Comparison of the Internal and Marginal Adaptation of Implant-Supported Restorations on Titanium Base Using Various Materials: An In Vitro Study
Highlights
- Inadequate fit may contribute to plaque retention and related periodontal diseases.
- Digital silicone replicas ensure accurate crown fit measurements.
- Statistical analysis revealed significant differences in fit based on material type and measurement location.
- Dopped graphene PMMA exhibited superior marginal fit compared to zirconia materials.
- Marginal adaptation was similar between single-density and dual-density zirconia.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computer-Aided Design (CAD)
2.2. Computer-Aided Manufacturing (CAM)
2.3. Silicone Replica
2.4. Digitization
2.5. Data Collection
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Doped graphene PMMA restorations demonstrated better marginal adaptation to TiBase compared to both single-density and dual-density zirconia.
- No statistically significant differences were found in the internal adaptation of restorations fabricated from doped graphene PMMA, single-density zirconia, and dual-density zirconia.
- Among the three tested materials, the marginal plane exhibited the highest degree of misfit, whereas the superior plane demonstrated the best adaptation.
- The digital silicone replica technique combined with a digital measurement proved to be a reliable method for assessing the fit of different CAD-CAM milled materials in implant-supported restorations.
- Material selection significantly influences marginal adaptation, with doped graphene PMMA achieving superior marginal fit at the time of manufacturing compared to zirconia.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SRT | Silicone replica technique |
PMMA | Polymethyl methacrylate |
STL | Standard tessellation language |
CAD | Computer-aided design |
CAM | Computer-aided manufacturing |
References
- Ramalho, I.S.; Bergamo, E.T.P.; Witek, L.; Coelho, P.G.; Lopes, A.C.O.; Bonfante, E.A. Implant-Abutment Fit Influences the Mechanical Performance of Single-Crown Prostheses. J. Mech. Behav. Biomed. Mater. 2020, 102, 103506. [Google Scholar] [CrossRef] [PubMed]
- Alves, K.A.F.; Damasceno, J.E.; de Oliveira, V.M.B.; Bastos, L.G.C.; Cavalcanti, A.N. In Vitro Study of Marginal, Internal and Proximal Adaptation of Implant-Supported Single-Crown CAD/CAM Restorations. Braz. J. Oral Sci. 2020, 19, e207286. [Google Scholar] [CrossRef]
- Sarafidou, K.; Vasileiadi, G.; Louvrou, M.K.; Moldovani, E.; Koidis, P.; Kokoti, M.; Bakopoulou, A. Screwmentable Implant-Supported Prostheses: A Systematic Review. J. Prosthet. Dent. 2023, 130, 35–47. [Google Scholar] [PubMed]
- Lauritano, D.; Moreo, G.; Lucchese, A.; Viganoni, C.; Limongelli, L.; Carinci, F. The Impact of Implant-Abutment Connection on Clinical Outcomes and Microbial Colonization: A Narrative Review. Materials 2020, 13, 1131. [Google Scholar] [CrossRef]
- Hamilton, A.; Putra, A.; Nakapaksin, P.; Kamolroongwarakul, P.; Gallucci, G.O. Implant Prosthodontic Design as a Predisposing or Precipitating Factor for Peri-Implant Disease: A Review. Clin. Implant Dent. Relat. Res. 2023, 25, 710–722. [Google Scholar]
- Oliveira, J.A.; de Oliveira Alves, R.; Nascimento, I.M.; Hidalgo, M.A.R.; Scarel-Caminaga, R.M.; Cristina Pigossi, S. Pro- and Anti-Inflammatory Cytokines and Osteoclastogenesis-Related Factors in Peri-Implant Diseases: Systematic Review and Meta-Analysis. BMC Oral Health 2023, 23, 420. [Google Scholar] [CrossRef]
- Fakhr, M.W.Z.F.; Alansary, H.; Hassanien, E.E.Y. Internal Fit and Marginal Adaptation of All-Ceramic Implant-Supported Hybrid Abutment Crowns with Custom-Milled Screw-Channels on Titanium-Base: In-Vitro Study. BMC Oral Health 2024, 24, 1073. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Y.; Jiang, J.; Wang, Y.; He, F. Accuracy and Margin Quality of Advanced 3D-Printed Monolithic Zirconia Crowns. J. Prosthet. Dent. 2023, in press. [CrossRef]
- Meirowitz, A.; Bitterman, Y.; Levy, S.; Mijiritsky, E.; Dolev, E. An In Vitro Evaluation of Marginal Fit Zirconia Crowns Fabricated by a CAD-CAM Dental Laboratory and a Milling Center. BMC Oral Health 2019, 19, 103. [Google Scholar] [CrossRef]
- Son, K.; Lee, S.; Kang, S.H.; Park, J.; Lee, K.B.; Jeon, M.; Yun, B.J. A Comparison Study of Marginal and Internal Fit Assessment Methods for Fixed Dental Prostheses. J. Clin. Med. 2019, 8, 785. [Google Scholar] [CrossRef]
- Zeller, S.; Guichet, D.; Kontogiorgos, E.; Nagy, W.W. Accuracy of Three Digital Workflows for Implant Abutment and Crown Fabrication Using a Digital Measuring Technique. J. Prosthet. Dent. 2019, 121, 276–284. [Google Scholar] [CrossRef]
- Bayrak, A.; Akat, B.; Ocak, M.; Kılıçarslan, M.A.; Özcan, M. Micro-Computed Tomography Analysis of Fit of Ceramic Inlays Produced with Different CAD Software Programs. Eur. J. Prosthodont. Restor. Dent. 2021, 29, 160–165. [Google Scholar] [CrossRef]
- Revilla-León, M.; Gómez-Polo, M.; Barmak, A.B.; Yilmaz, B.; Rutkunas, V.; Kois, J.C. Influence of the Manufacturing Trinomial (Technology, Printer, and Material) on the Marginal and Internal Discrepancies of Printed Metal Frameworks for the Fabrication of Tooth-Supported Prostheses: A Systematic Review and Meta-Analysis. Int. J. Prosthodont. 2024, 37, s285–s307. [Google Scholar] [CrossRef]
- Ayres, A.P.; Cuschieri, L.A.; Bianchi, D.M.; Pradíes, G.; Côrtes, A.R.G. Advantages and Drawbacks of Different Methods to Measure Marginal Gaps in Fixed Dental Prostheses: A Scoping Review. J. Dent. 2024, 151, 105400. [Google Scholar]
- Rues, S.; Zehender, N.; Zenthöfer, A.; Bömicke, W.; Herpel, C.; Ilani, A.; Erber, R.; Roser, C.; Lux, C.J.; Rammelsberg, P.; et al. Fit of Anterior Restorations Made of 3D-Printed and Milled Zirconia: An in-Vitro Study. J. Dent. 2023, 130, 104415. [Google Scholar] [CrossRef]
- Refaie, A.; Fouda, A.; Bourauel, C.; Singer, L. Marginal Gap and Internal Fit of 3D Printed versus Milled Monolithic Zirconia Crowns. BMC Oral Health 2023, 23, 448. [Google Scholar] [CrossRef]
- Cantó-Navés, O.; Michels, K.; Figueras-Alvarez, O.; Fernández-Villar, S.; Cabratosa-Termes, J.; Roig, M. In Vitro Comparison of Internal and Marginal Adaptation between Printed and Milled Onlays. Materials 2023, 16, 6962. [Google Scholar] [CrossRef]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Marginal and Internal Fit of CAD-CAM Inlay/Onlay Restorations: A Systematic Review of in Vitro Studies. J. Prosthet. Dent. 2019, 121, 590–597.e3. [Google Scholar]
- Ferrini, F.; Paolone, G.; Di Domenico, G.L.; Pagani, N.; Gherlone, E.F. SEM Evaluation of the Marginal Accuracy of Zirconia, Lithium Disilicate, and Composite Single Crowns Created by CAD/CAM Method: Comparative Analysis of Different Materials. Materials 2023, 16, 2413. [Google Scholar] [CrossRef]
- Alarcón-Sánchez, M.A.; Heboyan, A.; Fernandes, G.V.D.O.; Castro-Alarcón, N.; Romero-Castro, N.S. Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review. Molecules 2023, 28, 1075. [Google Scholar] [CrossRef]
- Da Silva, S.E.G.; da Silva, N.R.; Santos, J.V.D.N.; Moreira, F.G.D.G.; Özcan, M.; Souza, R.O.D.A.E. Accuracy, Adaptation and Margin Quality of Monolithic Zirconia Crowns Fabricated by 3D Printing versus Subtractive Manufacturing Technique: A Systematic Review and Meta-Analysis of In Vitro Studies. J. Dent. 2024, 147, 105089. [Google Scholar] [CrossRef]
- Park, J.Y.; Jeong, I.D.; Lee, J.J.; Bae, S.Y.; Kim, J.H.; Kim, W.C. In Vitro Assessment of the Marginal and Internal Fits of Interim Implant Restorations Fabricated with Different Methods. J. Prosthet. Dent. 2016, 116, 536–542. [Google Scholar] [CrossRef] [PubMed]
- El-Farag, S.A.A.; Elerian, F.A.; Elsherbiny, A.A.; Abbas, M.H. Impact of Different CAD/CAM Materials on Internal and Marginal Adaptations and Fracture Resistance of Endocrown Restorations with: 3D Finite Element Analysis. BMC Oral Health 2023, 23, 421. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, I.; Benli, M.; Yun, S. Evaluation of Marginal and Internal Fit of Lithium Disilicate and Zirconia All-Ceramic CAD-CAM Crowns Using Digital Impressions: A Systematic Review. Prim. Dent. J. 2023, 12, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.C.; Colaço, R.; Figueiredo-Pina, C.G.; Serro, A.P. Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials 2023, 16, 1860. [Google Scholar] [CrossRef]
- Su, G.; Zhang, Y.; Jin, C.; Zhang, Q.; Lu, J.; Liu, Z.; Wang, Q.; Zhang, X.; Ma, J. 3D Printed Zirconia Used as Dental Materials: A Critical Review. J. Biol. Eng. 2023, 17, 78. [Google Scholar]
- Di Fiore, A.; Zuccon, A.; Carraro, F.; Basilicata, M.; Bollero, P.; Bruno, G.; Stellini, E. Assessment Methods for Marginal and Internal Fit of Partial Crown Restorations: A Systematic Review. J. Clin. Med. 2023, 12, 5048. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Z.; Zhou, J.; Chen, L.; Tan, J. Effect of Tooth Preparation Design on Marginal Adaptation of Composite Resin CAD-CAM Onlays. J. Prosthet. Dent. 2020, 124, 88–93. [Google Scholar] [CrossRef]
- Alghauli, M.; Alqutaibi, A.Y.; Wille, S.; Kern, M. 3D-Printed versus Conventionally Milled Zirconia for Dental Clinical Applications: Trueness, Precision, Accuracy, Biological and Esthetic Aspects. J. Dent. 2024, 144, 104925. [Google Scholar]
- Teegen, I.S.; Schadte, P.; Wille, S.; Adelung, R.; Siebert, L.; Kern, M. Comparison of Properties and Cost Efficiency of Zirconia Processed by DIW Printing, Casting and CAD/CAM-Milling. Dent. Mater. 2023, 39, 669–676. [Google Scholar] [CrossRef]
- de Kok, P.; Liao, P.; Chien, E.C.; Morgano, S. A Meta-Analysis of the Accuracy of Different Measuring Techniques to Evaluate the Marginal and Internal Gap of a Fixed Dental Prosthesis: The American Academy of Fixed Prosthodontics, Research in Fixed Prosthodontics Committee. J. Prosthet. Dent. 2025, in press.
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current Status on Lithium Disilicate and Zirconia: A Narrative Review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef]
- Al Farawati, F.; Nakaparksin, P. What Is the Optimal Material for Implant Prosthesis? Dent. Clin. N. Am. 2019, 63, 515–530. [Google Scholar]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, F.; Vadini, M.; Buonvivere, M.; Valerio, A.; Di Cosola, M.; Piattelli, A.; Biferi, V.; D’Arcangelo, C. In Vitro Mechanical Properties of a Novel Graphene-Reinforced PMMA-Based Dental Restorative Material. Polymers 2023, 15, 622. [Google Scholar] [CrossRef]
- Selva-Otaolaurruchi, E.J.; Fernández-Estevan, L.; Solá-Ruiz, M.F.; García-Sala-Bonmati, F.; Selva-Ribera, I.; Agustín-Panadero, R. Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical Fatigue. J. Clin. Med. 2023, 12, 1269. [Google Scholar] [CrossRef]
- Tahriri, M.; Del Monico, M.; Moghanian, A.; Tavakkoli Yaraki, M.; Torres, R.; Yadegari, A.; Tayebi, L. Graphene and Its Derivatives: Opportunities and Challenges in Dentistry. Mater. Sci. Eng. C 2019, 102, 171–185. [Google Scholar]
- Bonilla-Represa, V.; Abalos-Labruzzi, C.; Herrera-Martinez, M.; Guerrero-Pérez, M.O. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials 2020, 10, 1770. [Google Scholar] [CrossRef]
- Bokobza, L. On the Use of Nanoparticles in Dental Implants. Materials 2020, 10, 1770. [Google Scholar]
- Herrero-Climent, M.; Sanchez-Lasheras, F.; Martinez-Lopez, J.; Gil, J.; Brizuela-Velasco, A. Mechanical Behavior of PEEK and PMMA Graphene and Ti6Al4V Implant-Supported Frameworks: In Silico Study. Materials 2025, 18, 441. [Google Scholar] [CrossRef]
- Erdinc, G. Graphene on Dentistry: A Bibliometric and Scientometric Analysis. Niger. J. Clin. Pract. 2023, 26, 65–72. [Google Scholar] [CrossRef]
- Pilecco, R.O.; Machry, R.V.; Baldi, A.; Tribst, J.P.M.; Sarkis-Onofre, R.; Valandro, L.F.; Kleverlaan, C.J.; Scotti, N.; Pereira, G.K.R. Influence of CAD-CAM Milling Strategies on the Outcome of Indirect Restorations: A Scoping Review. J. Prosthet. Dent. 2024, 131, e1–e811. [Google Scholar]
- Turkyilmaz, I.; Wilkins, G.N. Milling Machines in Dentistry: A Swiftly Evolving Technology. J. Craniofac. Surg. 2021, 32, 2259–2260. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Katsuta, Y.; Ueda, K.; Watanabe, F. Marginal and Internal Fit of Three-Unit Zirconia Fixed Dental Prostheses: Effects of Prosthesis Design, Cement Space, and Zirconia Type. J. Prosthodont. Res. 2020, 64, 460–467. [Google Scholar] [CrossRef] [PubMed]
Material | Product Name | Manufacturer | Location | Manufacturing Method |
---|---|---|---|---|
Zirconia 1100 MPa | BioDynamic Zr | Biodynamic | Parma, Italy | Milling + Sintering |
Zirconia 1200-600 MPa | BioDynamic Zr | Biodynamic | Parma, Italy | Milling + Sintering |
Doped graphene PMMA | Acrylgraph | KPT59 S.L. | Soneja, Spain | Milling |
Basal Plane | Middle Plane | Superior Plane | |
---|---|---|---|
Doped graphene PMMA (G1) | 0.1463 ± 0.4025 a | 0.0238 ± 0.00669 | 0.0132 ± 0.00446 |
Zirconia 1100 MPa (G2) | 0.2303 ± 0.7744 b | 0.0295 ± 0.00896 | 0.0222 ± 0.00819 |
Zirconia 1200-600 MPa (G3) | 0.2505 ± 0.7268 b | 0.0321 ± 0.00741 | 0.0190 ± 0.00767 |
<0.05 * | >0.05 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantó-Navés, O.; Martí-Vigil, J.; de Medrano, J.; Wu, J.; Figueras-Alvarez, O. Comparison of the Internal and Marginal Adaptation of Implant-Supported Restorations on Titanium Base Using Various Materials: An In Vitro Study. Materials 2025, 18, 1590. https://doi.org/10.3390/ma18071590
Cantó-Navés O, Martí-Vigil J, de Medrano J, Wu J, Figueras-Alvarez O. Comparison of the Internal and Marginal Adaptation of Implant-Supported Restorations on Titanium Base Using Various Materials: An In Vitro Study. Materials. 2025; 18(7):1590. https://doi.org/10.3390/ma18071590
Chicago/Turabian StyleCantó-Navés, Oriol, Jordi Martí-Vigil, Javier de Medrano, Jiaxing Wu, and Oscar Figueras-Alvarez. 2025. "Comparison of the Internal and Marginal Adaptation of Implant-Supported Restorations on Titanium Base Using Various Materials: An In Vitro Study" Materials 18, no. 7: 1590. https://doi.org/10.3390/ma18071590
APA StyleCantó-Navés, O., Martí-Vigil, J., de Medrano, J., Wu, J., & Figueras-Alvarez, O. (2025). Comparison of the Internal and Marginal Adaptation of Implant-Supported Restorations on Titanium Base Using Various Materials: An In Vitro Study. Materials, 18(7), 1590. https://doi.org/10.3390/ma18071590