Avalanche Hazard Prediction in East Kazakhstan Using Ensemble Machine Learning Algorithms
Abstract
1. Introduction
2. Literary Review
3. Materials and Methods
- (a)
- Data collection on slope configuration, weather conditions, and documented avalanche events.
- (b)
- Definition of training and test datasets for model development.
- (c)
- Model training using the following algorithms: XGBoost, random forest, gradient boosting, AdaBoost, LightGBM, and NGBoost.
- (d)
- Evaluation of the trained models and their subsequent application for avalanche hazard prediction.
3.1. Data for Forecasting
- (a)
- Data on avalanche paths.
- (b)
- Temperature data for avalanche paths for the period from 2005 to 2025 [34].
- (c)
- Data on snow cover at the avalanche paths for the period from 2005 to 2025:
- -
- Average snow cover volume.
- -
- Maximum snow cover volume [34].
- (d)
- Data on rainfall volume on the avalanche paths area for the period from 2005 to 2025 [34].
- (e)
- Data on weather conditions on the avalanche paths area for the period from 2005 to 2025 [34].
- (f)
- (g)
- Data on slopes in the avalanche paths area (an example of slope parameters is provided in Figure S1):
- -
- Maximum and minimum elevation (height) of the slope—height of the point above sea level (or mean sea level).
- -
- Maximum and minimum slope steepness—a measure of the steepness of the slope surface in relation to the horizontal plane.
- -
- Average slope exposure in degrees—the orientation of the slope in relation to the cardinal points.
- -
- Maximum and minimum terrain ruggedness index (TRI)—an index that quantitatively describes the degree of variability in terrain elevation within a certain radius (vicinity) and shows how uneven (rugged) the surface is in a given area [36].
- -
- Maximum and minimum topographic position index (TPI)—an index that shows how much the elevation of a specific point differs from the average elevation of the points surrounding it [36].
- -
- Maximum and minimum profile curvature index—shows the curvature of the surface along the line of maximum slope.
- -
- Maximum and minimum plan curvature index—shows the curvature of the surface in the horizontal plane [36].
3.2. Database for Forecasting
- -
- collections—contained information about avalanche paths.
- -
- slopes—contained information about the parameters of slopes on each avalanche path.
- -
- temperatures—contained information about the temperature at the avalanche path on a specific date and time.
- -
- avg_temperatures—contained information about the average daily and ten-day temperature at the avalanche path on a specific date.
- -
- snows—contains information about the amount of snow cover at the avalanche path on a specific date and time.
- -
- rainfalls—contains information about rainfall in the avalanche path on a specific date.
- -
- weathers—contains information about weather conditions in the avalanche path on a specific date and time.
- -
- add_data—contains additional data about conditions in the avalanche path on a specific date.
3.3. Avalanche Hazard Prediction Models
- -
- min_height—minimum elevation (height) of the slope.
- -
- max_height—maximum elevation (height) of the slope.
- -
- avg_exposure—average exposure of the slope.
- -
- min_steepness—minimum slope steepness.
- -
- max_steepness—maximum slope steepness.
- -
- min_tri—minimum terrain roughness index TRI.
- -
- max_tri—maximum terrain roughness index TRI.
- -
- min_tpi—minimum topographic position index TPI.
- -
- max_tpi—maximum topographic position index TPI.
- -
- min_profile_curvate_index—minimum profile curvature index.
- -
- max_profile_curvate_index—maximum profile curvature index.
- -
- min_planned_curvate_index—minimum planned curvature index.
- -
- max_planned_curvate_index—maximum planned curvature index.
- -
- rainfalls_value—rainfall volume in the avalanche path.
- -
- snow_average—average snow depth in the avalanche path.
- -
- snow_maximum—maximum snow depth in the avalanche path.
- -
- temperature_value—temperature in the avalanche path.
- -
- Training set—data for the period up to 2024.
- -
- Test set—data for the period from 2024 onwards.
4. Results and Discussion
- (a)
- The following configuration was used to train the XGBoost algorithm:
- (b)
- The following configuration was used to train the random forest algorithm:
- (c)
- The following configuration was used to train the gradient boosting algorithm:
- (d)
- The following configuration was used to train the AdaBoost algorithm:
- (e)
- The following configuration was used to train the LightGBM algorithm:
- (f)
- The following configuration was used to train the NGBoostAdaBoost algorithm:
- (a)
- Accuracy—the proportion of correctly predicted classes among all samples.
- (b)
- Precision—the proportion of correctly predicted positive classes among all samples.
- (c)
- True positive rate (recall)—the proportion of correctly predicted positive classes among all positive samples.
- (d)
- F1-score—the harmonic mean between precision and true positive rate (recall).
- (a)
- Event: “no avalanche occurred”—to determine how accurately the event that an avalanche will not occur is predicted.
- (b)
- Event: “an avalanche occurred”—to determine how accurately the event that an avalanche will occur is predicted.
- (c)
- Macroaveraging—arithmetic mean of the metric for each class.
- (d)
- Weighted averaging—weighted mean of the metric by class weight.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rakhymberdina, M.; Levin, E.; Daumova, G.; Denissova, N.; Bekishev, Y.; Assylkhanova, Z. Kapasov A Combined Remote Sensing and GIS Method for Detecting Avalanches in Eastern Kazakhstan. ES Energy Environ. 2024, 26, 1350. [Google Scholar] [CrossRef]
- Aydin, H.E.; Iban, M.C. Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations. Nat. Hazards 2023, 116, 2957–2991. [Google Scholar] [CrossRef]
- Hayder, I.M.; Al-Amiedy, T.A.; Ghaban, W.; Saeed, F.; Nasser, M.; Al-Ali, G.A.; Younis, H.A. An Intelligent Early Flood Forecasting and Prediction Leveraging Machine and Deep Learning Algorithms with Advanced Alert System. Processes 2023, 11, 481. [Google Scholar] [CrossRef]
- Rajab, A.; Farman, H.; Islam, N.; Syed, D.; Elmagzoub, M.A.; Shaikh, A.; Akram, M.; Alrizq, M. Flood Forecasting by Using Machine Learning: A Study Leveraging Historic Climatic Records of Bangladesh. Water 2023, 15, 3970. [Google Scholar] [CrossRef]
- Tehrani, F.S.; Calvello, M.; Liu, Z.; Zhang, L.; Lacasse, S. Machine learning and landslide studies: Recent advances and applications. Nat. Hazards 2022, 114, 1197–1245. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Yin, H.-D.; Xiao, T.; Huang, L.; Cheng, Y.-M. Dynamic Prediction of Landslide Life Expectancy Using Ensemble System Incorporating Classical Prediction Models and Machine Learning. Geosci. Front. 2024, 15, 101758. [Google Scholar] [CrossRef]
- Song, M.-S.; Lee, J.-J.; Yun, H.-S.; Yum, S.-G. Projection and identification of vulnerable areas due to heavy snowfall using machine learning and K-means clustering with RCP scenarios. Clim. Serv. 2024, 33, 100440. [Google Scholar] [CrossRef]
- Lin, S.; Liang, Z.; Guo, H.; Hu, Q.; Cao, X.; Zheng, H. Application of machine learning in early warning system of geotechnical disaster: A systematic and comprehensive review. Artif. Intell. Rev. 2025, 58, 168. [Google Scholar] [CrossRef]
- Wang, Q.; Luan, S.; Jiang, J.; Chen, Y.; Liu, S. A multi-objective optimization framework for mudflow susceptibility mapping in the Yanshan Mountains: Integrating nondominated sorting genetic algorithm-II, random forest, and gradient boosting decision trees. Phys. Fluids 2025, 37, 076613. [Google Scholar] [CrossRef]
- Pugliese Viloria, A.d.J.; Folini, A.; Carrion, D.; Brovelli, M.A. Hazard Susceptibility Mapping with Machine and Deep Learning: A Literature Review. Remote Sens. 2024, 16, 3374. [Google Scholar] [CrossRef]
- Viallon-Galinier, L.; Hagenmuller, P.; Eckert, N. Combining modelled snowpack stability with machine learning to predict avalanche activity. Cryosphere 2023, 17, 2245–2260. [Google Scholar] [CrossRef]
- Kayhan, E.C.; Ekmekcioğlu, Ö. Coupling Different Machine Learning and Meta-Heuristic Optimization Techniques to Generate the Snow Avalanche Susceptibility Map in the French Alps. Water 2024, 16, 3247. [Google Scholar] [CrossRef]
- Denissova, N.; Nurakynov, S.; Petrova, O.; Chepashev, D.; Daumova, G.; Yelisseyeva, A. Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems. Atmosphere 2024, 15, 1343. [Google Scholar] [CrossRef]
- Park, M.-H.; Hur, J.-J.; Lee, W.-J. Prediction of diesel generator performance and emissions using minimal sensor data and analysis of advanced machine learning techniques. J. Ocean Eng. Sci. 2025, 10, 150–168. [Google Scholar] [CrossRef]
- Iordache, G.; Suciu, G.; Trufin, D.A.; Segarceanu, S.; Petrescu, G. Algorithms and parameters for avalanche prediction—A review. In Proceedings of the 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Khan, D.; Akram, W.; Ullah, S. Enhancing landslide susceptibility predictions with XGBoost and SHAP: A data-driven explainable AI method. Geocarto Int. 2025, 40, 2514725. [Google Scholar] [CrossRef]
- Meena, S.R.; Hussain, M.A.; Ullah, H. Landslide susceptibility mapping using hybrid machine learning classifiers: A case study of Neelum Valley, Pakistan. Bull. Eng. Geol. Env. 2025, 84, 242. [Google Scholar] [CrossRef]
- Mayer, S.; van Herwijnen, A.; Techel, F.; Schweizer, J. A random forest model to assess snow instability from simulated snow stratigraphy. Cryosphere 2022, 16, 4593–4615. [Google Scholar] [CrossRef]
- Rahmati, O.; Ghorbanzadeh, O.; Teimurian, T.; Mohammadi, F.; Tiefenbacher, J.P.; Falah, F.; Pirasteh, S.; Ngo, P.-T.T.; Bui, D.T. Spatial Modeling of Snow Avalanche Using Machine Learning Models and Geo-Environmental Factors: Comparison of Effectiveness in Two Mountain Regions. Remote Sens. 2019, 11, 2995. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Luojus, K.; Pan, J.; Lemmetyinen, J.; Takala, M.; Wu, S. Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach. Cryosphere 2020, 14, 1763–1778. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Chen, X.; Yao, J.; Li, L.; Qiu, Y. Moderate-resolution snow depth product retrieval from passive microwave brightness data over Xinjiang using machine learning approach. International. J. Digit. Earth 2024, 17, 2299208. [Google Scholar] [CrossRef]
- Yan, Y.; Qin, Y.; Liu, Y.; Qiu, Y.; Liu, Y. Estimation of Moderate-Resolution Snow Depth in Xinjiang with Enhanced-Resolution Passive Microwave and Reanalysis Data by Machine Learning Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 11250–11262. [Google Scholar] [CrossRef]
- Panda, S.; Anilkumar, R.; Balabantaray, B.K.; Chutia, D.; Bharti, R. Machine Learning-Driven Snow Cover Mapping Techniques using Google Earth Engine. In Proceedings of the IEEE 19th India Council International Conference (INDICON), Kochi, India, 24–26 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Gogineni, A.; Chintalacheruvu, M.R. Assessing temporal snow cover variation in the Sutlej river basin using google earth engine and machine learning models. Earth Sci. Inform. 2024, 17, 455–473. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Li, S. Explainable machine learning for predictive modeling of blowing snow detection and meteorological feature assessment using XGBoost-SHAP. PLoS ONE 2025, 20, e0318835. [Google Scholar] [CrossRef]
- Iban, M.C.; Bilgilioğlu, S.S. Snow avalanche susceptibility mapping using novel tree-based machine learning algorithms (XGBoost, NGBoost, and LightGBM) with eXplainable Artificial Intelligence (XAI) approach. Stoch. Environ. Res. Risk Assess. 2023, 37, 2243–2270. [Google Scholar] [CrossRef]
- Yang, J.; He, Q.; Liu, Y. Winter–Spring Prediction of Snow Avalanche Susceptibility Using Optimisation Multi-Source Heterogeneous Factors in the Western Tianshan Mountains, China. Remote Sens. 2022, 14, 1340. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Yang, J.; Li, L.; Wang, T. Snow avalanche susceptibility mapping from tree-based machine learning approaches in ungauged or poorly-gauged regions. Catena 2023, 224, 106997. [Google Scholar] [CrossRef]
- Mohanty, A.; Srivastava, P.; Agrawal, S. Novel Tree-Based Machine Learning Algorithms for Terrain-Based Snow Avalanche Susceptibility Mapping of NW Himalaya, India; SSRN: Rochester, NY, USA, 2024. [Google Scholar] [CrossRef]
- Cetinkaya, S.; Kocaman, S. Integrating Sequential Backward Selection (SBS) and CatBoost for Snow Avalanche Susceptibility Mapping at Catchment Scale. ISPRS Int. J. Geo-Inf. 2024, 13, 312. [Google Scholar] [CrossRef]
- Sykes, J.; Haegeli, P.; Atkins, R.; Mair, P.; Bühler, Y. Development of operational decision support tools for mechanized ski guiding using avalanche terrain modeling, GPS tracking, and machine learning. Nat. Hazards Earth Syst. Sci. 2025, 25, 1255–1292. [Google Scholar] [CrossRef]
- Yang, Z.; Gokon, H.; Yu, Q. Machine learning-based identification and assessment of snow disaster risks using multi-source data: Insights from Fukui prefecture. Prog. Disaster Sci. 2025, 26, 100426. [Google Scholar] [CrossRef]
- Bohini, A.; Sreeya, B.; Sai, C.P.; Saturi, R.; Priyabhashini, K. Early Avalanche Detection Using Ensemble Learning Techniques. In Proceedings of the 2024 2nd World Conference on Communication & Computing (WCONF), Raipur, India, 12–14 July 2024; pp. 1–12. [Google Scholar] [CrossRef]
- Kazhydromet. Climate of Kazakhstan. Available online: https://www.kazhydromet.kz/en/klimat/klimat-kazahstana (accessed on 15 July 2025).
- Rakhymberdina, M.; Denissova, N.; Bekishev, Y.; Daumova, G.; Konečný, M.; Assylkhanova, Z.; Kapasov, A. Investigation of the Regularities of the Influence of Meteorological Factors on Avalanches in Eastern Kazakhstan. Atmosphere 2025, 16, 723. [Google Scholar] [CrossRef]
- Girohi, P.; Bhardwaj, A. A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India. AI 2022, 3, 820–843. [Google Scholar] [CrossRef]
№ | Plot | Avalanche Danger Level | Number of Objects Falling Within the Impact Zone | Number of Avalanche Barriers | Avalanche Barriers Area, km2 |
---|---|---|---|---|---|
1 | Zubovskaya | III | 10 | 10 | 0.660 |
2 | Putintsevskaya pit | IV | 1 | 3 | 0.218 |
3 | Bogatyrevskaya pit | IV | 1 | 5 | 0.360 |
4 | Sogornoe | II | 1 | 17 | 2.026 |
5 | Rakhman springs | III | 1 | 4 | 0.364 |
6 | Berel | III | 1 | 10 | 0.626 |
7 | Prokhodnaya | II | 1 | 26 | 0.963 |
8 | Pikhtovka | II | 1 | 83 | 1.728 |
9 | Tainty | II | 1 | 20 | 1.184 |
10 | Laily | II | 1 | 8 | 0.042 |
Algorithm | Library Name | Library Version | Class That Implements the Algorithm |
---|---|---|---|
AdaBoost | scikit-learn | 1.7.0 | AdaBoostClassifier |
Gradientn boosting | scikit-learn | 1.7.0 | GradientBoostingClassifier |
LGBM | lightgbm | 4.6.0 | LGBMClassifier |
NGBoost | ngboost | 0.3.12 | NGBClassifier |
Random forest | scikit-learn | 1.7.0 | RandomForestClassifier |
XGBoost | xgboost | 3.0.2 | XGBClassifier |
Indicator | Algorithm | ||||||
---|---|---|---|---|---|---|---|
AdaBoost | Gradient Boosting | LGBM | NGBoost | Random Forest | XGBoost | ||
Accuracy | 71.5618% | 73.8928% | 72.7273% | 72.4942% | 67.1329% | 70.1632% | |
Event: “no avalanche occurred” | Precision | 77.4105% | 77.0026% | 81.4815% | 76.5013% | 73.1959% | 77.0308% |
True positive rate (recall) | 87.5389% | 92.8349% | 82.2430% | 91.2773% | 88.4735% | 85.6698% | |
F1-score | 82.1637% | 84.1808% | 81.8605% | 83.2386% | 80.1128% | 81.1209% | |
Number of events | 321 | 321 | 321 | 321 | 321 | 321 | |
Event: “an avalanche occurred” | Precision | 39.3939% | 45.2381% | 45.7143% | 39.1304% | 9.7561% | 36.1111% |
True positive rate (recall) | 24.0741% | 17.5926% | 44.4444% | 16.6667% | 3.7037% | 24.0741% | |
F1-score | 29.8851% | 25.3333% | 45.0704% | 23.3766% | 5.3691% | 28.8889% | |
Number of events | 108 | 108 | 108 | 108 | 108 | 108 | |
Macroaveraging | Precision | 58.4022% | 61.1203% | 63.5979% | 57.8159% | 41.4760% | 56.5710% |
True positive rate (recall) | 55.8065% | 55.2137% | 63.3437% | 53.9720% | 46.0886% | 54.8719% | |
F1-score | 56.0244% | 54.7571% | 63.4654% | 53.3076% | 42.7410% | 55.0049% | |
Number of events | 429 | 429 | 429 | 429 | 429 | 429 | |
Weighted averaging | Precision | 67.8399% | 69.0059% | 72.4772% | 67.0933% | 57.2250% | 66.7293% |
True positive rate (recall) | 71.5618% | 73.8928% | 72.7273% | 72.4942% | 67.1329% | 70.1632% | |
F1-score | 69.0027% | 69.3660% | 72.5986% | 68.1685% | 61.2962% | 67.9716% | |
Number of events | 429 | 429 | 429 | 429 | 429 | 429 |
Indicator | Algorithm | |||||
---|---|---|---|---|---|---|
AdaBoost (%) | Gradient Boosting (%) | LGBM (%) | NGBoost (%) | Random Forest (%) | XGBoost (%) | |
min_height | 7.1368 | 0.2917 | 13.2911 | 5.9098 | 2.4958 | 5.0825 |
max_height | 1.5651 | 0.1877 | 5.5153 | 0.0004 | 1.7442 | 0.7455 |
avg_exposure | 0.0650 | 0.2059 | 3.6419 | 0 | 1.5143 | 1.5737 |
min_steepness | 0.0040 | 0.0751 | 2.2540 | 0.0187 | 0.8971 | 3.4435 |
max_steepness | 0.0011 | 0.0000 | 1.8456 | 0 | 0.6882 | 0.2806 |
min_tri | 0.8297 | 2.7067 | 4.5401 | 0.0864 | 1.4993 | 2.4100 |
max_tri | 0.0004 | 0 | 0.8518 | 0 | 0.7898 | 10.2772 |
min_tpi | 0.0313 | 0.0686 | 1.1159 | 0 | 0.6730 | 0.8790 |
max_tpi | 0 | 0 | 2.0041 | 0 | 0.7771 | 0.2208 |
min_profile_curvate_index | 0.0335 | 0.0992 | 3.0115 | 0 | 1.5016 | 0.6201 |
max_profile_curvate_index | 0.1048 | 1.6348 | 2.6745 | 0.1171 | 1.5005 | 3.2187 |
min_planned_curvate_index | 0 | 0.0000 | 2.0955 | 0 | 0.8249 | 0.4771 |
max_planned_curvate_index | 0.0178 | 0.3177 | 1.5957 | 0 | 1.0635 | 1.0491 |
rainfalls_value | 0.5620 | 1.1714 | 0 | 0.0729 | 0.9524 | 0.0000 |
snow_average | 16.2523 | 14.1018 | 19.3754 | 14.1103 | 14.1747 | 17.0651 |
snow_maximum | 14.7072 | 14.3207 | 9.2044 | 12.4270 | 17.8520 | 20.6507 |
temperature_value | 58.6891 | 64.8186 | 26.9834 | 67.2574 | 51.0516 | 32.0064 |
Indicator | Algorithm | |||||
---|---|---|---|---|---|---|
AdaBoost | Gradient Boosting | LGBM | NGBoost | Random Forest | XGBoost | |
temperature_value | 0.15478074 | 14.73983019 | 3.51822903 | 0.16660303 | 0.16309335 | 3.78078007 |
snow_average | 0.05520039 | 5.53949744 | 1.32329505 | 0.03892453 | 0.03504991 | 1.39111794 |
snow_maximum | 0.02997398 | 2.67590311 | 1.96448675 | 0.05384046 | 0.07132913 | 2.53540915 |
min_height | 0.01302085 | 0.31658784 | 0.52102578 | 0.01409008 | 0.00814299 | 0.44345333 |
min_tri | 0.00172951 | 0.24736319 | 0.16416388 | 0.00194165 | 0.00924800 | 0.15055843 |
max_profile_curvate_index | 0.00150909 | 0.39474928 | 0.07166630 | 0.00289684 | 0.00835952 | 0.05644979 |
max_height | 0.00253864 | 0.14012463 | 0.11341056 | 0.00000032 | 0.00489080 | 0.07037346 |
min_profile_curvate_index | 0 | 0.06320127 | 0.11629976 | 0 | 0.00477136 | 0.14008822 |
avg_exposure | 0.00042739 | 0.09835694 | 0.06834962 | 0 | 0.00507736 | 0.08288599 |
max_tpi | 0 | 0.01233365 | 0.02913659 | 0 | 0.00258627 | 0.08027372 |
max_tri | 0 | 0.01889362 | 0.03881315 | 0.00000008 | 0.00203095 | 0.04234843 |
max_planned_curvate_index | 0.00004459 | 0.04244528 | 0.03711409 | 0 | 0.00283135 | 0.01640030 |
min_steepness | 0.00004159 | 0.01867738 | 0.02931812 | 0.00030964 | 0.00308218 | 0.03256281 |
min_planned_curvate_index | 0 | 0.00826588 | 0.02742852 | 0 | 0.00197046 | 0.02179519 |
max_steepness | 0 | 0.00657558 | 0.02677811 | 0 | 0.00148824 | 0.01585794 |
min_tpi | 0.00005135 | 0.00570542 | 0.02205024 | 0 | 0.00189467 | 0.00181133 |
rainfalls_value | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedkin, Y.; Denissova, N.; Daumova, G.; Chettykbayev, R.; Rakhmetullina, S. Avalanche Hazard Prediction in East Kazakhstan Using Ensemble Machine Learning Algorithms. Algorithms 2025, 18, 505. https://doi.org/10.3390/a18080505
Fedkin Y, Denissova N, Daumova G, Chettykbayev R, Rakhmetullina S. Avalanche Hazard Prediction in East Kazakhstan Using Ensemble Machine Learning Algorithms. Algorithms. 2025; 18(8):505. https://doi.org/10.3390/a18080505
Chicago/Turabian StyleFedkin, Yevgeniy, Natalya Denissova, Gulzhan Daumova, Ruslan Chettykbayev, and Saule Rakhmetullina. 2025. "Avalanche Hazard Prediction in East Kazakhstan Using Ensemble Machine Learning Algorithms" Algorithms 18, no. 8: 505. https://doi.org/10.3390/a18080505
APA StyleFedkin, Y., Denissova, N., Daumova, G., Chettykbayev, R., & Rakhmetullina, S. (2025). Avalanche Hazard Prediction in East Kazakhstan Using Ensemble Machine Learning Algorithms. Algorithms, 18(8), 505. https://doi.org/10.3390/a18080505