Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,419)

Search Parameters:
Keywords = hybrid materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4437 KiB  
Review
Development and Core Technologies of Long-Range Underwater Gliders: A Review
by Xu Wang, Changyu Wang, Ke Zhang, Kai Ren and Jiancheng Yu
J. Mar. Sci. Eng. 2025, 13(8), 1509; https://doi.org/10.3390/jmse13081509 - 5 Aug 2025
Abstract
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies [...] Read more.
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies that fundamentally determine endurance: lightweight, pressure-resistant hull structures and high-efficiency buoyancy-driven propulsion systems. First, the role of carbon fiber composite pressure hulls in enhancing energy capacity and structural integrity is examined, with attention to material selection, fabrication methods, compressibility compatibility, and antifouling resistance. Second, the evolution of buoyancy control systems is analyzed, covering the transition to hybrid active–passive architectures, rapid-response actuators based on smart materials, thermohaline energy harvesting, and energy recovery mechanisms. Based on this analysis, the paper identifies four key technical challenges and proposes strategic research directions, including the development of ultralight, high-strength structural materials; integrated multi-mechanism antifouling technologies; energy-optimized coordinated buoyancy systems; and thermally adaptive glider platforms. Achieving a system architecture with ultra-long endurance, enhanced energy efficiency, and robust environmental adaptability is anticipated to be a foundational enabler for future long-duration missions and globally distributed underwater glider networks. Full article
(This article belongs to the Section Ocean Engineering)
38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

22 pages, 8528 KiB  
Article
Study on the Durability of Graphene Oxide–Nanosilica Hybrid-Modified Sticky Rice–Lime Paste
by Ke Li, Donghui Cheng, Yingqi Fu, Xuwen Yan, Li Wang and Haisheng Ren
Nanomaterials 2025, 15(15), 1194; https://doi.org/10.3390/nano15151194 - 5 Aug 2025
Abstract
In order to improve the durability performance of sticky rice–lime paste in ancient masonry restoration materials, the effect of graphene oxide–nanosilica hybrids (GO–NS) on its basic physical properties and durability performance was investigated. The surface morphology, physical phase characteristics and infrared spectra of [...] Read more.
In order to improve the durability performance of sticky rice–lime paste in ancient masonry restoration materials, the effect of graphene oxide–nanosilica hybrids (GO–NS) on its basic physical properties and durability performance was investigated. The surface morphology, physical phase characteristics and infrared spectra of GO–NS and its sticky rice–lime paste were analysed by SEM, FE-TEM, XRD and FTIR. It was shown that NS successfully attached to the GO surface and improved the interlayer structure of GO. GO–NS reduces the fluidity and shrinkage of sticky rice–lime paste, prolongs the initial setting, shortens the final setting and significantly improves the compressive strength, water resistance and freeze resistance. As NS improves the interlayer structure of GO, it provides nucleation sites for the hardening of the sticky rice–lime paste, improves the quantity and structural distribution of the hardening products and reduces the pores. The NS undergoes a hydration reaction with Ca(OH)2 in the lime to produce calcium silicate hydrate (C–S–H), which further refines the internal pore structure of the sticky rice–lime paste. As a result, the GO–NS-modified sticky rice–lime paste has a denser interior and better macroscopic properties. Full article
Show Figures

Figure 1

19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

20 pages, 4676 KiB  
Article
Multifunctional, Biocompatible Hybrid Surface Coatings Combining Antibacterial, Hydrophobic and Fluorescent Applications
by Gökçe Asan and Osman Arslan
Polymers 2025, 17(15), 2139; https://doi.org/10.3390/polym17152139 - 5 Aug 2025
Abstract
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles [...] Read more.
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles can be embedded together with inorganic and organic surface coatings and silicon quantum dots for symbiotic antibacterial character and UV-excited visible light fluorescent features. Additionally, fluorosilane material can be coupled with this prepolymeric structure to add the hydrophobic feature, showing water contact angles around 120°, providing self-cleaning features. Optical properties of the components and the final material were investigated by UV-Vis spectroscopy and PL analysis. Atomic investigations and structural variations were detected by XPS, SEM, and EDX atomic mapping methods, correcting the atomic entities inside the coating. FT-IR tracked surface features, and statistical analysis of the quantum dots and nanoparticles was conducted. Multifunctional final materials showed antibacterial properties against E. coli and S. aureus, exhibiting self-cleaning features with high surface contact angles and visible light fluorescence due to the silicon quantum dot incorporation into the sol-gel-produced nanocomposite hybrid structure. Full article
(This article belongs to the Special Issue Polymer Coatings for High-Performance Applications)
Show Figures

Figure 1

15 pages, 24657 KiB  
Article
Identification and Genetic Analysis of Downy Mildew Resistance in Intraspecific Hybrids of Vitis vinifera L.
by Xing Han, Yihan Li, Zhilei Wang, Zebin Li, Nanyang Li, Hua Li and Xinyao Duan
Plants 2025, 14(15), 2415; https://doi.org/10.3390/plants14152415 - 4 Aug 2025
Abstract
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance [...] Read more.
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance and high quality. To assess the potential of intraspecific recurrent selection in V. vinifera (IRSV) in improving grapevine resistance to downy mildew and to analyze the pattern of disease resistance inheritance, the disease-resistant variety Ecolly was selected as one of the parents and crossed with Cabernet Sauvignon, Marselan, and Dunkelfelder, respectively, creating three reciprocal combinations, resulting in 1657 hybrid F1 progenies. The primary results are as follows: (1) significant differences in disease resistance among grape varieties and, significant differences in disease resistance between different vintages of the same variety were found; (2) the leaf downy mildew resistance levels of F1 progeny of different hybrid combinations conformed to a skewed normal distribution and showed some maternal dominance; (3) the degree of leaf bulbous elevation was negatively correlated with the level of leaf downy mildew resistance, and the correlation coefficient with the level of field resistance was higher; (4) five progenies with higher levels of both field and in vitro disease resistance were obtained. Intraspecific hybridization can improve the disease resistance of offspring through super-parent genetic effects, and Ecolly can be used as breeding material for recurrent hybridization to obtain highly resistant varieties. Full article
Show Figures

Figure 1

19 pages, 455 KiB  
Article
A Quantum-Resistant FHE Framework for Privacy-Preserving Image Processing in the Cloud
by Rafik Hamza
Algorithms 2025, 18(8), 480; https://doi.org/10.3390/a18080480 - 4 Aug 2025
Abstract
The advent of quantum computing poses an existential threat to the security of cloud services that handle sensitive visual data. Simultaneously, the need for computational privacy requires the ability to process data without exposing it to the cloud provider. This paper introduces and [...] Read more.
The advent of quantum computing poses an existential threat to the security of cloud services that handle sensitive visual data. Simultaneously, the need for computational privacy requires the ability to process data without exposing it to the cloud provider. This paper introduces and evaluates a hybrid quantum-resistant framework that addresses both challenges by integrating NIST-standardized post-quantum cryptography with optimized fully homomorphic encryption (FHE). Our solution uses CRYSTALS-Kyber for secure channel establishment and the CKKS FHE scheme with SIMD batching to perform image processing tasks on a cloud server without ever decrypting the image. This work provides a comprehensive performance analysis of the complete, end-to-end system. Our empirical evaluation demonstrates the framework’s practicality, detailing the sub-millisecond PQC setup costs and the amortized transfer of 33.83 MB of public FHE materials. The operational performance shows remarkable scalability, with server-side computations and client-side decryption completing within low single-digit milliseconds. By providing a detailed analysis of a viable and efficient architecture, this framework establishes a practical foundation for the next generation of privacy-preserving cloud applications. Full article
Show Figures

Figure 1

16 pages, 19147 KiB  
Article
Surface Assessment of a Novel Acid-Etching Solution on CAD/CAM Dental Ceramics
by Fabio Andretti, Carlos A. Jurado, Mark Antal, Alfredo I. Hernandez, Silvia Rojas-Rueda, Franklin Garcia-Godoy, Brian R. Morrow and Hamid Nurrohman
Biomimetics 2025, 10(8), 508; https://doi.org/10.3390/biomimetics10080508 - 4 Aug 2025
Abstract
Background: This study investigated a new multi-acid-etching formulation for zirconia ceramics, containing hydrochloric, hydrofluoric, nitric, orthophosphoric, and sulfuric acids. The solution was tested on polycrystalline (5Y-TZP zirconia), lithium disilicate, hybrid ceramic, and feldspathic porcelain to assess compatibility, etching selectivity, and surface conditioning. Methods: [...] Read more.
Background: This study investigated a new multi-acid-etching formulation for zirconia ceramics, containing hydrochloric, hydrofluoric, nitric, orthophosphoric, and sulfuric acids. The solution was tested on polycrystalline (5Y-TZP zirconia), lithium disilicate, hybrid ceramic, and feldspathic porcelain to assess compatibility, etching selectivity, and surface conditioning. Methods: Two-hundred-and-forty CAD/CAM specimens were etched for 20 s, 60 s, 30 min, or 1 h, and their surface roughness and etching patterns ware evaluated using 3D optical profilometry and scanning electron microscopy (SEM). Results: A positive correlation was observed between etching time and surface roughness (Ra values). The most pronounced changes were observed in lithium disilicate and feldspathic porcelain, with Ra values increasing from 0.733 ± 0.082 µm (Group 5) to 1.295 ± 0.123 µm (Group 8), and from 0.902 ± 0.102 µm (Group 13) to 1.480 ± 0.096 µm (Group 16), respectively. Zirconia increased from 0.181 ± 0.043 µm (Group 1) to 0.371 ± 0.074 µm (Group 4), and the hybrid ceramic from 0.053 ± 0.008 µm (Group 9) to 0.099 ± 0.016 µm (Group 12). Two-way ANOVA revealed significant effects of material and etching time, as well as a significant interaction between the two factors (p < 0.001). SEM observation revealed non-selective etching pattern for the lithium disilicate groups, indicating a risk of over-etching. Conclusions: The tested etching solution increased surface roughness, especially for the lithium disilicate and feldspathic porcelain specimens. In zirconia, one-hour etching improved surface characteristics with minimal observable damage. However, additional studies are necessary to validate the mechanical stability and bond effectives of this approach. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications)
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Optimization of Grist Composition for Mash Production from Unmalted Wheat and Wheat Malt of Red Winter Wheat with Hybrid Endosperm Type
by Kristina Habschied, Iztok Jože Košir, Miha Ocvirk, Krešimir Mastanjević and Vinko Krstanović
Beverages 2025, 11(4), 110; https://doi.org/10.3390/beverages11040110 - 4 Aug 2025
Abstract
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and [...] Read more.
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and as wheat malt. The quality of the starting wheats, the resulting malts and mashs with different added wheat proportions (100, 80, 60, 40, 20 and 0%) were examined. The obtained results show that the maximum shares of wheat/wheat malt in the infusion are significantly different between varieties of similar initial quality. However, they can differ considerably for the same variety when it is used as unmalted raw material and when it is used as wheat malt. Wheat malt can be added to the mixture in a significantly larger proportion compared to unmalted wheat. Furthermore, when an extended number of criteria (parameters) are applied, some varieties may be acceptable that otherwise would not be if the basic number of parameters were applied (total protein—TP, total soluble protein—TSP and viscosity—VIS) and vice versa. The inclusion of other parameters—filtration speed (FIL), saccharification time (SAC), color (COL), proportion of fine extract (EXT) and fermentability of pomace (FAL) (some of which have the character of so-called “cumulative parameters”)—complicates a clear classification into the aforementioned qualitative groups but also increases the number of varieties acceptable or conditionally acceptable for brewing. Full article
Show Figures

Graphical abstract

15 pages, 3571 KiB  
Article
Thermal Modulation of Photonic Spin Hall Effect in Vortex Beam Based on MIM-VO2 Metasurface
by Li Luo, Jiahui Huo, Yuanyuan Lv, Jie Li, Yu He, Xiao Liang, Sui Peng, Bo Liu, Ling Zhou, Yuxin Zou, Yuting Wang, Jingjing Bian and Yuting Yang
Surfaces 2025, 8(3), 55; https://doi.org/10.3390/surfaces8030055 - 3 Aug 2025
Viewed by 31
Abstract
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared [...] Read more.
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared band, targeting enhanced modulation of the PSHE. Electromagnetic simulations embed vanadium dioxide (VO2)—a thermally responsive phase-change material—within the MIM metasurface architecture. Numerical evidence confirms that harnessing VO2’s insulator–metal-transition-mediated optical switching dynamically tailors spin-dependent splitting in the illuminated MIM-VO2 hybrid, thereby achieving a significant amplification of the PSHE displacement. Electromagnetic simulations determine the reflection coefficients for both VO2 phase states in the MIM-VO2 structure. Computed spin displacements under vortex beam incidence reveal that VO2’s phase transition couples to the MIM’s top metal and dielectric layers, modifying reflection coefficients and producing phase-dependent PSHE displacements. The simulation results show that the displacement change of the PSHE before and after the phase transition of VO2 reaches 954.7 µm, achieving a significant improvement compared with the traditional layered structure. The dynamic modulation mechanism of the PSHE based on the thermal–optical effect has been successfully verified. Full article
Show Figures

Figure 1

18 pages, 3801 KiB  
Article
Characteristics and Transcriptome Analysis of Anther Abortion in Male Sterile Celery (Apium graveolens L.)
by Yao Gong, Zhenyue Yang, Huan Li, Kexiao Lu, Chenyang Wang, Aisheng Xiong, Yangxia Zheng, Guofei Tan and Mengyao Li
Horticulturae 2025, 11(8), 901; https://doi.org/10.3390/horticulturae11080901 (registering DOI) - 3 Aug 2025
Viewed by 46
Abstract
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and [...] Read more.
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and the fertile line ‘Jinnan Shiqin’ as materials, anther structure was analyzed by paraffin sections, and related genes were detected using transcriptome sequencing and qRT-PCR. The results indicated that the anther locules were severely shrunken at maturity in the sterile lines. The callose deficiency led to abnormal development of microspores, preventing the formation of mature pollen grains and ultimately leading to complete anther abortion. The transcriptome results revealed that 3246 genes were differentially expressed in sterile and fertile lines, which were significantly enriched in pathways such as starch and sucrose metabolism and phenylpropanoid biosynthesis. Additionally, differential expression patterns of transcription factor families (MYB, bHLH, AP2, GRAS, and others) suggested their potential involvement in regulating anther abortion. Notably, the expression level of callose synthase gene AgGSL2 was significantly downregulated in sterile anthers, which might be an important cause of callose deficiency and pollen sterility. This study not only provides a theoretical basis for elucidating the molecular mechanism underlying male sterility in celery but also lays a foundation for the utilization and improvement of male sterile lines in vegetable hybrid breeding. Full article
Show Figures

Figure 1

20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 44
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 64
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

31 pages, 9769 KiB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 - 2 Aug 2025
Viewed by 311
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

23 pages, 1032 KiB  
Article
Performance Optimization of Grounding System for Multi-Voltage Electrical Installation
by Md Tanjil Sarker, Marran Al Qwaid, Md Sabbir Hossen and Gobbi Ramasamy
Appl. Sci. 2025, 15(15), 8600; https://doi.org/10.3390/app15158600 (registering DOI) - 2 Aug 2025
Viewed by 110
Abstract
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, [...] Read more.
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, focusing on key performance parameters such as grounding resistance, step and touch voltages, and fault current dissipation efficiency. The study employs computational simulations using the finite element method (FEM) alongside empirical field measurements to evaluate the influence of soil resistivity, electrode materials, and grounding configurations, including rod electrodes, grids, deep-driven rods, and hybrid grounding systems. Results indicate that soil resistivity significantly affects grounding efficiency, with deep-driven rods providing superior performance in high-resistivity conditions, while grounding grids demonstrate enhanced fault current dissipation in substations. The integration of conductive backfill materials, such as bentonite and conductive concrete, further reduces grounding resistance and enhances system reliability. This study provides engineering insights into optimizing grounding systems based on installation voltage levels, cost considerations, and compliance with IEEE Std 80-2013 and IEC 60364-5-54. The findings contribute to the development of more resilient and cost-effective grounding strategies for electrical installations. Full article
Show Figures

Figure 1

Back to TopTop