New Technology for the Production of Transparent Glass Coatings from Multi-Alloy Targets with Antibacterial Activity
Highlights
- Cu-based sputtered films show strong antibacterial activity.
- Cu90Sn10, Cu90Zn10, and Cu80Ti20 targets give coatings with the best performance.
- Films exhibit high durability and corrosion resistance.
- Large-area multicomponent nanolayers were successfully produced.
- Cu-alloy targets are promising for greenhouse glass surfaces.
- Industrial PVD enables uniform large-area antimicrobial films.
- Findings support future antibacterial greenhouse applications.
- Scalable nanolayer design enables reproducible industrial coating.
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Glass Coatings
2.2. Bacteria Cultures and Test for Biocidity
2.3. Durability, Hydrophilicity and Anticorrosion Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Manufacturing and Characterization of Nanolayer Coated Glass
3.2. Antibacterial Effect of Coated Glass
3.3. Evaluation of Durability, Hydrophilicity, and Anticorrosion Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A


Appendix B
| Metal | Emmean | SE | df | Lower.CL | Upper.CL | Letters |
|---|---|---|---|---|---|---|
| Cu60Ti40D5_D * | 1.99604 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu60Ti40D5_L ** | −1.56417 × 10−14 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu60Ti40D8_D | −3.72185 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu60Ti40D8_L | 2.48759 × 10−14 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu70Zn25Ni5D5_D | −2.6752 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu70Zn25Ni5D5_L | 2.19439 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu70Zn25Ni5D8_D | −1.90051 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu70Zn25Ni5D8_L | 3.05346 × 10−16 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni10Fe5Mn5D5_D | 4.00571 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni10Fe5Mn5D5_L | −1.44256 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni10Fe5Mn5D8_D | 4.86075 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni10Fe5Mn5D8_L | −2.4304 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni5Fe5Al10D5_D | −2.06523 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni5Fe5Al10D5_L | 3.68052 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni5Fe5Al10D8_D | 1.2153 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ni5Fe5Al10D8_L | −5.07241 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ti20D5_D | 1.74345 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ti20D5_L | −1.26054 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ti20D8_D | 1.22267 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Ti20D8_L | −3.43396 × 10−16 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Al10D5_D | 1.40986 × 10−17 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Al10D5_L | 3.31226 × 10−16 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Al10D8_D | −3.40328 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Al10D8_L | −2.36695 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Fe10D5_D | −2.11299 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Fe10D5_L | −2.85476 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Fe10D8_D | −2.33606 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu80Zn10Fe10D8_L | −3.0557 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Sn10D5_D | −3.74158 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Sn10D5_L | 5.97023 × 10−16 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Sn10D8_D | −2.57648 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Sn10D8_L | −2.85494 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Zn10D5_D | 6.40611 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Zn10D5_L | −3.74885 × 10−16 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Zn10D8_D | −5.96345 × 10−16 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Cu90Zn10D8_L | −1.76941 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Control ***_D | 4.201697021 | 0.131275363 | 116 | 3.941689623 | 4.461704419 | cd |
| Control_L | 1.586697458 | 0.131275363 | 116 | 1.32669006 | 1.846704855 | gh |
| Ti80Cu15Fe5D5_D | 5.324921053 | 0.131275363 | 116 | 5.064913655 | 5.584928451 | a |
| Ti80Cu15Fe5D5_L | 3.876504906 | 0.131275363 | 116 | 3.616497509 | 4.136512304 | d |
| Ti80Cu15Fe5D8_D | 4.988829511 | 0.131275363 | 116 | 4.728822113 | 5.248836909 | ab |
| Ti80Cu15Fe5D8_L | 3.877865742 | 0.131275363 | 116 | 3.617858344 | 4.13787314 | d |
| Ti80Cu15Mn5D5_D | 1.418424168 | 0.131275363 | 116 | 1.158416771 | 1.678431566 | gh |
| Ti80Cu15Mn5D5_L | −2.32161 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Ti80Cu15Mn5D8_D | 2.137078925 | 0.131275363 | 116 | 1.877071527 | 2.397086322 | fg |
| Ti80Cu15Mn5D8_L | −1.26211 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Ti80Cu15Nb5D5_D | 1.301029996 | 0.131275363 | 116 | 1.041022598 | 1.561037394 | h |
| Ti80Cu15Nb5D5_L | 2.60913 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Ti80Cu15Nb5D8_D | 2.02048416 | 0.131275363 | 116 | 1.760476762 | 2.280491558 | fgh |
| Ti80Cu15Nb5D8_L | −4.66799 × 10−16 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Ti80Cu15Ni5D5_D | 3.506810026 | 0.131275363 | 116 | 3.246802628 | 3.766817424 | de |
| Ti80Cu15Ni5D5_L | 3.562757474 | 0.131275363 | 116 | 3.302750076 | 3.822764872 | d |
| Ti80Cu15Ni5D8_D | 2.736396502 | 0.131275363 | 116 | 2.476389104 | 2.9964039 | ef |
| Ti80Cu15Ni5D8_L | 1.47649 × 10−15 | 0.131275363 | 116 | −0.260007398 | 0.260007398 | i |
| Ti8Cu15Co5D8_D | 4.801949101 | 0.131275363 | 116 | 4.541941703 | 5.061956499 | abc |
| Ti8Cu15Co5D8_ | 4.25542933 | 0.131275363 | 116 | 3.995421932 | 4.515436728 | bcd |
Appendix C




References
- Udrea, I.; Gheorghe, V.I.; Dogeanu, A.M. Optimizing Greenhouse Design with Miniature Models and IoT (Internet of Things) Technology—A Real-Time Monitoring Approach. Sensors 2024, 24, 2261. [Google Scholar] [CrossRef]
- The Brainy Insights Commercial Greenhouse Market Trends, Future Growth Analysis, the Brainy Insights. Available online: https://www.thebrainyinsights.com/report/commercial-greenhouse-market-12771 (accessed on 24 July 2025).
- Aira, J.R.; Gallardo-Saavedra, S.; Eugenio-Gozalbo, M.; Alonso-Gómez, V.; Muñoz-García, M.Á.; Hernández-Callejo, L. Analysis of the Viability of a Photovoltaic Greenhouse with Semi-Transparent Amorphous Silicon (a-Si) Glass. Agronomy 2021, 11, 1097. [Google Scholar] [CrossRef]
- Pries, J.; Wei, S.; Hoff, F.; Lucas, P.; Wuttig, M. Control of Effective Cooling Rate upon Magnetron Sputter Deposition of Glassy Ge15Te85. Scr. Mater. 2020, 178, 223–226. [Google Scholar] [CrossRef]
- Data Bridge Global Glass Greenhouse Market Size, Share, and Industry Report 2028. Available online: https://www.databridgemarketresearch.com/reports/global-glass-greenhouse-market (accessed on 24 July 2025).
- Papadopoulos, A.; Skoulas, E.; Mimidis, A.; Perrakis, G.; Kenanakis, G.; Tsibidis, G.D.; Stratakis, E. Biomimetic Omnidirectional Antireflective Glass via Direct Ultrafast Laser Nanostructuring. Adv. Mater. 2019, 31, 1901123. [Google Scholar] [CrossRef] [PubMed]
- Locker, C.R.; Torkamani, S.; Laurenzi, I.J.; Jin, V.L.; Schmer, M.R.; Karlen, D.L. Field-to-Farm Gate Greenhouse Gas Emissions from Corn Stover Production in the Midwestern U.S. J. Clean. Prod. 2019, 226, 1116–1127. [Google Scholar] [CrossRef]
- Ju, Y.; Ai, L.; Qi, X.; Li, J.; Song, W. Review on Hydrophobic Thin Films Prepared Using Magnetron Sputtering Deposition. Materials 2023, 16, 3764. [Google Scholar] [CrossRef] [PubMed]
- Jurkevičiūtė, A.; Dolmantas, P.; Vasiliauskas, A.; Tamulevičienė, A.; Meškinis, Š.; Poplausks, R.; Prikulis, J.; Tamulevičius, S.; Tamulevičius, T. Magnetron Sputtering Process for Deposition of Multilayered Thin Diamond-like Carbon Films with Silver Nanoparticles for Anti-Reflective Coatings and Refractometric Densingrefractometric Densing. Mater. Chem. Phys. 2023, 309, 128425. [Google Scholar] [CrossRef]
- Musri, N.A.; Putthisigamany, Y.; Chelvanathan, P.; Ahmad Ludin, N.; Md Yatim, N.; Syafiq, U. Fabrication of Bi2Te3 and Sb2Te3 Thermoelectric Thin Films Using Radio Frequency Magnetron Sputtering Technique. J. Vis. Exp. 2024, 2024, e66248. [Google Scholar] [CrossRef]
- Azamatov, B.; Borisov, A.; Maratuly, B.; Dogadkin, D.; Safarova, Y.; Yamanoglu, R.; Alontseva, D. Magnetron Sputtering of Antibacterial and Antifungal Tantalum-Copper and Niobium-Copper Coatings on Three Dimensional-Printed Porous Titanium Alloy Scaffolds: Part II. Johns Matthey Technol. Rev. 2025, 69, 88–98. [Google Scholar] [CrossRef]
- Kaltschmidt, B.P.; Asghari, E.; Kiel, A.; Cremer, J.; Anselmetti, D.; Kaltschmidt, C.; Kaltschmidt, B.; Hütten, A. Magnetron Sputtering of Transition Metals as an Alternative Production Means for Antibacterial Surfaces. Microorganisms 2022, 10, 1843. [Google Scholar] [CrossRef]
- Li, J.; Ren, G.K.; Chen, J.; Chen, X.; Wu, W.; Liu, Y.; Chen, X.; Song, J.; Lin, Y.H.; Shi, Y. Facilitating Complex Thin Film Deposition by Using Magnetron Sputtering: A Review. JOM 2022, 74, 3069–3081. [Google Scholar] [CrossRef]
- Tang, J.F.; Huang, P.Y.; Lin, J.H.; Liu, T.W.; Yang, F.C.; Chang, C.L. Microstructure and Antimicrobial Properties of Zr-Cu-Ti Thin-Film Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering. Materials 2022, 15, 2461. [Google Scholar] [CrossRef]
- Qin, L.; Ma, D.; Li, Y.; Jing, P.; Huang, B.; Jing, F.; Xie, D.; Leng, Y.; Akhavan, B.; Huang, N. Ti–Cu Coatings Deposited by a Combination of HiPIMS and DC Magnetron Sputtering: The Role of Vacuum Annealing on Cu Diffusion, Microstructure, and Corrosion Resistance. Coatings 2020, 10, 1064. [Google Scholar] [CrossRef]
- Mahmoudi-Qashqay, S.; Zamani-Meymian, M.R.; Sadati, S.J. Improving Antibacterial Ability of Ti-Cu Thin Films with Co-Sputtering Method. Sci. Rep. 2023, 13, 16593. [Google Scholar] [CrossRef]
- Reznickova, A.; Lacmanova, V.; Kalbacova, M.H.; Hausild, P.; Nohava, J.; Kolska, Z.; Kutova, A.; Slepicka, P. As-Deposited and Dewetted Cu Layers on Plasma Treated Glass: Adhesion Study and Its Effect on Biological Response. Appl. Surf. Sci. Adv. 2024, 24, 100639. [Google Scholar] [CrossRef]
- Janda, M.; Rybak, K.; Krassini, L.; Meng, C.; Feitosa-Junior, O.; Stigliano, E.; Szulc, B.; Sklenar, J.; Menke, F.L.H.; Malone, J.G.; et al. Biophysical and Proteomic Analyses of Pseudomonas syringae Pv. Tomato DC3000 Extracellular Vesicles Suggest Adaptive Functions during Plant Infection. mBio 2023, 14, e03589-22. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P.S.; Woodcock, S.D.; Pfeilmeier, S.; Bornemann, S.; Zipfel, C.; Malone, J.G. Pseudomonas syringae Addresses Distinct Environmental Challenges during Plant Infection through the Coordinated Deployment of Polysaccharides. J. Exp. Bot. 2022, 73, 2206–2221. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef]
- Poolman, J.T.; Anderson, A.S. Escherichia coli and Staphylococcus aureus: Leading Bacterial Pathogens of Healthcare Associated Infections and Bacteremia in Older-Age Populations. Expert Rev. Vaccines 2018, 17, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, Y.; Zhang, T.; Xu, M.; Wang, H.; Zhang, S.; Zhang, T.; Zhou, W.; Shi, G. Establishing a MALDI-TOF-TOF-MS Method for Rapid Identification of Three Common Gram-Positive Bacteria (Bacillus cereus, Listeria monocytogenes, and Micrococcus luteus) Associated with Foodborne Diseases. Food Sci. Technol. 2022, 42, e117021. [Google Scholar] [CrossRef]
- Gormez, A.; Bozari, S.; Yanmis, D.; Gulluce, M.; Sahin, F.; Agar, G. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria. Pol. J. Microbiol. 2015, 2, 121–127. [Google Scholar] [CrossRef]
- Fathi, F.; Nazarlou, Z.; Aydemir, U.; Olad, A. Anti-Icing and Antibacterial Super-Hydrophobic Poly(Dimethyl Siloxane) Coatings Modified with Silica, TiO2, Ag3PO4, and CuO Nanoparticles. Mater. Chem. Phys. 2025, 333, 130333. [Google Scholar] [CrossRef]
- Kovačević, D.; Pratnekar, R.; Torkar, K.G.; Salopek, J.; Dražić, G.; Abram, A.; Bohinc, K. Influence of Polyelectrolyte Multilayer Properties on Bacterial Adhesion Capacity. Polymers 2016, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.A.; Parkin, I.P.; Nair, S.P.; Carmalt, C.J. Antimicrobial Activity of Copper and Copper(I) Oxide Thin Films Deposited via Aerosol-Assisted CVD. J. Mater. Chem. B 2014, 2, 2855–2860. [Google Scholar] [CrossRef]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact Killing and Antimicrobial Properties of Copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef]
- Ghani, S.; El-Bialy, E.M.A.A.; Bakochristou, F.; Mohamed Rashwan, M.; Mohamed Abdelhalim, A.; Mohammad Ismail, S.; Ben, P. Experimental and Numerical Investigation of the Thermal Performance of Evaporative Cooled Greenhouses in Hot and Arid Climates. Sci. Technol. Built Environ. 2020, 26, 141–160. [Google Scholar] [CrossRef]
- Santolini, E.; Pulvirenti, B.; Guidorzi, P.; Bovo, M.; Torreggiani, D.; Tassinari, P. Analysis of the Effects of Shading Screens on the Microclimate of Greenhouses and Glass Facade Buildings. Build. Environ. 2022, 211, 108691. [Google Scholar] [CrossRef]
- Bharadishettar, N.; Bhat, K.U.; Panemangalore, D.B. Coating Technologies for Copper Based Antimicrobial Active Surfaces: A Perspective Review. Metals 2021, 11, 711. [Google Scholar] [CrossRef]
- Yu, J.; Huang, X.; Ren, F.; Cao, H.; Yuan, M.; Ye, T.; Xu, F. Application of Antimicrobial Properties of Copper. Appl. Organomet. Chem. 2024, 38, e7506. [Google Scholar] [CrossRef]
- Badaraev, A.D.; Lerner, M.I.; Bakina, O.V.; Sidelev, D.V.; Tran, T.H.; Krinitcyn, M.G.; Malashicheva, A.B.; Cherempey, E.G.; Slepchenko, G.B.; Kozelskaya, A.I.; et al. Antibacterial Activity and Cytocompatibility of Electrospun PLGA Scaffolds Surface-Modified by Pulsed DC Magnetron Co-Sputtering of Copper and Titanium. Pharmaceutics 2023, 15, 939. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.; Mezzadrelli, A.; Senaratne, W.; Pal, S.; Thelen, D.; Hepburn, L.; Mazumder, P.; Pruneri, V. Towards Transparent and Durable Copper-Containing Antimicrobial Surfaces. Commun. Mater. 2024, 5, 39. [Google Scholar] [CrossRef]
- Rashid, S.; Vita, G.M.; Persichetti, L.; Iucci, G.; Battocchio, C.; Daniel, R.; Visaggio, D.; Marsotto, M.; Visca, P.; Bemporad, E.; et al. Biocompatibility and Antibacterial Properties of TiCu(Ag) Thin Films Produced by Physical Vapor Deposition Magnetron Sputtering. Appl. Surf. Sci. 2022, 573, 151604. [Google Scholar] [CrossRef]
- Akshaya, S.; Rowlo, P.K.; Dukle, A.; Nathanael, A.J.; Kumar, R.; Akshaya, S.; Rowlo, P.K.; Dukle, A.; Nathanael, A.J. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics 2022, 11, 1719. [Google Scholar] [CrossRef]
- Dhivya, S.; Ajita, J.; Selvamurugan, N. Metallic Nanomaterials for Bone Tissue Engineering. J. Biomed. Nanotechnol. 2015, 11, 1675–1700. [Google Scholar] [CrossRef] [PubMed]
- Durdu, S. Characterization, Bioactivity and Antibacterial Properties of Copper-Based TiO2 Bioceramic Coatings Fabricated on Titanium. Coatings 2018, 9, 1. [Google Scholar] [CrossRef]
- Milisav, A.M.; Mičetić, M.; Dubček, P.; Sotelo, L.; Cantallops-Vilà, C.; Erceg, I.; Fontanot, T.; Bojanić, K.; Fiket, Ž.; Ivanić, M.; et al. Effect of Ag and Cu Doping on the Properties of ZnO Magnetron Sputtered Thin Films for Biomedical Applications. Appl. Surf. Sci. 2025, 690, 162623. [Google Scholar] [CrossRef]
- Ren, Q.; Qin, L.; Jing, F.; Cheng, D.; Wang, Y.; Yang, M.; Xie, D.; Leng, Y.; Akhavan, B.; Huang, N. Reactive Magnetron Co-Sputtering of Ti-XCuO Coatings: Multifunctional Interfaces for Blood-Contacting Devices. Mater. Sci. Eng. C 2020, 116, 111198. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, M.; Dickson, R.W.; Padhye, S. Quantifying Temperature Effects on Development Rate and Plant Quality of Compact Container-Grown Tomato. Horttechnology 2024, 34, 713–719. [Google Scholar] [CrossRef]
- Kumsong, N.; Thepsilvisut, O.; Imorachorn, P.; Chutimanukul, P.; Pimpha, N.; Toojinda, T.; Trithaveesak, O.; Ratanaudomphisut, E.; Poyai, A.; Hruanun, C.; et al. Comparison of Different Temperature Control Systems in Tropical-Adapted Greenhouses for Green Romaine Lettuce Production. Horticulturae 2023, 9, 1255. [Google Scholar] [CrossRef]
- Lee, K.; Rajametov, S.N.; Jeong, H.-B.; Cho, M.-C.; Lee, O.-J.; Kim, S.-G.; Yang, E.-Y.; Chae, W.-B.; Prakash, S.; Raza, A.; et al. Comprehensive Understanding of Selecting Traits for Heat Tolerance during Vegetative and Reproductive Growth Stages in Tomato. Agronomy 2022, 12, 834. [Google Scholar] [CrossRef]
- Jin, X.; Gao, L.; Liu, E.; Yu, F.; Shu, X.; Wang, H. Microstructure, Corrosion and Tribological and Antibacterial Properties of Ti–Cu Coated Stainless Steel. J. Mech. Behav. Biomed. Mater. 2015, 50, 23–32. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Yousefi, S.; Handzhiyski, Y.; Apostolova, M.D. One-Step Magneton Sputtering of Crystalline Cu-Doped TiO2 Coatings: Characterization and Antibacterial Activity. Appl. Sci. 2024, 14, 9578. [Google Scholar] [CrossRef]
- Ilievska, I.; Ivanova, V.; Dechev, D.; Ivanov, N.; Ormanova, M.; Nikolova, M.P.; Handzhiyski, Y.; Andreeva, A.; Valkov, S.; Apostolova, M.D. Influence of Thickness on the Structure and Biological Response of Cu-O Coatings Deposited on CpTi. Coatings 2024, 14, 455. [Google Scholar] [CrossRef]
- NEN 2675:2018 En; Greenhouse Glass—Determination of Optical Properties of Greenhouse Covering Materials and Screens. NEN: Delft, The Netherlands, 2018. Available online: https://www.nen.nl/en/nen-2675-2018-en-247409 (accessed on 24 July 2025).
- ISO 9227:2022; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. International Organization for Standarization: Geneva, Switzerland, 2022.
- Cockshull, K.E.; Graves, C.J.; Cave, C.R.J. The Influence of Shading on Yield of Glasshouse Tomatoes. J. Hort. Sci. 1992, 67, 11–24. [Google Scholar] [CrossRef]
- Papadakis, G.; Briassoulis, D.; Scarascia Mugnozza, G.; Vox, G.; Feuilloley, P.; Stoffers, J.A. Review Paper (SE—Structures and Environment): Radiometric and Thermal Properties of, and Testing Methods for, Greenhouse Covering Materials. J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Kavga, A.; Strati, I.F.; Sinanoglou, V.J.; Fotakis, C.; Sotiroudis, G.; Christodoulou, P.; Zoumpoulakis, P. Evaluating the Experimental Cultivation of Peppers in Low-Energy-Demand Greenhouses. An Interdisciplinary Study. J. Sci. Food Agric. 2019, 99, 781–789. [Google Scholar] [CrossRef]
- Ngece, K.; Khwaza, V.; Paca, A.M.; Aderibigbe, B.A. The Antimicrobial Efficacy of Copper Complexes: A Review. Antibiotics 2025, 14, 516. [Google Scholar] [CrossRef] [PubMed]
- Markowska-Szczupak, A.; Paszkiewicz, O.; Michalkiewicz, B.; Kamińska, A.; Wróbel, R.J. Fabrication of Antibacterial Metal Surfaces Using Magnetron-Sputtering Method. Materials 2021, 14, 7301. [Google Scholar] [CrossRef]
- Abebe, B.; Zereffa, E.A.; Tadesse, A.; Murthy, H.C.A. A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Nicroscopic Investigation. Nanoscale Res. Lett. 2020, 15, 190. [Google Scholar] [CrossRef] [PubMed]
- Vitasovic, T.; Caniglia, G.; Eghtesadi, N.; Ceccato, M.; Bo̷jesen, E.D.; Gosewinkel, U.; Neusser, G.; Rupp, U.; Walther, P.; Kranz, C.; et al. Antibacterial Action of Zn2+ Ions Driven by the in Vivo Formed ZnO Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 30847–30859. [Google Scholar] [CrossRef]
- Savvova, O.V. Effect of Zinc and Tin Oxides on the Bactericidal Properties of Glass Enamel Coatings. Glass Ceram. 2014, 71, 254–257. [Google Scholar] [CrossRef]
- Božić Cvijan, B.; Korać Jačić, J.; Bajčetić, M. The Impact of Copper Ions on the Activity of Antibiotic Drugs. Molecules 2023, 28, 5133. [Google Scholar] [CrossRef]
- Gomes, I.B.; Simões, L.C.; Simoes, M. The Role of Surface Copper Content on Biofilm Formation by Drinking Water Bacteria. RSC Adv. 2019, 9, 32184–32196. [Google Scholar] [CrossRef]
- Kim, K.W.; Ham, G.S.; Cho, G.S.; Kim, C.P.; Park, S.C.; Lee, K.A. Microstructures and Corrosion Properties of Novel Fe46.8-Mo30.6-Cr16.6-C4.3-B1.7 Metallic Glass Coatings Manufactured by Vacuum Plasma Spray Process. Intermetallics 2021, 130, 107061. [Google Scholar] [CrossRef]
- Zheng, C.; Li, D.; Guo, M.; Zhang, J.; Xie, J.; Han, J. The Microstructure, Crystallization Behavior, and Mechanical Performance Evolutions of Li2O-Al2O3-SiO2 Glass and Glass–Ceramics with Different Alkaline Earth Oxide Modifications. Materials 2025, 18, 1383. [Google Scholar] [CrossRef] [PubMed]
- Selvam, T.S.; Pervan, P.; Sancho-Parramon, J.; Spadaro, M.C.; Arbiol, J.; Janicki, V. Glass Poling as a Substrate Surface Pre-Treatment for in Situ Metal Nanoparticle Formation by Reduction of Metal Salt. Surf. Interfaces 2022, 33, 102158. [Google Scholar] [CrossRef]
- Foster, H.A.; Sheel, D.W.; Evans, P.; Sheel, P.; Varghese, S.; Elfakhri, S.O.; Hodgkinson, J.L.; Yates, H.M. Antimicrobial Activity against Hospital-Related Pathogens of Dual Layer CuO/TiO2 Coatings Prepared by CVD. Chem. Vap. Depos. 2012, 18, 140–146. [Google Scholar] [CrossRef]
- Kuncewicz, J.; Za̧bek, P.; Kruczała, K.; Szaciłowski, K.; MacYk, W. Photocatalysis Involving a Visible Light-Induced Hole Injection in a Chromate(VI)-TiO2 System. J. Phys. Chem. C 2012, 116, 21762–21770. [Google Scholar] [CrossRef]
- Za̧bek, P.; Eberl, J.; Kisch, H. On the Origin of Visible Light Activity in Carbon-Modified Titania. Photochem. Photobiol. Sci. 2009, 8, 264–269. [Google Scholar] [CrossRef]
- An, X.; Yang, C.; Wu, Z.; Liu, L.; Li, S.; Zhou, L.; Tang, W.; Ma, Z.; Wu, Z.; Fu, R.K.Y.; et al. Self-Regulated Super-Hydrophobic Cu/CuO Electrode Film Deposited by One-Step High-Power Sputtering. Adv. Electron. Mater. 2020, 6, 1900891. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Zhu, Y.; Shen, T.; Yang, D. Enhanced Antibacterial Efficacies, Corrosion Resistance, and Cytocompatibility of ZnO/CuO Composite Coatings through Designed Sputtering Orders. Appl. Surf. Sci. 2023, 635, 157724. [Google Scholar] [CrossRef]
- Wang, J.; Liang, M.F.; Pan, Y.; Sun, S.; Shen, T.; Wei, X.; Zhu, Y.; Liu, J.; Huang, Q. Control of Surface Composition and Microstructure of Nano Super-Hydrophilic TiO2-CuOy Coatings through Rreactive Sputtering to Improve Antibacterial Ability, Corrosion Resistance, and Biocompatibility. Appl. Surf. Sci. 2022, 578, 151893. [Google Scholar] [CrossRef]
- Argel-Pérez, S.; Velásquez-Cock, J.; Zuluaga, R.; Gómez-Hoyos, C. Improving Hydrophobicity and Water Vapor Barrier Properties in Paper Using Cellulose Nanofiber-Stabilized Cocoa Butter and PLA Emulsions. Coatings 2024, 14, 1310. [Google Scholar] [CrossRef]
- Márton, P.; Áder, L.; Kemény, D.M.; Rácz, A.; Kovács, D.; Nagy, N.; Szabó, G.S.; Hórvölgyi, Z. Chitosan–Surfactant Composite Nanocoatings on Glass and Zinc Surfaces Prepared from Aqueous Solutions. Molecules 2024, 29, 3111. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, M.; Orevi, T.; Steinberg, S.; Kashtan, N. Bacterial Survival in Microscopic Surface Wetness. Elife 2019, 8, e48508. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, H.; He, W.; Li, T.; Li, H.; Liu, P.; Liu, M.; Wang, Z.; Wang, Z.; Yao, X. Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling and Pathogen Spreading by Respiratory Droplets. ACS Appl. Mater. Interfaces 2017, 9, 6599–6608. [Google Scholar] [CrossRef]







| Serie No. | Me% (In the Target) | Amperage [A] | Roller Speed [m·min−1] | Oxygen [cm3·min−1] | Argon [cm3·min−1] | Transfer Amount | Tdir (a) [%] | Them (b) [%] | |
|---|---|---|---|---|---|---|---|---|---|
| D0 | I | Control—diffuse glass without any coating | 91.4 | 81.3 | |||||
| D5 (e) | II | Cu90 Sn10 | 13 × 3 | 8 | 2 × 450 = 900 | - | 1 | 86.2 | 74.9 |
| D8 (f) | 12 × 3 | 10 | 2 × 450 = 900 | - | 1 | 88.9 | 77.7 | ||
| D5 | III | Cu90 Zn10 | 13 × 3 | 11 | 2 × 450 = 900 | - | 1 | 84.7 | 76.5 |
| D8 | 7 × 3 | 10 | 2 × 450 = 900 | - | 1 | 88.0 | 79.7 | ||
| D5 | IV | Cu80 Zn10 Al10 | 13 × 3 | 1.6 | 2 × 450 = 900 | - | 1 | 85.2 | 73.8 |
| D8 | 13 × 3 | 8 | 2 × 450 = 900 | - | 1 | 88.1 | 76.6 | ||
| D5 | V | Cu70 Zn25 Ni5 | 10 × 3 (c) | 4 | 2 × 450 = 900 (d) | - | 1 | 85.0 | 73.2 |
| D8 | 10 × 3 | 5.6 | 2 × 450 = 900 | - | 1 | 88.3 | 76.8 | ||
| D5 | VI | Cu80 Zn10 Fe10 | 10 × 3 | 4.4 | 2 × 450 = 900 | - | 1 | 84.6 | 73.8 |
| D8 | 10 × 3 | 7 | 2 × 450 = 900 | - | 1 | 88.3 | 77.7 | ||
| D5 | VII | Ti80 Cu15 Fe5 | 10 × 3 | 0.8 | 450 | 450 | 3 | 85.8 | 73.6 |
| D8 | 10 × 3 | 1 | 450 | 450 | 3 | 88.1 | 76.5 | ||
| D5 | VIII | Ti80 Cu15 Ni5 | 10 × 3 | 2 | 450 | 450 | 3 | 85.0 | 73.5 |
| D8 | 10 × 3 | 4 | 450 | 450 | 3 | 88.8 | 77.8 | ||
| D5 | IX | Cu80 Ti20 | 10 × 3 | 1.2 | 2 × 350 = 700 | - | 1 | 85.1 | 73.6 |
| D8 | 10 × 3 | 2 | 2 × 350 = 700 | - | 1 | 87.7 | 76.8 | ||
| D5 | X | Ti80 Cu15 Mn5 | 10 × 3 | 0.8 | 450 | 450 | 3 | 86.8 | 75.1 |
| D8 | 10 × 3 | 0.6 | 450 | 450 | 5 | 88.3 | 77.2 | ||
| D5 | XI | Ti80 Cu15 Nb5 | 10 × 3 | 0.8 | 450 | 450 | 3 | 86.3 | 74.8 |
| D8 | 10 × 3 | 1 | 450 | 450 | 3 | 88.1 | 77.1 | ||
| D8 | XII | Ti80 Cu15 Co5 | 10 × 3 | 1 | 450 | 450 | 3 | 87.6 | 76.7 |
| D5 | XIII | Cu60 Ti40 | 10 × 3 | 1.1 | 2 × 350 = 700 | - | 3 | 85.1 | 73.5 |
| D8 | 10 × 3 | 0.8 | 2 × 350 = 700 | - | 1 | 88.0 | 77.0 | ||
| D5 | XIV | Cu80 Ni5 Fe5 Al10 | 10 × 3 | 1.2 | 2 × 400 = 800 | - | 1 | 85.0 | 73.7 |
| D8 | 10 × 3 | 2 | 2 × 400 = 800 | - | 1 | 88.4 | 77.2 | ||
| D5 | XV | Cu80 Ni10 Fe5 Mn5 | 10 × 3 | 6 | 2 × 400 = 800 | - | 1 | 85.0 | 73.8 |
| D8 | 10 × 3 | 8 | 2 × 400 = 800 | - | 1 | 88.4 | 77.1 | ||
| Serie No. | Me% (In the Target) | Coating Thickness [nm] | Standard Deviation [nm] | Crystal Structure | |
|---|---|---|---|---|---|
| D0 | I | Control—diffuse glass without any coating | 41.0 | 7.6 | - |
| D5 (a) | II | Cu90 Sn10 | 16.7 | 7.6 | Crystalline |
| D8 *,(b) | 27.5 | 13.7 | Crystalline | ||
| D5 | III | Cu90 Zn10 | 18.8 | 3.5 | Amorphous |
| D8 * | 22.4 | 5.0 | Amorphous | ||
| D5 | IV | Cu80 Zn10 Al10 | 43.8 | 3.3 | Amorphous |
| D8 | 8.6 | 2.9 | Amorphous | ||
| D5 | V | Cu70 Zn25 Ni5 | 24.7 | 3.6 | Amorphous |
| D8 | 59.3 | 5.9 | Amorphous | ||
| D5 | VI | Cu80 Zn10 Fe10 | 43.1 | 12.2 | Amorphous |
| D8 | 16.7 | 3.6 | Amorphous | ||
| D5 | VII | Ti80 Cu15 Fe5 | 21.4 | 1.0 | Crystalline |
| D8 | 22.7 | 2.2 | Crystalline | ||
| D5 | VIII | Ti80 Cu15 Ni5 | 13.8 | 1.1 | Crystalline |
| D8 | 17.6 | 3.5 | Crystalline | ||
| D5 * | IX | Cu80 Ti20 | 15.7 | 4.8 | Crystalline |
| D8 | 12.5 | 2.3 | Crystalline | ||
| D5 | X | Ti80 Cu15 Mn5 | 26.5 | 1.2 | Crystalline |
| D8 | 24.5 | 1.6 | Crystalline | ||
| D5 | XI | Ti80 Cu15 Nb5 | 24.5 | 2.2 | Amorphous |
| D8 | 22.4 | 2.8 | Amorphous | ||
| D5 | XII | Ti80 Cu15 Co5 | 22.6 | 3.0 | Crystalline |
| D8 | 23.6 | 0.8 | Crystalline | ||
| D5 | XIII | Cu60 Ti40 | 24.6 | 2.1 | Crystalline |
| D8 | 20.1 | 3.7 | Crystalline | ||
| D5 | XIV | Cu80 Ni5 Fe5 Al10 | 8.5 | 1.8 | Amorphous |
| D8 | 6.7 | 2.3 | Amorphous | ||
| D5 | XV | Cu80 Ni10 Fe5 Mn5 | 3.9 | 0.9 | Amorphous |
| D8 | 6.7 | 4.6 | Amorphous |
| Serie No. | Me% (In the Target) | Durability * | Wettability/ Contact Angles [°] *** | Anticorrosion ** |
|---|---|---|---|---|
| I | Control—diffuse glass without any coating | low | 34 ± 6 | 1 point |
| II | Cu90 Sn10 | high | 89 ± 7 | 2 points |
| III | Cu90 Zn10 | medium | 73 ± 4 | 3 points |
| IX | Cu80 Ti20 | medium | 85 ± 5 | 1 point |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ząbek, P.; Jaroszuk-Ściseł, J.; Nowak, A.; Majewska, M.; Słomka, A.; Hanaka, A.; Ozimek, E.; Swadźba, R.; Liśkiewicz, M.; Radwański, K. New Technology for the Production of Transparent Glass Coatings from Multi-Alloy Targets with Antibacterial Activity. Materials 2026, 19, 175. https://doi.org/10.3390/ma19010175
Ząbek P, Jaroszuk-Ściseł J, Nowak A, Majewska M, Słomka A, Hanaka A, Ozimek E, Swadźba R, Liśkiewicz M, Radwański K. New Technology for the Production of Transparent Glass Coatings from Multi-Alloy Targets with Antibacterial Activity. Materials. 2026; 19(1):175. https://doi.org/10.3390/ma19010175
Chicago/Turabian StyleZąbek, Przemysław, Jolanta Jaroszuk-Ściseł, Artur Nowak, Małgorzata Majewska, Anna Słomka, Agnieszka Hanaka, Ewa Ozimek, Radosław Swadźba, Maciej Liśkiewicz, and Krzysztof Radwański. 2026. "New Technology for the Production of Transparent Glass Coatings from Multi-Alloy Targets with Antibacterial Activity" Materials 19, no. 1: 175. https://doi.org/10.3390/ma19010175
APA StyleZąbek, P., Jaroszuk-Ściseł, J., Nowak, A., Majewska, M., Słomka, A., Hanaka, A., Ozimek, E., Swadźba, R., Liśkiewicz, M., & Radwański, K. (2026). New Technology for the Production of Transparent Glass Coatings from Multi-Alloy Targets with Antibacterial Activity. Materials, 19(1), 175. https://doi.org/10.3390/ma19010175

