Soil Disturbance Effects from Tethered Forwarding on Steep Slopes in Brazilian Eucalyptus Plantations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bulk Density
3.2. Rut Depth
3.3. Erosion Rates
4. Discussion
4.1. Bulk Density
4.2. Rut Depth
4.3. Erosion Rates
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Visser, R.; Raymond, K.; Harrill, H. Mechanising steep terrain harvesting operations. N. Z. J. For. 2014, 59, 3–8. [Google Scholar] [CrossRef]
- Worrell, W.C.; Bolding, M.C.; Aust, W.M. Potential Soil Erosion following Skyline Yarding versus Tracked Skidding on Bladed Skid Trails in the Appalachian Region of Virginia. South. J. Appl. For. 2011, 35, 131–135. [Google Scholar] [Green Version]
- Kirk, P.M.; Sullman, M.J.M. Heart rate strain in cable hauler choker setters in New Zealand logging operations. Appl. Ergon. 2001, 32, 389–398. [Google Scholar] [CrossRef]
- Wang, J.; Long, C.; McNeel, J. Production and cost analysis of a feller-buncher and grapple skidder in central Appalachian hardwood forests. For. Prod. J. 2004, 54, 159–167. [Google Scholar]
- Horn, R.; Vossbrink, J.; Peth, S.; Becker, S. Impact of modern forest vehicles on soil physical properties. For. Ecol. Manag. 2007, 248, 56–63. [Google Scholar] [CrossRef]
- Sessions, J.; Leshchinsky, B.; Chung, W.; Boston, K.; Wimer, J. Theoretical stability and traction of steep slope tethered feller-bunchers. For. Sci. 2017, 63, 192–200. [Google Scholar] [CrossRef]
- Heinimann, H.R. Ground-based harvesting technologies for steep slopes. In Proceedings of the International Mountain Logging and 10th Pacific Northwest Skyline Symposium, Corvallis, OR, USA, 28 March–1 April 1999; Dept of Forest Engineering, Oregon State University: Corvallis, OR, USA, 1999; pp. 1–18. [Google Scholar]
- Visser, R.; Berkett, H. Effect of terrain steepness on machine slope when harvesting. Int. J. For. Eng. 2015, 26, 1–9. [Google Scholar] [CrossRef]
- Visser, R.; Stampfer, K. Expanding ground-based harvesting onto steep terrain: A review. Croat. J. For. Eng. 2015, 36, 321–331. [Google Scholar]
- Cavalli, R. Forest operations in steep terrain. In Proceedings of the Conference CROJFE, Zagreb, Croatia, 18–20 March 2015. [Google Scholar]
- Bombosch, F.; Sohns, D.; Nollau, R.; Kanzler, D.I. Are forest operations on steep terrain (average of 70% slope inclination) with wheel mounted forwarders without slippage possible? In Proceedings of the Austro2003-Symposium: High Tech Forest Operations for Mountainous Terrain, Schlägl, Austria, 5–9 October 2003. [Google Scholar]
- Stampfer, K.; Steinmüller, T. A new approach to drive a productivity model for the harvester Valmet 911 Snake. In Proceedings of the International Mountain Logging and 11th Pacific Northwest Skyline Symposium–A Forest Engineering Odyssey, Seattle, WA, USA, 10–12 December 2001; pp. 254–262. [Google Scholar]
- Heinimann, H.R.; Stampfer, K.; Loschek, J.; Caminada, L. Perspectives on Central European Cable Yarding Systems. In Proceedings of the International Mountain Logging and 11th Northwest Pacific Skyline Symposium, Seattle, WA, USA, 10–12 October 2001; pp. 268–279. [Google Scholar]
- Raymond, K. Innovation to increase profitability of steep terrain harvesting in New Zealand. N. Z. J. For. 2012, 57, 19–23. [Google Scholar]
- Slappendel, C.; Laird, I.; Kawachi, I.; Marshall, S.; Cryer, C. Factors affecting work-related injury among forestry workers: A review. J. Saf. Res. 1993, 24, 19–32. [Google Scholar] [CrossRef]
- McKenzie, D.W.; Richardson, B.Y. Feasibility study of self-contained tether cable system for operating equipment on slopes of 20 to 75%. J. Terramech. 1978, 15, 116–127. [Google Scholar] [CrossRef]
- Hartsough, B.R.; Miles, J.A.; Gaio, C.; Frank, A.A. Cable-towed vehicles for harvesting on mountainous terrain. In Proceedings of the International Mountain Logging and Pacific Northwest Skyline Symposium, Portland, OR, USA, 1988; pp. 12–16. [Google Scholar]
- Amishev, D.; Hunt, J. Steep-slope timber-harvesting research in Western Canada. In Forest Engineering: Making a Positive Contribution. Abstracts and Proceedings of the 48th Symposium on Forest Mechanization, Linz, Austria, 4–8 October 2015; FPInnovations: Vancouver, BC, Canada, October 2015; pp. 343–351. [Google Scholar]
- Mologni, O.; Grigolato, S.; Cavalli, R. Harvesting systems for steep terrain in the Italian Alps: State of the art and future prospects. Contemp. Eng. Sci. 2016, 9, 1229–1242. [Google Scholar] [CrossRef]
- Visser, R.; Raymond, K.; Harrill, H. Developing Fully Mechanised Steep Terrain Harvesting Operations. In Proceedings of the 47th International Symposium on Forestry Mechanisation: Forest Engineering: Propelling the Forest Value Chain, Gerardmer, France, 23–26 September 2014. [Google Scholar]
- Kröger, M.; Nylund, J.-E. The conflict over Veracel pulpwood plantations in Brazil—Application of Ethical Analysis. For. Policy Econ. 2012, 14, 74–82. [Google Scholar] [CrossRef]
- Silva, R.F.; Batistella, M.; Moran, E.F. Drivers of land change: Human-environment interactions and the Atlantic forest transition in the Paraíba Valley, Brazil. Land Use Policy 2016, 58, 133–144. [Google Scholar] [CrossRef]
- Moura, A. Suzano, Guaratingutá; Personal Communication: São Paulo, Brazil, 2018. [Google Scholar]
- Holzfeind, T.; Stampfer, K.; Holzleitner, F. Productivity, setup time and costs of a winch-assisted forwarder. J. For. Res. 2018, 23, 196–203. [Google Scholar] [CrossRef]
- Evanson, T.; Amishev, D. A Steep Slope Excavator Feller Buncher. In FFR Harvesting Technical Note; Future Forests Research Ltd.: Rotorua, New Zealand, 2010; Volume 3, pp. 1–8. [Google Scholar]
- Evanson, T.; Amishev, D.; Parker, R.; Harrill, H. An Evaluation of a ClimbMAX Steep Slope Harvester in Maungataniwha Forest, Hawkes Bay; Future Forests Research Ltd.: Rotorua, New Zealand, 2013. [Google Scholar]
- Holzleitner, F.; Kastner, M.; Stampfer, K.; Höller, N.; Kanzian, C. Monitoring cable tensile forces of winch-assisted harvester and forwarder operations in steep terrain. Forests 2018, 9, 53. [Google Scholar] [CrossRef]
- Visser, R. Tension Monitoring of a Cable Assisted Machine; Harvesting Technical Note HTN05-11; Future Forests Research Ltd.: Rotorua, New Zealand, 2013. [Google Scholar]
- Tsioras, P.A.; Rottensteiner, C.; Stampfer, K. Wood harvesting accidents in the Austrian State Forest Enterprise 2000–2009. Saf. Sci. 2013, 62, 400–408. [Google Scholar] [CrossRef]
- Axelsson, S.-Ă. The mechanization of logging operations in Sweden and its effect on occupational safety and health. J. For. Eng. 1998, 9, 25–31. [Google Scholar] [CrossRef]
- Bell, J.L. Changes in logging injury rates associated with use of feller-bunchers in West Virginia. J. Saf. Res. 2002, 33, 463–471. [Google Scholar] [CrossRef]
- Amishev, D.; Hunt, J. Winch-Assist Harvester: Best Practice Manual; Special Publication SP-533; FPInnovations: Vancouver, BC, Canada, 2018. [Google Scholar]
- Edeso, J.M.; Merino, A.; Gonzalez, M.J.; Marauri, P. Soil erosion under different harvesting managements in steep forestlands from northern Spain. Land Degrad. Dev. 1999, 10, 79–88. [Google Scholar] [CrossRef]
- Laffan, M.; Jordan, G.; Duhig, N. Impacts on soils from cable-logging steep slopes in northeastern Tasmania, Australia. For. Ecol. Manag. 2001, 144, 91–99. [Google Scholar] [CrossRef]
- Megahan, W.F.; Kidd, W.J. Effects of logging and logging roads on erosion and sediment deposition from steep terrain. J. For. 1972, 70, 136–141. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the universal soil loss equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Visser, R.; Adams, J. Risk Management of Steep Terrain Harvesting. In Council on Forest Engineering-A Global Perspective; Council on Forest Engineering: Auburn, AL, USA, 2002. [Google Scholar]
- Vinson, J.A.; Barrett, S.M.; Aust, W.M.; Bolding, M.C. Evaluation of bladed skid trail closure methods in the ridge and valley region. For. Sci. 2017, 63, 432–440. [Google Scholar] [CrossRef]
- Kochenderfer, J. Area in skidroads, truck roads, and landings in the central Appalachians. J. For. 1977, 75, 507–508. [Google Scholar]
- Christopher, E.A.; Visser, R. Methodology for evaluating post harvest erosion risk for the protection of water quality. N. Z. J. For. 2007, 52, 20–25. [Google Scholar]
- Wade, C.R.; Bolding, M.C.; Aust, W.M.; Lakel, W.A., III. Comparison of five erosion control techniques for bladed skid trails in Virginia. South. J. Appl. For. 2012, 36, 191–197. [Google Scholar] [CrossRef]
- Bettinger, P.; Kellogg, L.D. Residual stand damage from cut-to-length thinning of second-growth timber in the Cascade Range of western Oregon. For. Prod. J. 1993, 43, 59–64. [Google Scholar]
- Eliasson, L.; Wästerlund, I. Effects of slash reinforcement of strip roads on rutting and soil compaction on a moist fine-grained soil. For. Ecol. Manag. 2007, 252, 118–123. [Google Scholar] [CrossRef]
- Parkhurst, B.M.; Aust, W.M.; Bolding, M.C.; Barrett, S.M.; Carter, E.A. Soil response to skidder trafficking and slash application. Int. J. For. Eng. 2018, 29, 31–40. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Burger, J.A.; Aust, W.M.; Patterson, S.C. Soil physical disturbance and logging residue effects on changes in soil productivity in five-year-old pine plantations. Soil Sci. Soc. Am. J. 2005, 69, 1833–1843. [Google Scholar] [CrossRef]
- Agherkakli, B.; Najafi, A.; Sadeghi, S.H. Ground based operation effects on soil disturbance by steel tracked skidder in a steep slope of forest. J. For. Sci. 2010, 56, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Sakai, H.; Nordfjell, T.; Suadicani, K.; Talbot, B.; Bøllehuus, E. Soil compaction on forest soils from different kinds of tires and tracks and possibility of accurate estimate. Croat. J. For. Eng. 2008, 29, 15–27. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- ArcGis. Brazilian States; Esri: Relands, CA, USA, 2015. [Google Scholar]
- Esri. World Countries (Generalized); Esri: Redlands, CA, USA, 2017. [Google Scholar]
- Eliasson, L. Effects of forwarder tyre pressure on rut formation and soil compaction. Silva Fenn. 2005, 39, 549–557. [Google Scholar] [CrossRef]
- Taartila, S. Taking the environment into account when designing forest machinery. In Soil, Tree, Machine Interactions Seminar; Soil, Tree, Machine Interactions Seminar: Feldafing, Germany, 1994; pp. 1–5. [Google Scholar]
- Han, H.-S.; Page-Dumroese, D.; Han, S.K.; Tirocke, J. Effects of slash, machine passes, and soil moisture on penetration resistance in a cut-to-length harvesting. Int. J. For. Eng. 2006, 17, 11–24. [Google Scholar] [CrossRef]
- ISO, HRN. Soil Quality—Determination of Dry Bulk Density; Croatian Standards Institute: Zagreb, Croatia, 2017. [Google Scholar]
- Reynolds, S.G. The gravimetric method of soil moisture determination Part 1A: Study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Dissmeyer, G.; Foster, G. A Guide for Predicting Sheet and Rill Erosion on Forest Land; USDA Forest Service: Atlanta, GA, USA, 1980. [Google Scholar]
- Lombardi Neto, F.; Moldenhauer, W.C. Rainfall erosivity: Its distribution and relationship with soil loss at Campinas, state of São Paulo, Brazil. Bragantia 1992, 51, 189–196. [Google Scholar] [CrossRef]
- Thien, S.J. A flow diagram for teaching texture-by-feel analysis. J. Agron. Educ. 1979, 8, 54–55. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- SAS Inc. JMP Pro 14; SAS Institute Inc.: Cary, NC, USA, 1989–2019; 2018. [Google Scholar]
- Owende, P.M.O.; Lyons, J.; Haarlaa, R.; Peltola, A.; Spinelli, R.; Molano, J.; Ward, S.M. Operations Protocol for Eco-Efficient Wood Harvesting on Sensitive Sites; Ecowood Partnership, 2002; pp. 1–74. [Google Scholar]
- Brais, S.; Camiré, C. Soil compaction induced by careful logging in the claybelt region of northwestern Quebec (Canada). Can. J. Soil Sci. 1998, 78, 197–206. [Google Scholar] [CrossRef]
- Najafi, A.; Solgi, A.; Sadeghi, S.H. Soil disturbance following four wheel rubber skidder logging on the steep trail in the north mountainous forest of Iran. Soil Tillage Res. 2009, 103, 165–169. [Google Scholar] [CrossRef]
- Jamshidi, R.; Jaeger, D.; Raafatnia, N.; Tabari, M. Influence of two ground-based skidding systems on soil compaction under different slope and gradient conditions. Int. J. For. Eng. 2008, 19, 9–16. [Google Scholar] [CrossRef]
- Ares, A.; Terry, T.A.; Miller, R.E.; Anderson, H.W.; Flaming, B.L. Ground-based forest harvesting fffects on soil physical properties and Douglas-fir growth. Soil Sci. Soc. Am. J. 2005, 69, 1822–1832. [Google Scholar] [CrossRef]
- Froese, K. Buk Density, Soil Strength, and Soil Disturbance Impacts from a Cut-to-Length Harvest Operation in North Central Idaho. Ph.D. Thesis, University of Idaho, Moscow, Idaho, 2004. [Google Scholar]
- Gomez, A.; Powers, R.F.; Singer, M.J.; Horwath, W.R. Soil compaction effects on growth of young ponderosa pine following litter removal in California’s Sierra Nevada. Soil Sci. Soc. Am. J. 2002, 66, 1334–1343. [Google Scholar] [CrossRef]
- Powers, R.F.; Scott, D.A.; Sanchez, F.G.; Voldseth, R.A.; Page-Dumroese, D.; Elioff, J.D.; Stone, D.M. The North American long-term soil productivity experiment: Findings from the first decade of research. For. Ecol. Manag. 2005, 220, 31–50. [Google Scholar] [CrossRef]
- Solgi, A.; Najafi, A. The impacts of ground-based logging equipment on forest soil. J. For. Sci. 2014, 60, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Carter, E.; Rummer, R.B.; Stokes, B. Site disturbances associated with alternative prescriptions in an upland hardwood forest of northern Alabama. In Proceedings of the 1997 ASAE [American Society of Agricultural Engineers] Annual International Meeting, Minneapolis, MN, USA, 10–14 August 1997. [Google Scholar]
- Landsberg, J.; Miller, R.; Anderson, H.; Tepp, J. Bulk Density and Soil Resistance to Penetration as Affected by Commercial Thinning in Northeastern Washington; Res. Pap. PNW-RP-551; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2003; p. 551. [Google Scholar]
- McNabb, D.H.; Startsev, A.D.; Nguyen, H. Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Sci. Soc. Am. J. 2001, 65, 1238–1247. [Google Scholar] [CrossRef]
- Wallbrink, P.J.; Roddy, B.P.; Olley, J.M. A tracer budget quantifying soil redistribution on hillslopes after forest harvesting. Catena 2002, 47, 179–201. [Google Scholar] [CrossRef]
- Wang, L. Assessment of animal skidding and ground machine skidding under mountain conditions. J. For. Eng. 1997, 8, 57–64. [Google Scholar] [CrossRef]
- Bezkorowajnyj, P.G.; Gordon, A.M.; McBride, R.A. The effect of cattle foot traffic on soil compaction in a silvo-pastoral system. Agrofor. Syst. 1993, 21, 1–10. [Google Scholar] [CrossRef]
- Martínez, L.J.; Zinck, J.A. Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res. 2004, 75, 3–18. [Google Scholar] [CrossRef]
- McDonald, T.P.; Seixas, F. Effect of Slash on Forwarder Soil Compaction. J. For. Eng. 1997, 8, 15–26. [Google Scholar]
- Picchio, R.; Neri, F.; Petrini, E.; Verani, S.; Marchi, E.; Certini, G. Machinery-induced soil compaction in thinning two pine stands in central Italy. For. Ecol. Manag. 2012, 285, 38–43. [Google Scholar] [CrossRef]
- Powers, R.F.; Tiarks, A.E.; Boyle, J.R. Assessing soil quality: Practicable standards for sustainable forest productivity in the United States. In Criteria and Indicators of Soil Quality for Sustainable Forest Productivity. Special Publication 53 of the Soil Science Society of America; Davidson, E.A., Ed.; Soil Science Society of America: Madison, WA, USA, 1998. [Google Scholar]
- Daddow, R.; Warrington, G. Growth-Limiting Soil Bulk Densities as Influenced by Soil Texture; USDA Forest Service: Fort Collins, CO, USA, 1983. [Google Scholar]
- Seixas, F.; McDonald, T. Soil compaction effects of forwarding and its relationship with 6- and 8-wheel machines. For. Prod. J. 1997, 47, 46–52. [Google Scholar]
- Oliveira, A.; Silva, M.; Curi, N.; Avanzi, J.C.; Neto, G.K.; Araújo, E.F. Water erosion in soils under eucalyptus forest as affected by development stages and management systems. Ciência e Agrotecnologia 2013, 37, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A. Rainfall erosivity in Brazil: A review. Catena 2013, 100, 139–147. [Google Scholar] [CrossRef]
- Silva, M.A.; Silva, M.L.N.; Curi, N.; Oliveira, A.H.; Avanzi, J.C.; Norton, L.D. Water Erosion Risk Prediction in Eucalyptus Plantations. Ciência e Agrotecnologia 2014, 38, 160–172. [Google Scholar] [CrossRef]
- Ali, S.A.; Hagos, H. Estimation of soil erosion using USLE and GIS in Awassa Catchment, Rift valley, Central Ethiopia. Geoderma Regional 2016, 7, 159–166. [Google Scholar] [CrossRef]
- Kitahara, H.; Okura, Y.; Sammori, T.; Kawanami, A. Application of universal soil Loss equation (USLE) to mountainous forests in Japan. J. For. Res. 2000, 5, 231–236. [Google Scholar] [CrossRef]
- Myronidis, D.I.; Emmanouloudis, D.A.; Mitsopoulos, I.A.; Riggos, E.E. Soil erosion potential after fire and rehabilitation treatments in Greece. Environ. Model. Assess. 2009, 15, 239–250. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. A Universal Equation for Predicting Rainfall-Erosion Losses-An Aid to Conservation Farming in Humid Regions; Agr. Res. Serv. ARS Special Report; U.S. Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1961; pp. 22–66. [Google Scholar]
- Wade, C.R.; Bolding, M.C.; Aust, W.M.; Lakel, W.A., III; Schilling, E.B. Comparing sediment trap data with the USLE-Forest, RUSLE2, and WEPP-Road erosion models for evaluation of bladed skid trail BMPs. Am. Soc. Agric. Biol. Eng. 2012, 55, 403–414. [Google Scholar]
- Sawyers, B.C.; Bolding, M.C.; Aust, W.M.; Lakel, W.A. Effectiveness and implementation costs of overland skid trail closure techniques in the Virginia Piedmont. J. Soil Water Conserv. 2012, 67, 300–310. [Google Scholar] [CrossRef]
- Dumas, P.; Printemps, J. Assessment of soil erosion using USLE model and GIS for integrated watershed and coastal zone management in the South Pacific Islands. In Proceedings of the Interpraevent, International Symposium in Pacific Rim, Taipei, Taiwan, 26–30 April 2010; pp. 856–866. [Google Scholar]
- Hart, G.E. Erosion from simulated rainfall on mountain rangeland in Utah. J. Soil Water Conserv. 1984, 39, 330–334. [Google Scholar]
- Vinson, J.A.; Barrett, S.M.; Aust, W.M.; Bolding, M.C. Suitability of soil erosion models for the evaluation of bladed skid trail BMPs in the Southern appalachians. Forests 2017, 8, 482. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D. Quantifying the use of brush mats in reducing forwarder peak loads and surface contact pressures. Croat. J. For. Eng. 2012, 33, 249–274. [Google Scholar]
Mean Bulk Density (g/cm3) | p (α = 0.05) | ||||||
---|---|---|---|---|---|---|---|
Slope Class | Treatment | O | I | B | O vs. I | O vs. B | I vs. B |
Low Slope | |||||||
TWMLD | 1.27 | 1.40 | 1.29 | 0.011 | 0.844 | 0.045 | |
TWAGG | 1.24 | 1.45 | 1.35 | <0.001 | 0.010 | 0.037 | |
HSMLD | 1.33 | 1.54 | 1.37 | <0.001 | 0.467 | <0.001 | |
HSAGG | 1.31 | 1.58 | 1.35 | <0.001 | 0.738 | <0.001 | |
Medium Slope | |||||||
TWMLD | 1.46 | 1.54 | 1.45 | 0.256 | 0.970 | 0.169 | |
TWAGG | 1.32 | 1.36 | 1.33 | 0.600 | 0.972 | 0.741 | |
HSMLD | 1.42 | 1.46 | 1.43 | 0.753 | 0.988 | 0.836 | |
HSAGG | 1.35 | 1.44 | 1.41 | 0.198 | 0.539 | 0.776 | |
High Slope | |||||||
TWMLD | 1.31 | 1.41 | 1.34 | 0.025 | 0.665 | 0.170 | |
TWAGG | 1.30 | 1.39 | 1.34 | 0.085 | 0.575 | 0.476 |
Change in Bulk Density | |||||||
---|---|---|---|---|---|---|---|
Slope Class | Treatment | n | Min | Mean | Max | SD | CV (%) |
-------------------------g/cm3----------------- | |||||||
Low Slope | |||||||
TWMLD | 18 | −0.11 | 0.14 | 0.46 | 0.16 | 114.1% | |
TWAGG | 18 | 0.00 | 0.22 | 0.48 | 0.15 | 67.7% | |
HSMLD | 18 | −0.13 | 0.20 | 0.51 | 0.16 | 79.7% | |
HSAGG | 18 | −0.11 | 0.26 | 0.79 | 0.24 | 89.6% | |
High Slope | |||||||
TWMLD | 18 | −0.09 | 0.10 | 0.32 | 0.13 | 132.4% |
Slope Class | Treatment | n | Min | Median | Max | SD |
---|---|---|---|---|---|---|
-------------------cm------------------- | ||||||
Low Slope | ||||||
TWMLD | 18 | 0.0 | 5.0 | 8.0 | 2.3 | |
TWAGG | 18 | 0.0 | 4.8 | 7.0 | 2.1 | |
HSMLD | 18 | 0.0 | 5.0 | 9.5 | 2.5 | |
HSAGG | 18 | 0.0 | 2.3 | 6.5 | 2.8 | |
Medium Slope | ||||||
TWMLD | 18 | 0.0 | 0.0 | 4.5 | 2.1 | |
TWAGG | 18 | 0.0 | 0.0 | 5.0 | 1.9 | |
HSMLD | 14 | 2.0 | 3.0 | 5.5 | 1.0 | |
HSAGG | 18 | 0.0 | 4.3 | 6.5 | 2.0 | |
High Slope | ||||||
TWMLD | 18 | 0.0 | 0.0 | 4.0 | 1.1 | |
TWAGG | 18 | 0.0 | 0.0 | 7.0 | 2.5 |
Treatment | Median (Mg/ha/year) | p-Value |
---|---|---|
Low Slope TWMLD | 24.3 | 0.012 |
Medium Slope TWMLD | 93.3 | |
Low Slope TWMLD | 24.3 | 0.019 |
High Slope TWMLD | 152.6 | |
Low Slope TWAGG High Slope TWAGG | 30.0 129.7 | 0.014 |
Low Slope HSMLD | 26.3 | 0.002 |
Medium Slope HSMLD | 115.1 | |
Low Slope HSAGG | 38.0 | 0.005 |
Medium Slope HSAGG | 113.8 |
Slope Class | Treatment | n | Min | Median | Max | SD |
---|---|---|---|---|---|---|
-----------------Mg/ha/yr---------------- | ||||||
Low Slope | ||||||
TWMLD | 18 | 0.8 | 24.3 | 89.0 | 21.1 | |
TWAGG | 18 | 0.7 | 30.0 | 73.5 | 19.8 | |
HSMLD | 18 | 6.6 | 26.3 | 49.8 | 12.5 | |
HSAGG | 18 | 0.5 | 38.0 | 78.5 | 19.58 | |
Medium Slope | ||||||
TWMLD | 18 | 2.2 | 93.3 | 346.0 | 91.0 | |
TWAGG | 18 | 0.7 | 88.7 | 178.7 | 65.1 | |
HSMLD | 18 | 12.7 | 115.1 | 248.2 | 65.7 | |
HSAGG | 18 | 1.1 | 113.8 | 240.2 | 67.4 | |
High Slope | ||||||
TWMLD | 18 | 5.5 | 152.6 | 240.0 | 77.9 | |
TWAGG | 18 | 2.1 | 129.7 | 1014.3 | 259.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garren, A.M.; Bolding, M.C.; Aust, W.M.; Moura, A.C.; Barrett, S.M. Soil Disturbance Effects from Tethered Forwarding on Steep Slopes in Brazilian Eucalyptus Plantations. Forests 2019, 10, 721. https://doi.org/10.3390/f10090721
Garren AM, Bolding MC, Aust WM, Moura AC, Barrett SM. Soil Disturbance Effects from Tethered Forwarding on Steep Slopes in Brazilian Eucalyptus Plantations. Forests. 2019; 10(9):721. https://doi.org/10.3390/f10090721
Chicago/Turabian StyleGarren, Austin M., M. Chad Bolding, W. Michael Aust, Angelo C. Moura, and Scott M. Barrett. 2019. "Soil Disturbance Effects from Tethered Forwarding on Steep Slopes in Brazilian Eucalyptus Plantations" Forests 10, no. 9: 721. https://doi.org/10.3390/f10090721
APA StyleGarren, A. M., Bolding, M. C., Aust, W. M., Moura, A. C., & Barrett, S. M. (2019). Soil Disturbance Effects from Tethered Forwarding on Steep Slopes in Brazilian Eucalyptus Plantations. Forests, 10(9), 721. https://doi.org/10.3390/f10090721