Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = silicone replica technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2944 KiB  
Article
Comparison of the Internal and Marginal Adaptation of Implant-Supported Restorations on Titanium Base Using Various Materials: An In Vitro Study
by Oriol Cantó-Navés, Jordi Martí-Vigil, Javier de Medrano, Jiaxing Wu and Oscar Figueras-Alvarez
Materials 2025, 18(7), 1590; https://doi.org/10.3390/ma18071590 - 1 Apr 2025
Viewed by 552
Abstract
The adaptation of restorations to the titanium base (TiBase) abutments varies depending on the materials and methods used, playing a crucial role in implant and prosthetic success. This in vitro study aims to compare the internal and marginal fit of a titanium interface [...] Read more.
The adaptation of restorations to the titanium base (TiBase) abutments varies depending on the materials and methods used, playing a crucial role in implant and prosthetic success. This in vitro study aims to compare the internal and marginal fit of a titanium interface among three different milled materials: doped graphene PMMA, single-density zirconia, and dual-density zirconia, used for the rehabilitation of CAD-CAM implant-supported single crowns. A digital method based on the silicone replica technique was employed. The silicone reproduction of each fabricated restoration’s inner and basal parts was digitally aligned to the titanium base, measuring the space between them at three predetermined planes: basal, middle, and superior. The material with the worst overall adaptation was dual-density zirconia (0.1 ± 0.03 mm), followed by single-density zirconia (0.09 ± 0.03 mm), and doped graphene PMMA (0.06 ± 0.02 mm). No statistical differences were found in the internal fit, represented by the measurements made at the middle and superior plane, among the materials used (p > 0.05). However, the marginal fit of doped graphene PMMA restorations was statistically better than zirconia restorations (p < 0.05). No significant differences were observed between the marginal fit of both types of zirconia (p > 0.05). Across all three materials, the superior plane showed the best fit, while the marginal plane exhibited the worst. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

24 pages, 17252 KiB  
Article
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis
by Atila Ertas, Erik Farley-Talamantes, Olkan Cuvalci and Ozhan Gecgel
Bioengineering 2025, 12(1), 94; https://doi.org/10.3390/bioengineering12010094 - 20 Jan 2025
Viewed by 2435
Abstract
The advancement of medical 3D printing technology includes several enhancements, such as decreasing the length of surgical procedures and minimizing anesthesia exposure, improving preoperative planning, creating personalized replicas of tissues and bones specific to individual patients, bioprinting, and providing alternatives to human organ [...] Read more.
The advancement of medical 3D printing technology includes several enhancements, such as decreasing the length of surgical procedures and minimizing anesthesia exposure, improving preoperative planning, creating personalized replicas of tissues and bones specific to individual patients, bioprinting, and providing alternatives to human organ transplants. The range of materials accessible for 3D printing within the healthcare industry is significantly narrower when compared with conventional manufacturing techniques. Liquid silicone rubber (LSR) is characterized by its remarkable stability, outstanding biocompatibility, and significant flexibility, thus presenting substantial opportunities for manufacturers of medical devices who are engaged in 3D printing. The main objective of this study is to develop, refine, and assess a 3D printer that can employ UV-cured silicone for the fabrication of aortic heart valves. Additionally, the research aims to produce a 3D-printed silicone aortic heart valve and evaluate the feasibility of the final product. A two-level ANOVA experimental design was utilized to investigate the impacts of print speed, nozzle temperature, and layer height on the print quality of the aortic heart valve. The findings demonstrated that the 3D-printed heart valve’s UV-cured silicone functioned efficiently, achieving the target flow rates of 5 L/min and 7 L/min. Two distinct leaflet thicknesses (LT) of the heart valve, namely 0.8 mm and 1.6 mm, were also analyzed to simulate calcium deposition on the leaflets. Full article
Show Figures

Figure 1

11 pages, 1885 KiB  
Article
Evaluation of Internal Fit in Custom-Made Posts and Cores Fabricated with Fully Digital Versus Conventional Techniques
by Eric Jensen and Shariel Sayardoust
J. Funct. Biomater. 2024, 15(12), 389; https://doi.org/10.3390/jfb15120389 - 22 Dec 2024
Cited by 1 | Viewed by 1349
Abstract
Objective: This study aimed to assess and compare the internal fit of custom-made posts and cores fabricated using digital impressions (DI) and conventional vinyl polysiloxane (VPS) impressions in restorative dentistry. Materials and Methods: A typodont tooth model, simulating the anatomy of the root [...] Read more.
Objective: This study aimed to assess and compare the internal fit of custom-made posts and cores fabricated using digital impressions (DI) and conventional vinyl polysiloxane (VPS) impressions in restorative dentistry. Materials and Methods: A typodont tooth model, simulating the anatomy of the root canal of a central incisor, was utilized for the study. Two groups were formed, Group A and Group B, and each group provided a total of 18 impressions of two types: DIs and VPS impressions. In Group A, posts and cores (PCs) were fabricated using Selective Laser Melting (SLM) from the DIs. Meanwhile, in Group B, conventionally cast (CC) PCs were created from the VPS impressions. Silicone replicas of the internal surfaces were produced, and measurements were made at seven different points for each group. A statistical analysis was performed to assess the differences in internal fit between the two impression techniques. Results: The results revealed a statistically significant difference in mean internal fit between Group A (DI and SLM) and Group B (VPS and CC), with Group A exhibiting a mean internal fit of 182.6 µm and Group B showing a mean of 205.9 µm. While both groups demonstrated considerable variability in internal fit measurements, the digital impression technique showed promise for achieving superior internal fit, with a significantly greater fit for measuring points on sides and the most apical part of the post for Group A. Variations were observed across different measuring points, emphasizing the impact of impression technique on specific regions within the tooth. Conclusion: This study contributes to the growing body of knowledge in digital dentistry by highlighting the potential benefits of DIs in achieving a superior internal fit for custom-made PCs. Clinicians may consider the advantages of digital techniques to enhance the precision of their restorative procedures, although further research is warranted to evaluate the clinical impact of these findings. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

13 pages, 604 KiB  
Review
Assessment Methods for Marginal and Internal Fit of Partial Crown Restorations: A Systematic Review
by Adolfo Di Fiore, Andrea Zuccon, Filippo Carraro, Michele Basilicata, Patrizio Bollero, Giovanni Bruno and Edoardo Stellini
J. Clin. Med. 2023, 12(15), 5048; https://doi.org/10.3390/jcm12155048 - 31 Jul 2023
Cited by 14 | Viewed by 3469
Abstract
Background: Different methods are used for the analysis of marginal and internal fit of partial crowns, but not all of them are applicable for in vivo studies. The aim of this review is to search the available methods, described in the current literature, [...] Read more.
Background: Different methods are used for the analysis of marginal and internal fit of partial crowns, but not all of them are applicable for in vivo studies. The aim of this review is to search the available methods, described in the current literature, to assess marginal and internal fit in partial crowns. Methods: an electronic search was performed on Pubmed and Web of Science databases to find studies published from 1 January 2017 up to 2 March 2023, following PRISMA guidelines and Cochrane handbook for systematic reviews. The search strategy applied was: “(marginal) AND (fit OR gap OR adaptation OR discrepancy) AND (inlay OR onlay OR partial crown)”. In vitro studies which evaluated marginal and internal fit on CAD CAM or 3D printed partial crowns were included in this review. Quality of the studies was assessed by using Quality Assessment Tool For In Vitro Studies (QUIN tool). Results: 22 studies were included. Among conventional methods, direct view with microscope, indirect view on resin replicas, and silicone replica technique (SRT) were used. Considering new digital methods, micro-CT, SRT 3D and triple scan technique (TST) were applied. Conclusions: Among 2D methods, direct view technique is the most used marginal fit analysis. For a more comprehensive evaluation, a 3D digital analysis is suggested. SRT and indirect view are the only 2D methods available for in vivo analysis. A protocol for the application of TST for assessment in vivo is now available, but no studies are reported in literature yet. Full article
Show Figures

Figure 1

9 pages, 1217 KiB  
Article
In-Vitro Investigation of Marginal Adaptation and Fracture Resistance of Resin Matrix Ceramic Endo-Crown Restorations
by Burak Mertsöz, Salim Ongun and Mutahhar Ulusoy
Materials 2023, 16(5), 2059; https://doi.org/10.3390/ma16052059 - 2 Mar 2023
Cited by 9 | Viewed by 2541
Abstract
The aim of this study was to evaluate the fracture resistance and marginal adaptation of endo-crown restorations produced from different resin-matrix ceramics (RMS) and the effects of these materials on marginal adaptation and fracture resistance. Three frasaco models were used by preparing (first) [...] Read more.
The aim of this study was to evaluate the fracture resistance and marginal adaptation of endo-crown restorations produced from different resin-matrix ceramics (RMS) and the effects of these materials on marginal adaptation and fracture resistance. Three frasaco models were used by preparing (first) premolar teeth in three different margin preparations: butt-joint, heavy chamfer and shoulder. Each group was further divided into four subgroups according to the type of restorative material used: Ambarino High Class (AHC), Voco Grandio (VG), Brilliant Crios (BC) and Shofu (S) (n = 30). Master models were obtained using an extraoral scanner and fabricated with a milling machine. Marginal gap evaluation was performed with a silicon replica technique using a stereomicroscope. Replicas of the models (n = 120) were produced with epoxy resin. The fracture resistance of the restorations was recorded using a universal testing machine. The data were statistically analyzed using two-way ANOVA, and a t-test was applied for each group. Tukey’s post-hoc test was performed to compare significant differences (p ≤ 0.05). The highest marginal gap was observed in VG, and the best marginal adaptation and the highest fracture resistance were found in BC. The lowest fracture resistance in Butt-joint preparation design was found in S. In addition, the lowest fracture resistance value in the heavy chamfer preparation design was found in AHC. The heavy shoulder preparation design displayed the highest fracture resistance values for all materials. Full article
Show Figures

Figure 1

13 pages, 2843 KiB  
Article
Marginal and Internal Fit of Monolithic Zirconia Crowns Fabricated by Using Two Different CAD-CAM Workflows: An In Vitro Study
by Vahap Çin, Ayça Deniz İzgi, Ediz Kale and Burak Yilmaz
Prosthesis 2023, 5(1), 35-47; https://doi.org/10.3390/prosthesis5010003 - 5 Jan 2023
Cited by 9 | Viewed by 5219
Abstract
Objectives: Few studies have evaluated the marginal fit of computer-aided design—computer-aided manufacturing (CAD-CAM) monolithic zirconia crowns fabricated through completely digital workflow; however, the internal fit of these restorations is not well known. The purpose of this in vitro study was to evaluate the [...] Read more.
Objectives: Few studies have evaluated the marginal fit of computer-aided design—computer-aided manufacturing (CAD-CAM) monolithic zirconia crowns fabricated through completely digital workflow; however, the internal fit of these restorations is not well known. The purpose of this in vitro study was to evaluate the marginal and internal fit of monolithic zirconia crowns fabricated by using digital workflow, including intraoral scanner (IOS) scans, and compare the results to those of a semi-digital workflow, which combined conventional impressions, poured casts, and extraoral scanner (EOS) scanning. Materials and methods: A typodont right mandibular first molar was prepared for a complete-coverage ceramic crown and scanned using an IOS. The conventional impressions of the preparation were also made, and stone casts were poured and scanned by using an EOS. Virtual models were generated for both workflows, and identical virtual anatomic contour crowns were designed using CAD software. Monolithic zirconia crowns were fabricated for both IOS (ZI; n = 10) and EOS (ZE; n = 10) groups. The silicon replica technique was used to evaluate the marginal and internal fit of the crowns. Measurements were made at 13 points on buccolingual and mesiodistal cross-sections per specimen with a ×6.5 to ×50 zoom stereo microscope. The results from both groups were statistically compared using the Independent Samples t-tests and the Mann–Whitney U test (α = 0.05). Results: Mean gap values at all measurement locations for ZE were significantly higher than those for ZI (p ≤ 0.002). Overall mean values ranged between 29 and 43 µm (median: 28–42 µm) for ZI and 42 and 75 µm (median: 43–77 µm) for ZE. Conclusion: Completely digital workflow through intraoral scans provided significantly better marginal and internal fit for CAD-CAM monolithic zirconia crowns compared with the semi-digital workflow, where stone casts obtained from conventional impressions were scanned with an EOS. Yet, both workflows provided an acceptable marginal and internal fit for CAD-CAM monolithic zirconia molar crowns (<120 µm). Clinical Relevance: Completely digital workflow using IOS scans may be advantageous for the fabrication of CAD-CAM monolithic zirconia crowns as favorable results can be obtained with less material waste and potentially shortened overall treatment time as the impression files can be transferred to the production facility electronically. The results need to be corroborated with clinical studies. Full article
(This article belongs to the Special Issue Novel Zirconia Materials Applied in Dental Prostheses)
Show Figures

Figure 1

14 pages, 8118 KiB  
Article
Fabrication of Compliant and Transparent Hollow Cerebral Vascular Phantoms for In Vitro Studies Using 3D Printing and Spin–Dip Coating
by Beatrice Bisighini, Pierluigi Di Giovanni, Alba Scerrati, Federica Trovalusci and Silvia Vesco
Materials 2023, 16(1), 166; https://doi.org/10.3390/ma16010166 - 24 Dec 2022
Cited by 4 | Viewed by 3111 | Correction
Abstract
Endovascular surgery through flow diverters and coils is increasingly used for the minimally invasive treatment of intracranial aneurysms. To study the effectiveness of these devices, in vitro tests are performed in which synthetic vascular phantoms are typically used to reproduce in vivo conditions. [...] Read more.
Endovascular surgery through flow diverters and coils is increasingly used for the minimally invasive treatment of intracranial aneurysms. To study the effectiveness of these devices, in vitro tests are performed in which synthetic vascular phantoms are typically used to reproduce in vivo conditions. In this paper, we propose a manufacturing process to obtain compliant and transparent hollow vessel replicas to assess the mechanical behaviour of endovascular devices and perform flow measurements. The vessel models were obtained in three main steps. First, a mould was 3D-printed in a water-soluble material; two techniques, fusion deposition modelling and stereolithography, were compared for this purpose. Then, the mould was covered with a thin layer of silicone through spin–dip coating, and finally, when the silicone layer solidified, it was dissolved in a hot water bath. The final models were tested in terms of the quality of the final results, the mechanical properties of the silicone, thickness uniformity, and transparency properties. The proposed approach makes it possible to produce models of different sizes and complexity whose transparency and mechanical properties are suitable for in vitro experiments. Its applicability is demonstrated through idealised and patient-specific cases. Full article
Show Figures

Figure 1

14 pages, 2938 KiB  
Article
Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds
by Raviraj Thakur and Gene Y. Fridman
Micromachines 2022, 13(9), 1408; https://doi.org/10.3390/mi13091408 - 27 Aug 2022
Cited by 5 | Viewed by 2765
Abstract
Rapid prototyping methods enable the widespread adoption of microfluidic technologies by empowering end-users from non-engineering disciplines to make devices using processes that are rapid, simple and inexpensive. In this work, we developed a liquid molding technique to create silicone/PDMS microfluidic devices by replica [...] Read more.
Rapid prototyping methods enable the widespread adoption of microfluidic technologies by empowering end-users from non-engineering disciplines to make devices using processes that are rapid, simple and inexpensive. In this work, we developed a liquid molding technique to create silicone/PDMS microfluidic devices by replica molding. To construct a liquid mold, we use inexpensive adhesive-backed paper, an acetate backing sheet, and an off-the-shelf digital cutter to create paper molds, which we then wet with predetermined amounts of water. Due to the immiscibility of water and PDMS, mold patterns can be effectively transferred onto PDMS similarly to solid molds. We demonstrate the feasibility of these wet paper molds for the fabrication of PDMS microfluidic devices and assess the influence of various process parameters on device yield and quality. This method possesses some distinct benefits compared to conventional techniques such as photolithography and 3D printing. First, we demonstrate that the shape of a channel’s cross-section may be altered from rectangular to semicircular by merely modifying the wetting parameters. Second, we illustrate how electrical impedance can be utilized as a marker for inspecting mold quality and identifying defects in a non-invasive manner without using visual tools such as microscopes or cameras. As a proof-of-concept device, we created a microfluidic T-junction droplet generator to produce water droplets in mineral oil ranging in size from 1.2 µL to 75 µL. We feel that this technology is an excellent addition to the microfluidic rapid prototyping toolbox and will find several applications in biological research. Full article
(This article belongs to the Topic Advances in Microfluidics and Lab on a Chip Technology)
Show Figures

Figure 1

12 pages, 4533 KiB  
Article
Lateral Degassing Method for Disposable Film-Chip Microfluidic Devices
by Suhee Park, Hyungseok Cho, Junhyeong Kim and Ki-Ho Han
Membranes 2021, 11(5), 316; https://doi.org/10.3390/membranes11050316 - 26 Apr 2021
Cited by 10 | Viewed by 5029
Abstract
It is critical to develop a fast and simple method to remove air bubbles inside microchannels for automated, reliable, and reproducible microfluidic devices. As an active degassing method, this study introduces a lateral degassing method that can be easily implemented in disposable film-chip [...] Read more.
It is critical to develop a fast and simple method to remove air bubbles inside microchannels for automated, reliable, and reproducible microfluidic devices. As an active degassing method, this study introduces a lateral degassing method that can be easily implemented in disposable film-chip microfluidic devices. This method uses a disposable film-chip microchannel superstrate and a reusable substrate, which can be assembled and disassembled simply by vacuum pressure. The disposable microchannel superstrate is readily fabricated by bonding a microstructured polydimethylsiloxane replica and a silicone-coated release polymeric thin film. The reusable substrate can be a plate that has no function or is equipped with the ability to actively manipulate and sense substances in the microchannel by an elaborately patterned energy field. The degassing rate of the lateral degassing method and the maximum available pressure in the microchannel equipped with lateral degassing were evaluated. The usefulness of this method was demonstrated using complex structured microfluidic devices, such as a meandering microchannel, a microvortex, a gradient micromixer, and a herringbone micromixer, which often suffer from bubble formation. In conclusion, as an easy-to-implement and easy-to-use technique, the lateral degassing method will be a key technique to address the bubble formation problem of microfluidic devices. Full article
Show Figures

Figure 1

9 pages, 2119 KiB  
Article
Influence of Sequential CAD/CAM Milling on the Fitting Accuracy of Titanium Three-Unit Fixed Dental Prostheses
by Doo-Bin Song, Man-So Han, Si-Chul Kim, Junyong Ahn, Yong-Woon Im and Hae-Hyoung Lee
Materials 2021, 14(6), 1401; https://doi.org/10.3390/ma14061401 - 13 Mar 2021
Cited by 10 | Viewed by 2673
Abstract
This study investigated the fitting accuracy of titanium alloy fixed dental prostheses (FDP) after sequential CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) fabrication. A three-unit FDP model connecting mandibular second premolars and molars was prepared and scanned to fabricate titanium FDPs by CAD/CAM milling. [...] Read more.
This study investigated the fitting accuracy of titanium alloy fixed dental prostheses (FDP) after sequential CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) fabrication. A three-unit FDP model connecting mandibular second premolars and molars was prepared and scanned to fabricate titanium FDPs by CAD/CAM milling. A total of six FDPs were sequentially milled in one titanium alloy disk using a new set of burs every time (n = 4). The fitting accuracy of FDPs was mesiodistally evaluated by a silicone replica technique and the measurement was triplicated at four different locations: MO (marginal opening), MG (marginal gap), AG (axial gap), and OG (occlusal gap). Data were statistically analyzed using ANOVA and Tukey’s HSD test. The fitting accuracy of PMMA (polymethyl methacrylate) FDPs milled using the worn or new bur were evaluated by the same procedure (n = 6). The mean dimensions of titanium FDP for all measuring positions, except for AG, were significantly increased from the third milling. However, no difference was noted between the first FDP and the second FDP milled with the same set of burs. Severe edge chippings were observed in all milling burs. Detrimental effects of the worn burs on the fitting accuracy were demonstrated in the CAD/CAM-milled PMMA FDP. The results recommend proper changing frequency of cutting burs to achieve the quality of fit and predictable outcomes for dental CAD/CAM prostheses. Full article
Show Figures

Figure 1

15 pages, 2337 KiB  
Article
Evaluation of Internal Fit and Marginal Adaptation of Provisional Crowns Fabricated with Three Different Techniques
by Jie Wu, Hongjun Xie, Alireza Sadr and Kwok-Hung Chung
Sensors 2021, 21(3), 740; https://doi.org/10.3390/s21030740 - 22 Jan 2021
Cited by 30 | Viewed by 5379
Abstract
Different techniques have been used to construct provisional crowns to protect prepared teeth. The purpose of this in vitro study was to assess the internal fit and marginal discrepancy of provisional crowns made by different methods. A total of 48 provisional crowns were [...] Read more.
Different techniques have been used to construct provisional crowns to protect prepared teeth. The purpose of this in vitro study was to assess the internal fit and marginal discrepancy of provisional crowns made by different methods. A total of 48 provisional crowns were constructed and divided into three groups (n = 16) according to the fabrication methods: fabricated manually-group MAN; computer-aided design/computer aided manufacturing technology-group CAM; and 3-dimensional (3D)-printed technology-group 3DP. The same standard tessellation language (STL) file was used for both CAD/CAM and 3D-printed group. The silicone-checked method was used to measure the internal gap distance. The marginal discrepancy was measured by using the polyvinyl siloxane (PVS) replica method and swept-source optical coherence tomography (OCT) scanning technique. Data were analyzed with one-way analysis of variance (ANOVA) nonparametric Kruskal-Wallis and Tukey tests at α = 0.05. At the central pit and axial walls, the gap distance mean values of group CAM were higher than those from group MAN and 3DP. The group 3DP was statistically significantly higher in gap distance at the location of occlusion than group MAN and group CAM (p < 0.05). The total gap distances assessed by silicone-checked method revealed there were no statistically significant differences between the tested groups (p > 0.05). The total mean values of absolute and horizontal marginal discrepancy of the group 3DP obtained by using the PVS-replica method and OCT scanning technique were significantly higher than the group MAN and CAM (p < 0.05). Regression correlation results of marginal discrepancy indicated a positive correlation (r = 0.902) between PVS-replica method and OCT scanning technique. The manually fabricated provisional crowns presented better internal fit and a smaller marginal discrepancy. Between different assessment techniques for marginal adaptation, PVS-replica method and OCT scanning technique have a positive correlation. Full article
(This article belongs to the Special Issue Sensing and Imaging Technology in Dentistry)
Show Figures

Figure 1

11 pages, 2301 KiB  
Article
Marginal and Internal Fit of Ceramic Restorations Fabricated Using Digital Scanning and Conventional Impressions: A Clinical Study
by Jeong-Hyeon Lee, Keunbada Son and Kyu-Bok Lee
J. Clin. Med. 2020, 9(12), 4035; https://doi.org/10.3390/jcm9124035 - 14 Dec 2020
Cited by 20 | Viewed by 5652
Abstract
This clinical study was designed with the aim of fabricating four ceramic crowns using the conventional method and digital methods with three different intraoral scanners and evaluate the marginal and internal fit as well as clinician satisfaction. We enrolled 20 subjects who required [...] Read more.
This clinical study was designed with the aim of fabricating four ceramic crowns using the conventional method and digital methods with three different intraoral scanners and evaluate the marginal and internal fit as well as clinician satisfaction. We enrolled 20 subjects who required ceramic crowns in the upper or lower molar or the premolar. Impressions were obtained using digital scans, with conventional impressions (polyvinyl siloxane and desktop scanner) and three different intraoral scanners (EZIS PO, i500, and CS3600). Four lithium disilicate glass-ceramic crowns were fabricated for each patient. In the oral cavity, the proximal and occlusal adjustments were performed, and the marginal fit and internal fit were evaluated using the silicone replica technique. The clinician satisfaction score of the four crowns was evaluated as per the evaluations of the proximal and occlusal contacts made during the adjustment process and the marginal and internal fit. For statistical analysis, the differences among the groups were analyzed with one-way analysis of variance and Tukey HSD test as a post-test; Pearson correlation analysis was used for analyzing the correlations (α = 0.05). There was a significant difference in the marginal and internal fit of the ceramic crowns fabricated using three intraoral scanner types and one desktop scanner type (p < 0.001); there was a significant difference in the clinician satisfaction scores (p = 0.04). The clinician satisfaction score and marginal fit were significantly correlated (absolute marginal discrepancy and marginal gap) (p < 0.05). An impression technique should be considered for fabricating a ceramic crown with excellent goodness-of-fit. Further, higher clinician satisfaction could be obtained by reproducing the excellent goodness-of-fit using the intraoral scanning method as compared to the conventional method. Full article
(This article belongs to the Special Issue Digital Workflows and Material Sciences in Dental Medicine)
Show Figures

Figure 1

14 pages, 3475 KiB  
Review
Reliability of Metal 3D Printing with Respect to the Marginal Fit of Fixed Dental Prostheses: A Systematic Review and Meta-Analysis
by Soohyun Bae, Min-Ho Hong, Hyunwoo Lee, Cheong-Hee Lee, Mihee Hong, Jaesik Lee and Du-Hyeong Lee
Materials 2020, 13(21), 4781; https://doi.org/10.3390/ma13214781 - 26 Oct 2020
Cited by 22 | Viewed by 4158
Abstract
Three-dimensional (3D) printing technologies have been widely used to manufacture crowns and frameworks for fixed dental prostheses. This systematic review and meta-analysis aimed to assess the reliability of the marginal fit of 3D-printed cobalt-chromium-based fixed dental prostheses in comparison to conventional casting methods. [...] Read more.
Three-dimensional (3D) printing technologies have been widely used to manufacture crowns and frameworks for fixed dental prostheses. This systematic review and meta-analysis aimed to assess the reliability of the marginal fit of 3D-printed cobalt-chromium-based fixed dental prostheses in comparison to conventional casting methods. Articles published until 25 June 2020, reporting the marginal fit of fixed prostheses fabricated with metal 3D printing, were searched using electronic literature databases. After the screening and quality assessment, 21 eligible peer-reviewed articles were selected. Meta-analysis revealed that the marginal gap of the prostheses manufactured using 3D printing was significantly smaller compared to that manufactured using casting methods (standard mean difference (95% CI): −0.92 (−1.45, −0.38); Z = −3.37; p = 0.0008). The estimated difference between the single and multi-unit types did not differ significantly (p = 0.3573). In the subgroup analysis for the measurement methods, the tendency of marginal discrepancy between the 3D printing and casting groups was significantly different between articles that used direct observation and those that used the silicone replica technique (p < 0.001). Metal 3D printing technologies appear reliable as an alternative to casting methods in terms of the fit of the fixed dental prostheses. In order to analyze the factors influencing manufacturing and confirm the results of this review, further controlled laboratory and clinical studies are required. Full article
(This article belongs to the Special Issue 3D-Printed Dental Materials)
Show Figures

Figure 1

14 pages, 2735 KiB  
Article
In Vitro Study of Comparative Evaluation of Marginal and Internal Fit between Heat-Pressed and CAD-CAM Monolithic Glass-Ceramic Restorations after Thermal Aging
by Roxana-Diana Vasiliu, Sorin Daniel Porojan and Liliana Porojan
Materials 2020, 13(19), 4239; https://doi.org/10.3390/ma13194239 - 23 Sep 2020
Cited by 28 | Viewed by 3177
Abstract
The accuracy of newly developed ceramic materials is still being studied. Marginal and internal adaptation are known factors that have an essential impact on the long term success of dental restorations. The aim of this in vitro study was to evaluate the marginal [...] Read more.
The accuracy of newly developed ceramic materials is still being studied. Marginal and internal adaptation are known factors that have an essential impact on the long term success of dental restorations. The aim of this in vitro study was to evaluate the marginal and internal fit of heat-pressed and milled monolithic glass-ceramic restorations based on their ceramic type, processing technique, and in vitro thermocycling. Thirty-two crowns were studied and divided into four groups (n = 8), according to the ceramic material (feldspathic glass-ceramic (F) and zirconia reinforced lithium silicate glass-ceramic (ZLS)) and to their technological obtaining processes (milling (M) and heat-pressing (P)). A typodont preparation was scanned with a D2000 3D scanner to obtain identical 32 resin 3D-printed abutment teeth. Marginal and internal gaps were measured using the silicone replica technique under 40× magnification. The crowns were further cemented and thermally aged for 10,000 cycles After cementation and thermocycling of the samples, marginal and internal gaps were assessed using micro-CT (micro-computed tomography)) analysis. Data were statistically analyzed using statistical tests. Significant differences were found before and after cementation and thermocycling among the tested materials (p < 0.05). Related to technological processing, significant differences were seen in the marginal area between FP and FM (p < 0.05) Significant differences were also found in the axial and occlusal areas between the ZLSP and ZLSM. Thermocycling and cementation did not have a significant effect on the tested materials (p < 0.05). The technological processes influenced the marginal and internal fit of the crowns in favor of the CAD/CAM (computer aided design/computer aided manufacturing)technologies. Thermal aging had little effect on marginal adaptability; it increased the values for all the tested samples in a small way, but the values remained in their clinically acceptable range for all of the crowns. Full article
(This article belongs to the Special Issue Advanced Functional Materials for Biomedicinal Applications)
Show Figures

Figure 1

11 pages, 4891 KiB  
Article
Exploring the Dzi Bead with Synchrotron Light: XRD, XRF Imaging and μ-XANES Analysis
by Averie Reinhardt, Renfei Feng, Qunfeng Xiao, Yongfeng Hu and Tsun-Kong Sham
Heritage 2020, 3(3), 1035-1045; https://doi.org/10.3390/heritage3030056 - 15 Sep 2020
Cited by 2 | Viewed by 11715
Abstract
The origin of Dzi beads, also called “tian zhu”, has always been a mystery. These beads come in a variety of patterns, shapes and sizes. They have cultural and heritage significance in Tibet and areas surrounding the Himalayas. The most recognized beads are [...] Read more.
The origin of Dzi beads, also called “tian zhu”, has always been a mystery. These beads come in a variety of patterns, shapes and sizes. They have cultural and heritage significance in Tibet and areas surrounding the Himalayas. The most recognized beads are those with the “eye” pattern. They are said to ward off evil spirits. Due to their reputation, the demand for Dzi beads has increased in Asia. Herein, we report a study of a Dzi bead with a three-eye pattern using X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray absorption near edge structure (XANES) and imaging techniques. This is a novel area for Dzi bead research using X-rays from a synchrotron light source to determine the chemical composition of the bead, if the pattern is natural or man-made or if the bead is genuine or a replica. These techniques revealed the bead to be composed of agate (silicon dioxide). An interesting feature on the bead’s surface was the etched rings, which were observed to contain regular copper hot spots on their circumference. Our results suggest that the Dzi bead was genuine and started out as an earth-formed agate, with the pattern crafted. Full article
(This article belongs to the Special Issue Optical Technologies Applied to Cultural Heritage)
Show Figures

Figure 1

Back to TopTop