, making it unsuitable for agriculture. It is well documented that the application of halotolerant and halophilic plant growth-promoting bacteria (PGPR: plant growth-promoting rhizobacteria) with biological control activities as an inoculant of cultivated plants [...] Read more.
Salinity is one of the main factors causing soil deterioration, making it unsuitable for agriculture. It is well documented that the application of halotolerant and halophilic plant growth-promoting bacteria (PGPR: plant growth-promoting rhizobacteria) with biological control activities as an inoculant of cultivated plants offers a biological alternative to the use of agrochemicals, particularly when subjected to salt stress. From this perspective, 70 bacterial strains were isolated from saline soils (sebkha) in arid and semi-arid areas of Eastern Algeria. Three isolates were selected based on their ability to produce bioactive molecules allowing them to promote plant growth, such as hydrolytic enzymes, indole acetic acid (auxin-phytohormone), HCN, NH3, etc. Two of these isolates belonged to the genus Serratia and the third was a halophilic Halomonas bacteria. These bacteria were identified based on their 16S rDNA sequences. Antagonism tests against phytopathogenic fungi were carried out. The identification of the antifungal molecules produced by these bacteria was determined using high-performance liquid chromatography. These bacteria can inhibit mycelial development against phytopathogenic fungi with rates reaching 80.67% against Botrytis cinerea, 76.22% against Aspergillus niger, and 66.67% against Fusarium culmorum for Serratia sp. The strain Halomonas sp. inhibited mycelial growth through the production of volatile substances of Aspergillus niger at 71.29%, Aspergillus flavus at 75.49%, and Penicillium glabrum at a rate of 72.22%. The identification of the antifungal molecules produced by these three bacteria using HPLC revealed that they were polyphenols, which makes these strains the first rhizobacteria capable of producing phenolic compounds. Finally, pot tests to determine the effectiveness of these strains in promoting wheat growth under salinity stress (125 mM, 150 mM, and 200 mM) was carried out. The results revealed that a consortium of two isolates (Serratia sp. and Halomonas sp.) performed best at 125 mM. However, at higher concentrations, it was the halophilic bacteria Halomonas sp. that gave the best result. In all cases, there was a significant improvement in the growth of wheat seedlings inoculated with the bacteria compared to non-inoculated controls. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1560 KiB  
Article
Detection of Microbiota during the Fermentation Process of Wine in Relation to the Biogenic Amine Content
by Ivana Regecová, Boris Semjon, Pavlina Jevinová, Peter Očenáš, Jana Výrostková, Lucia Šuľáková, Erika Nosková, Slavomír Marcinčák and Martin Bartkovský
Foods 2022, 11(19), 3061; https://doi.org/10.3390/foods11193061 - 2 Oct 2022
Cited by 8 | Viewed by 2548
Abstract
Viticulture is one of the traditional industries in Slovakia, where there are six wine-growing regions: Malokarpatska, Southern Slovakia, Central Slovakia, Nitra, Eastern Slovakia, and Tokaj. This study focuses on the detection of microbiota in soil samples, grape leaves and berries, and samples taken [...] Read more.
Viticulture is one of the traditional industries in Slovakia, where there are six wine-growing regions: Malokarpatska, Southern Slovakia, Central Slovakia, Nitra, Eastern Slovakia, and Tokaj. This study focuses on the detection of microbiota in soil samples, grape leaves and berries, and samples taken from fermenting must and young wine (the variety Tramín červený) in relation to the detected concentrations of biogenic amines during the fermentation process. In the examined samples, the number of yeasts and molds (from 3.8 to 6.8 log cfu/g or mL) and TVC (from 3.7 to 6.5 log cfu/g or mL) were determined via culture examination. At the same time, the number of LAB (from ˂3.0 to 4.4 log cfu/g or mL) was determined, which was the highest on day 4 of the must fermentation process and was related to the detected of the highest concentration of biogenic amines (histamine and tyramine) on day 6 in the investigated must samples using the UHPLC system. Mycobiota species were identified by MALDI-TOF MS, PCR, ITS-PCR-RFLP, and PCR sequencing of the amplified products. The study confirmed the presence of the yeasts Saccharomyces cerevisiae, Metschnikowia pulcherrima, Hanseniospora uvarum, Pichia kudriavzevii, Pichia kluyveri, Pichia fermentas, Torulaspora delbrueckii, and Candida tenuis. At the same time, the presence of molds (Cladosporium herbarum, Cladosporium cladosporioides, Penicillium granulatum, Penicillium mononematosum, Botritis cinerea, and Penicillium glabrum) was also confirmed in soil samples, leaves, grape berries, and fresh grape must. The study confirmed the reduction in the species diversity of the microbiota during the must fermentation process, which resulted in decreases in the concentrations of the monitored biogenic amines in the early stages of the must fermentation process and young wine of the variety Tramín červený. Full article
(This article belongs to the Special Issue Recent Research in Wine Microbiology)
Show Figures

Figure 1

14 pages, 2244 KiB  
Article
Cultivable Fungal Endophytes in Roots, Rhizomes and Leaves of Posidonia oceanica (L.) Delile along the Coast of Sicily, Italy
by Livio Torta, Santella Burruano, Selene Giambra, Gaetano Conigliaro, Gaia Piazza, Giulia Mirabile, Maria Pirrotta, Roberta Calvo, Giancarlo Bellissimo, Sebastiano Calvo and Agostino Tomasello
Plants 2022, 11(9), 1139; https://doi.org/10.3390/plants11091139 - 22 Apr 2022
Cited by 14 | Viewed by 3153
Abstract
The presence of endophytic fungi in the roots, rhizomes, and leaves of Posidonia oceanica was evaluated in different localities of the Sicilian coast. Samples of roots, rhizomes, and leaves were submitted to isolation techniques, and the obtained fungal colonies were identified by morphological [...] Read more.
The presence of endophytic fungi in the roots, rhizomes, and leaves of Posidonia oceanica was evaluated in different localities of the Sicilian coast. Samples of roots, rhizomes, and leaves were submitted to isolation techniques, and the obtained fungal colonies were identified by morphological and molecular (rRNA sequencing) analysis. Fungal endophytes occurred mainly in roots and occasionally in rhizomes and leaves. Lulwoana sp. was the most frequent of the isolated taxa, suggesting a strong interaction with the host. In addition, eight other fungal taxa were isolated. In particular, fungi of the genus Ochroconis and family Xylariaceae were identified as endophytes in healthy plants at all sampling stations, whereas Penicillium glabrum was isolated at only one sampling station. Thus, several organs, especially roots of Posidonia oceanica, harbor endophytic fungi, potentially involved in supporting the living host as ascertained for terrestrial plants. Full article
Show Figures

Figure 1

14 pages, 2291 KiB  
Article
Antimicrobial Polyketide Metabolites from Penicillium bissettii and P. glabrum
by Melissa M. Cadelis, Natasha S. L. Nipper, Alex Grey, Soeren Geese, Shara J. van de Pas, Bevan S. Weir, Brent R. Copp and Siouxsie Wiles
Molecules 2022, 27(1), 240; https://doi.org/10.3390/molecules27010240 - 31 Dec 2021
Cited by 5 | Viewed by 2920
Abstract
Screening of several fungi from the New Zealand International Collection of Microorganisms from Plants identified two strains of Penicillium, P. bissettii and P. glabrum, which exhibited antimicrobial activity against Escherichia coli,Klebsiella pneumoniae, and Staphylococcus aureus. Further investigation into the natural [...] Read more.
Screening of several fungi from the New Zealand International Collection of Microorganisms from Plants identified two strains of Penicillium, P. bissettii and P. glabrum, which exhibited antimicrobial activity against Escherichia coli,Klebsiella pneumoniae, and Staphylococcus aureus. Further investigation into the natural products of the fungi, through extraction and fractionation, led to the isolation of five known polyketide metabolites, penicillic acid (1), citromycetin (2), penialdin A (3), penialdin F (4), and myxotrichin B (5). Semi-synthetic derivatization of 1 led to the discovery of a novel dihydro (1a) derivative that provided evidence for the existence of the much-speculated open-chained form of 1. Upon investigation of the antimicrobial activities of the natural products and derivatives, both penicillic acid (1) and penialdin F (4) were found to inhibit the growth of Methicillin-resistant S. aureus. Penialdin F (4) was also found to have some inhibitory activity against Mycobacterium abscessus and M. marinum along with citromycetin (2). Full article
Show Figures

Figure 1

16 pages, 2412 KiB  
Article
Impact of Thermotherapy and Short-Term Storage on Quercus robur L. Acorn Mycobiota and Germination
by Jelena Kranjec Orlović, Damir Drvodelić, Marko Vukelić, Matea Rukavina, Danko Diminić and Milan Oršanić
Forests 2021, 12(5), 528; https://doi.org/10.3390/f12050528 - 25 Apr 2021
Cited by 5 | Viewed by 2760
Abstract
When natural regeneration of Quercus robur stands is hampered by an insufficient acorn yield, human assisted sowing of acorns collected in non-affected stands and stored for some period of time is performed. To inhibit the development of fungi and acorn deterioration during storage, [...] Read more.
When natural regeneration of Quercus robur stands is hampered by an insufficient acorn yield, human assisted sowing of acorns collected in non-affected stands and stored for some period of time is performed. To inhibit the development of fungi and acorn deterioration during storage, thermotherapy is usually applied by submerging acorns for 2.5 h in water heated to 41 °C. This research aimed to test the effect of four thermotherapy treatments of different durations and/or applied temperatures as well as short-term storage at −1 °C or 3 °C on acorn internal mycobiota and germination. Fungal presence in cotyledons was analyzed in 450 acorns by isolation of mycelia on artificial media, followed by a DNA-based identification. Germination of 2000 acorns was monitored in an open field trial. Thermotherapy significantly decreased fungal diversity, while storage at 3 °C increased the isolation frequency of several fungi, mainly Penicillium spp. The most frequently isolated fungi did not show a negative impact on acorn germination after short-term storage. The study confirmed the efficiency of thermotherapy in the eradication of a part of acorn internal mycobiota, but also its effect on the proliferation of fast-colonizing fungi during storage. However, the latter showed to be more stimulated by storage conditions, specifically by storage at 3 °C. Full article
(This article belongs to the Special Issue Tree Regeneration by Seeds in Natural Forests)
Show Figures

Figure 1

22 pages, 2341 KiB  
Article
Control of Penicillium glabrum by Indigenous Antagonistic Yeast from Vineyards
by Catalina M. Cabañas, Alejandro Hernández, Ana Martínez, Paula Tejero, María Vázquez-Hernández, Alberto Martín and Santiago Ruiz-Moyano
Foods 2020, 9(12), 1864; https://doi.org/10.3390/foods9121864 - 14 Dec 2020
Cited by 29 | Viewed by 3805
Abstract
Biocontrol is one of the most promising alternatives to synthetic fungicides for food preservation. Botrytis cinerea, Alternaria alternata, and Aspergillus section Nigri are the most concerning pathogens for grape development. However, frequently, other species, such as Penicillium glabrum in this study, are [...] Read more.
Biocontrol is one of the most promising alternatives to synthetic fungicides for food preservation. Botrytis cinerea, Alternaria alternata, and Aspergillus section Nigri are the most concerning pathogens for grape development. However, frequently, other species, such as Penicillium glabrum in this study, are predominant in spoiled bunches. In this work, 54 native yeasts from vineyards were screened by direct confrontation in potato dextrose agar plates as antagonists against P. glabrum. Isolates of Pichia terricola, Aureobasidium pullulans, and Zygoascus meyerae were selected for their antagonist activity in vitro, plus isolates of Pichia kudriavzevii, Hormonema viticola, and Hanseniaspora uvarum were used as negative controls. However, in vivo, confrontations in wounded grapes showed disagreement with direct confrontation in vitro. P. terricola, P. kudriavzevii, H. viticola, Z. meyerae, and H. uvarum significantly reduced the incidence of P. glabrum on grapes. Nevertheless, P. terricola, H. viticola, and H. uvarum themselves spoiled the wounded grapes. Inhibitions were associated with different mechanisms such as the production of volatile organic compounds (VOCs), lytic enzymes, biofilm formation, and competition for nutrients. The isolates of P. kudriavzevii L18 (a producer of antifungal VOCs which completely inhibited the incidence of P. glabrum) and Z. meyerae L29 (with pectinase, chitinase and β-glucanase activity and biofilm formation which reduced 70% of the incidence of P. glabrum) are proposed as suitable biocontrol agents against P. glabrum. Full article
(This article belongs to the Special Issue Application of Bioprotective Strains in Food)
Show Figures

Figure 1

15 pages, 2698 KiB  
Article
Anti-Inflammatory and Protein Tyrosine Phosphatase 1B Inhibitory Metabolites from the Antarctic Marine-Derived Fungal Strain Penicillium glabrum SF-7123
by Tran Minh Ha, Dong-Cheol Kim, Jae Hak Sohn, Joung Han Yim and Hyuncheol Oh
Mar. Drugs 2020, 18(5), 247; https://doi.org/10.3390/md18050247 - 9 May 2020
Cited by 25 | Viewed by 3720
Abstract
A chemical investigation of the marine-derived fungal strain Penicillium glabrum (SF-7123) revealed a new citromycetin (polyketide) derivative (1) and four known secondary fungal metabolites, i.e, neuchromenin (2), asterric acid (3), myxotrichin C (4), and deoxyfunicone [...] Read more.
A chemical investigation of the marine-derived fungal strain Penicillium glabrum (SF-7123) revealed a new citromycetin (polyketide) derivative (1) and four known secondary fungal metabolites, i.e, neuchromenin (2), asterric acid (3), myxotrichin C (4), and deoxyfunicone (5). The structures of these metabolites were identified primarily by extensive analysis of their spectroscopic data, including NMR and MS data. Results from the initial screening of anti-inflammatory effects showed that 2, 4, and 5 possessed inhibitory activity against the excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, with IC50 values of 2.7 µM, 28.1 µM, and 10.6 µM, respectively. Compounds 2, 4, and 5 also inhibited the excessive production of NO, with IC50 values of 4.7 µM, 41.5 µM, and 40.1 µM, respectively, in LPS-stimulated RAW264.7 macrophage cells. In addition, these compounds inhibited LPS-induced overproduction of prostaglandin E2 in both cellular models. Further investigation of the most active compound (2) revealed that these anti-inflammatory effects were associated with a suppressive effect on the over-expression of inducible nitric oxide synthase and cyclooxygenase-2. Finally, we showed that the anti-inflammatory effects of compound 2 were mediated via the downregulation of inflammation-related pathways such as those dependent on nuclear factor kappa B and p38 mitogen-activated protein kinase in LPS-stimulated BV2 and RAW264.7 cells. In the evaluation of the inhibitory effects of the isolated compounds on protein tyrosine phosphate 1B (PTP1B) activity, compound 4 was identified as a noncompetitive inhibitor of PTP1B, with an IC50 value of 19.2 µM, and compound 5 was shown to inhibit the activity of PTP1B, with an IC50 value of 24.3 µM, by binding to the active site of the enzyme. Taken together, this study demonstrates the potential value of marine-derived fungal isolates as a bioresource for bioactive compounds. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory Agents 2020)
Show Figures

Figure 1

16 pages, 950 KiB  
Article
HPLC-MS/MS Method for the Detection of Selected Toxic Metabolites Produced by Penicillium spp. in Nuts
by Davide Spadaro, Giovanna Roberta Meloni, Ilenia Siciliano, Simona Prencipe and Maria Lodovica Gullino
Toxins 2020, 12(5), 307; https://doi.org/10.3390/toxins12050307 - 8 May 2020
Cited by 16 | Viewed by 5435
Abstract
Penicillium spp. are emerging as producers of mycotoxins and other toxic metabolites in nuts. A HPLC-MS/MS method was developed to detect 19 metabolites produced by Penicillium spp. on chestnuts, hazelnuts, walnuts and almonds. Two extraction methods were developed, one for chestnuts and one [...] Read more.
Penicillium spp. are emerging as producers of mycotoxins and other toxic metabolites in nuts. A HPLC-MS/MS method was developed to detect 19 metabolites produced by Penicillium spp. on chestnuts, hazelnuts, walnuts and almonds. Two extraction methods were developed, one for chestnuts and one for the other three nuts. The recovery, LOD, LOQ and matrix effect were determined for each analyte and matrix. Correlation coefficients were always >99.99%. In walnuts, a strong signal suppression was observed for most analytes and patulin could not be detected. Six strains: Penicillium bialowiezense, P. brevicompactum, P. crustosum, P. expansum, P. glabrum and P. solitum, isolated from chestnuts, were inoculated on four nuts. Chestnuts favored the production of the largest number of Penicillium toxic metabolites. The method was used for the analysis of 41 commercial samples: 71% showed to be contaminated by Penicillium-toxins. Cyclopenin and cyclopenol were the most frequently detected metabolites, with an incidence of 32% and 68%, respectively. Due to the risk of contamination of nuts with Penicillium-toxins, future studies and legislation should consider a larger number of mycotoxins. Full article
Show Figures

Figure 1

16 pages, 566 KiB  
Article
Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy
by Yi Zhang, Jun Mu, Yan Feng, Yue Kang, Jia Zhang, Peng-Juan Gu, Yu Wang, Li-Fang Ma and Yan-Hua Zhu
Mar. Drugs 2009, 7(2), 97-112; https://doi.org/10.3390/md7020097 - 17 Apr 2009
Cited by 118 | Viewed by 19685
Abstract
In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to [...] Read more.
In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata. Full article
Show Figures

Graphical abstract

Back to TopTop