Preliminary Classification of the ABC Transporter Family in Betula halophila and Expression Patterns in Response to Exogenous Phytohormones and Abiotic Stresses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment Methods
2.2. Experimental Methods
2.2.1. Bioinformatics Analysis
2.2.2. Semi-Quantitative RT-PCR
3. Results
3.1. Sequence Analysis of BhABC Genes in B. halophila
3.1.1. Analysis of Physicochemical Properties of BhABC Genes
3.1.2. Analysis of BhABC Protein Domains
3.1.3. Phylogenetic Analysis of BhABC Proteins
3.2. Responses of BhABC Genes to Hormone Treatments
3.2.1. Responses of BhABC Genes to 6-Benzylaminopurine (6-BA)
3.2.2 Responses of BhABC Genes to Brassinolide (BR)
3.2.3. Responses of BhABC Genes to Gibberellin (GA3)
3.2.4. Responses of BhABC Genes to Salicylic Acid (SA)
3.2.5. Responses of BhABC Genes to Jasmonic Acid (JA)
3.2.6 Responses of BhABC Genes to Indole-3-Acetic Acid (IAA)
3.2.7. Responses of BhABC Genes to Abscisic Acid (ABA)
3.3. Expression Characteristics of BhABC Genes under Abiotic Stress
3.3.1. Expression of BhABC Genes under NaCl Stress
3.3.2. Expression of BhABC Genes under CdCl2 Stress
3.3.3. Expression of BhABC Genes under NaHCO3 Stress
3.3.4. Expression of BhABC Genes under Polyethylene Glycol (PEG) stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NBD | Nucleotide binding domains |
TMD | Transmembrane domains |
ORF | Open reading frame |
6-BA | 6-Benzylaminopurine |
BR | Brassinolide |
GA3 | Gibberellin |
SA | Salicylic acid |
JA | Jasmonic acid |
IAA | Indole-3-acetic acid |
ABA | Abscisic acid |
PDR | Pleiotropic drug resistance |
WBC | White-brown complex |
ATH | ABC2 homologue |
MDR | Multidrug resistance protein |
TAP | Transporter associated with antigen processing |
ATM | ABC transporter of the mitochondria |
MRP | Multidrug resistance-associated protein |
References
- Glavinas, H.; Krajcsi, P.; Cserepes, J.; Sarkadi, B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr. Drug Deliv. 2004, 1, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Wu, C.P.; Ambudkar, S.V. Development of inhibitors of ATP-binding cassette drug transporters—present status and challenges. Expert Opin. Drug Metab. Toxicol. 2008, 4, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Beek, J.T.; Guskov, A.; Slotboom, D.J. Structural diversity of ABC transporters. J. Gen. Physiol. 2014, 143, 419–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Z.; Sun, W.M.; Ma, Y.F.; Han, E.Q.; Han, L.; Sun, L.P.; Peng, Z.H.; Wang, B.J. Research progress of ABC transporters in Arabidopsis thaliana. Plant. Physiol. 2017, 2, 4–15. [Google Scholar]
- Verrier, P.J.; Bird, D.; Burla, B.; Dassa, E.; Forestier, C.; Geisler, M.; Klein, M.; Kolukisaoglu, U.; Lee, Y.; Martinoia, E.; et al. Plant ABC proteins—A unifi ed nomenclature and updated inventory. Trends Plant. Sci. 2008, 13, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Park, J.; Choi, H.; Burla, B.; Kretzschmar, T.; Lee, Y.; Martinoia, E. Plant ABC transporters. In Arabidopsis Book; BioOne: Washington, DC, USA, 2011; Volume 9, p. e0153. [Google Scholar]
- Dudle, R.; Hertig, C. Structure of an mdr-like gene from Arabidopsis thaliana. J. Biol. Chem. 1992, 267, 5882–5888. [Google Scholar]
- Kougioumoutzi, E.; Cartolano, M.; Canales, C.; Dupré, M.; Bramsiepe, J.; Vlad, D.; Rast, M.; Dello Ioio, R.; Tattersall, A.; Schnittger, A.; et al. SIMPLE LEAF3 encodes a ribosome-associated protein required for leaflet development in Cardamine hirsuta. Plant J. 2013, 73, 533–545. [Google Scholar] [CrossRef]
- Navarro-Quiles, C.; Mateo-Bonmati, E.; Micol, J.L. ABCE Proteins: From Molecules to Development. Front. Plant Sci. 2018, 9, 1125. [Google Scholar] [CrossRef]
- Maathuis, F.J.; Filatov, V.; Herzyk, P.C.; Krijger, G.B.; Axelsen, K.; Chen, S.; Green, B.J.; Li, Y.; Madagan, K.L.; Sanchez-Fernandez, R.; et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 2003, 35, 675–692. [Google Scholar] [CrossRef]
- Wu, G.; Carville, J.S.; Spalding, E.P. ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle. Plant J. 2016, 85, 209–218. [Google Scholar] [CrossRef]
- Kubeš, M.; Yang, H.; Richter, G.L.; Cheng, Y.; Młodzińska, E.; Wang, X.; Blakeslee, J.J.; Carraro, N.; Petrášek, J.; Zažímalová, E.; et al. The Arabidopsis concentration-dependent infl ux/effl ux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. 2012, 69, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.X.; et al. Functional Characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Aradopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J. Bio. Chem. 2001, 282, 21561–21571. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Bovet, L.; Kushnir, S.; Noh, E.W.; Martinoia, E.; Lee, Y. ArATM3 is invovled in heavy metal resistance in Arabidopsis. Plant Physiol. 2006, 140, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Selote, D.S.; Vatamaniuk, O.K. The N-terminal extension domain of the C. elegans half-molecule ABC transporter, HMT-1, is required for protein-protein interactions and function. PLoS ONE 2010, 5, e12938. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Song, W.Y.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, T.G.; Martinoia, E.; Lee, Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Y.; Park, J.; Mendoza-Cózatl, D.G.; Suter-Grotemeyer, M.; Shim, D.; Hörtensteiner, S.; Geisler, M.; Weder, B.; Rea, P.A.; Rentsch, D.; et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc. Natl. Acad. Sci. USA 2010, 107, 21187–21192. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, P.; Zanella, L.; De, P.A.; Di Litta, D.; Cecchetti, V.; Falasca, G.; Barbieri, M.; Altamura, M.M.; Costantino, P.; Cardarelli, M. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J. Exp. Bot. 2015, 66, 3815–3829. [Google Scholar] [CrossRef]
- Nagy, R.; Grob, H.; Weder, B.; Green, P.; Klein, M.; Frelet-Barrand, A.; Schjoerring, J.K.; Brearley, C.; Martinoia, E. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J. Biol. Chem. 2009, 284, 33614–33622. [Google Scholar] [CrossRef]
- Moons, A. Ospdr9, which encodes a PDR- type ABCtransporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett. 2003, 553, 370–375. [Google Scholar] [CrossRef]
- Kang, J.; Hwang, J.U.; Lee, M.; Kim, Y.Y.; Assmann, S.M.; Martinoia, E.; Lee, Y. PDR-Type ABC Transporter Mediates Cellular Uptake of the Phytohormone Abscisic Acid. Proc. Natl. Acad. Sci. USA 2010, 107, 2355–2360. [Google Scholar] [CrossRef]
- Kang, J.; Yim, S.; Choi, H.; Kim, A.; Lee, K.P.; Lopez-Molina, L.; Martinoia, E.; Lee, Y. Abscisic acid transporters cooperate to control seed germination. Nat. Commun. 2015, 6, 8113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuromori, T.; Miyaji, T.; Yabuuchi, H.; Shimizu, H.; Sugimoto, E.; Kamiya, A.; Moriyama, Y.; Shinozaki, K. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad Sci USA 2010, 107, 2361–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, D.; Kang, J.; Kiba, T.; Park, J.; Kojima, M.; Do, J.; Kim, K.Y.; Kwon, M.; Endler, A.; Song, W.Y.; et al. Arabidopsis ABCG14 is essential for the root-to-apical bud translocation of cytokinin. Proc. Natl. Acad. Sci. USA 2014, 111, 7150–7155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Novak, O.; Wei, Z.; Gou, M.; Zhang, X.; Yu, Y.; Yang, H.; Cai, Y.; Strnad, M.; Liu, C.J. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 2014, 5, 3247. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.J.; Zhang, L.S.; Iain, W.W.; Qiu, D.Y. Transcriptomic Analysis of Betula halophila in Response to Salt Stress. Int. J. Mol. Sci. 2018, 19, 3412. [Google Scholar]
- Nguyen, V.N.T.; Moon, S.; Jung, K.H. Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J. Plant Physiol. 2014, 171, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, M.; Schuetz, M.; Lin, B.S.P.; Chanis, C.; Hamberger, B.; Western, T.L.; Ehlting, J.; Samuels, A.L. ABC transporters coordinately expressed during lignifi cation of Arabidopsis stems include a set of ABCBs associated with auxin transport. J. Exp. Bot. 2011, 62, 2063–2077. [Google Scholar] [CrossRef]
- Strader, L.C.; Bartel, B. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 2009, 21, 1992–2007. [Google Scholar] [CrossRef]
- Ha, C.V.; Leyva-González, M.A.; Osakabe, Y.; Tran, U.T.; Nishiyama, R.; Watanabe, Y.; Tanaka, M.; Seki, M.; Yamaquchi, S.; Dong, N.V.; et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. USA 2014, 11, 851–856. [Google Scholar] [CrossRef]
- Merilo, E.; Jalakas, P.; Laanemets, K.; Mohammadi, O.; Hõrak, H.; Kollist, H.; Brosché, M. Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol. Plant 2015, 8, 1321–1333. [Google Scholar] [CrossRef]
- Eichhorn, H.; Klinghammer, M.; Becht, P.; Tenhaken, R. Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J. Exp. Bot. 2006, 57, 2193–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.Y.; Bovet, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heav ymetal resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.F.; Kreppel, L.; Speiser, D.M.; Scheel, G. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette- type vacuolar membrane transporter. EMBO J. 1992, 11, 3491–3499. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.F.; Ruscitti, T.; McCue, K.F.; Ow, D.W. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 1995, 270, 4721–4728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.J.; Wang, Z.; Lian, B.Y.; Guo, Z.; Wei, D.; Yu, S.H.; Li, H.Y.; Liu, X.D. Study on the relationship between ABC transporter genes and drought tolerance in foxtail millet. Shanxi Agric. Univ. 2018, 38, 011. [Google Scholar]
- Kim, D.Y.; Jin, J.Y.; Alejandro, S.; Lee, Y. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol. Plant. 2010, 139, 170–180. [Google Scholar] [CrossRef] [PubMed]
Gene | Upstream Primer Sequence (5′→3′) | Downstream Primer Sequence (5′→3′) | Length of Product |
---|---|---|---|
BhABC1 | CTTACCGGTACATACCTGTAGG | GTATCATGGTGCATTGTTGTCC | 295 bp |
BhABC2 | GGTGGTGGACGTAGAAGATCC | GGAAGCTGGAAGAGCATGCC | 297 bp |
BhABC3 | TCTCATTCGCTTACGTGTCC | GACCTTACTGAGCAGCTTCC | 289 bp |
BhABC4 | CCTCTACCTCCAGGATTAATGC | GCATCACTACCTGATGGTCTGG | 282 bp |
BhABC5 | GGATGTTAGCTATCGACCTCC | TGCCACAAAGAACCTCTCAGG | 274bp |
BhABC6 | GAATGGATGAGCAGCAAGTTCC | AACCATCCACAATGAGCTCACG | 279 bp |
BhABC7 | AAAGGCAATGCAGAAGCAGG | CTGGTGTCATTTTGGCTACTGC | 251 bp |
BhABC8 | CGAACAAAGAAGCTTCGAAGC | CCACATCTCTTCCTCCTACC | 273 bp |
BhABC9 | GGATGTTGGAAGTGACTACAGC | GAACTCTATCACGAGCTGTCC | 272 bp |
BhABC10 | CATAAGCAGTTCCAACACCTGG | CGGTCCTTGAGCTTTAACAGG | 276 bp |
BhABC11 | GCATGTTGGATGGTCACTGG | TAGCATGACGAGAGCAAGAAGC | 261 bp |
BhABC12 | TCGGTATGGAGGAACAATGC | GCAATTCCAACTCTGTCGAGG | 290 bp |
BhABC13 | GAGAACCGTGCATCATTCTGG | TTCTTCTTCTCGTCTTGTCTGC | 254 bp |
BhABC14 | GAATCTCGATTGGAATGGTGC | GGTCAACCTTGTGGTCTTCG | 260 bp |
BhABC15 | GGCTGCTTTAGAGAGACTGC | GTAGGCAATGCTCTGCTTCC | 285 bp |
18s rRNA | ATCTTGGGTTGGGCAGATCG | CATTACTCCGATCCCGAAGG | 265 bp |
Name | Length of ORF (bp) | Number of Amino Acids | Isoelectric Point | Subcellular Localization 1 | Signal Peptide | Number of Transmembrane Helix |
---|---|---|---|---|---|---|
BhABC1 | 4266 | 1421 | 8.54 | PM | NO | 13 |
BhABC2 | 786 | 261 | 5.41 | PM | NO | 0 |
BhABC3 | 2265 | 754 | 9.34 | PM | NO | 4 |
BhABC4 | 789 | 262 | 6.44 | CM | NO | 0 |
BhABC5 | 837 | 278 | 9.59 | M | NO | 0 |
BhABC6 | 2148 | 715 | 5.55 | CM | NO | 0 |
BhABC7 | 3742 | 1205 | 9.12 | PM | NO | 4 |
BhABC8 | 900 | 299 | 5.81 | CM | NO | 0 |
BhABC9 | 3528 | 1175 | 6.97 | PM | NO | 11 |
BhABC10 | 4281 | 1426 | 6.65 | PM | NO | 13 |
BhABC11 | 3564 | 1187 | 8.27 | PM | NO | 10 |
BhABC12 | 4296 | 1431 | 8.57 | PM | NO | 13 |
BhABC13 | 1176 | 391 | 9.68 | N | NO | 0 |
BhABC14 | 3231 | 1076 | 9.17 | PM | YES | 6 |
BhABC15 | 3447 | 1148 | 5.47 | PM | NO | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, L.; Ma, Q.; Du, J.; Yu, M.; Li, F.; Luan, J.; Jiang, J.; Li, H. Preliminary Classification of the ABC Transporter Family in Betula halophila and Expression Patterns in Response to Exogenous Phytohormones and Abiotic Stresses. Forests 2019, 10, 722. https://doi.org/10.3390/f10090722
An L, Ma Q, Du J, Yu M, Li F, Luan J, Jiang J, Li H. Preliminary Classification of the ABC Transporter Family in Betula halophila and Expression Patterns in Response to Exogenous Phytohormones and Abiotic Stresses. Forests. 2019; 10(9):722. https://doi.org/10.3390/f10090722
Chicago/Turabian StyleAn, Linjun, Qing Ma, Jinxia Du, Miao Yu, Fangrui Li, Jiayu Luan, Jing Jiang, and Huiyu Li. 2019. "Preliminary Classification of the ABC Transporter Family in Betula halophila and Expression Patterns in Response to Exogenous Phytohormones and Abiotic Stresses" Forests 10, no. 9: 722. https://doi.org/10.3390/f10090722
APA StyleAn, L., Ma, Q., Du, J., Yu, M., Li, F., Luan, J., Jiang, J., & Li, H. (2019). Preliminary Classification of the ABC Transporter Family in Betula halophila and Expression Patterns in Response to Exogenous Phytohormones and Abiotic Stresses. Forests, 10(9), 722. https://doi.org/10.3390/f10090722