Study on Various Chemical Systems for the Preparation and Application of Nickel Nanopastes for Joining Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticles, Selection of Chemical Components for Paste Preparation and Base Material for Joining Samples
Solv./Stab. (1) | Chemical Compound|Investigated in | Cond. at RT (2) | CAS No. | Remarks |
---|---|---|---|---|
solv. | Dihydroterpineol|[18] | L | 498-81-7 | no advantage over Terpineol (3) |
Dimethylformamide (DMF)|[19] | L | 68-12-2 | not used, hazardous to health [20] | |
Dioctyl ether|[21] | L | 629-82-3 | included | |
Ethylen glycol|[22,23] | L | 107-21-1 | not used, hazardous to health [24] | |
Hydrazine|[25] | L | 302-01-2 | not used, highly toxic [26] | |
Oleylamine|[27,28,29] | L | 112-90-3 | not used, hazardous to health [30] | |
Paraffin (paraffin wax)|[31,32,33] | L | 8012-95-1 | included | |
Polyethylenimine|[34] | L | 9002-98-6 | not used, hazardous to health [35] | |
Phenol ether/Phenyl ether|[27,36] | L | (various) | not used, hazardous to health [37,38] | |
Terpineol|[17,39,40] | L | 8000-41-7 | included | |
Tetrahydrofuran (THF)|[41] | L | 109-99-9 | not used, hazardous to health [42] | |
Toluene|[21,43] | L | 108-88-3 | not used, hazardous to health [44] | |
Trioctylamine|[36] | L | 1116-76-3 | not used, hazardous to health [45] | |
Water|[19,25,46,47,48] | L | 7732-18-5 | included | |
both | Oleic acid|[34,43,49,50,51] and more | L | 112-80-1 | included |
PEG 400 (4)|[17,23,52] | L | 25322-68-3 | included | |
stab. | CTAB (5)|[47,53] | S | 57-09-0 | included |
Glycolic acid|[54,55] | S | 79-14-1 | included | |
HYPERMER™ KD4 (now: LP1)|[17,39] | L | (none) | included | |
Lauric acid, Palmitic acid|[36,56] | S | (various) | not used here in favor of Stearic acid (6) | |
other commercial surfactants|[18] | L | (none) | not used here in favor of KD4 (3) | |
Polyvinylpyrrolidone (PVP)|[22,25] | S | 9003-39-8 | included | |
Sodium dodecyl sulfate (SDS)|[19,48,52] | S | 151-21-3 | included | |
Stearic acid|[44,57] | S | 57-11-4 | included | |
Urea|[58,59] | S | 57-13-6 | only employed in DES (7) | |
Xanthate|[60,61] | S | (various) | not used, hazardous to health [62] |
2.2. Preparation of Ni Nanopastes
2.3. Nanopaste Application
2.4. Joining Sample Geometry, Joining Process and Parameters
2.5. Shear Strength Testing and Microstructure Analysis
3. Results
3.1. Evaluation of the Manufacturability of Different Nanopaste Compositions
3.1.1. Water-Based Nanopastes
3.1.2. Nanopastes from Organic Solvents
- Ni (70%)_DiOE_OA (15%);
- Ni (70%)_DiOE_OA (1.5%);
- Ni (70%)_DiOE_SA (15%);
- Ni (70%)_DiOE_SA (1.5%).
- Ni (70%)_Pf_OA (15%);
- Ni (70%)_Pf_OA (1.5%).
- Ni (70%)_T_GA (1.5%);
- Ni (70%)_PEG_GA (1.5%).
- Ni (70%)_T_PVP (1.5%);
- Ni (70%)_T_KD4 (0.7%) (composition already used in previous studies);
- Ni (70%)_T (stabilizer-free T-based nanopaste);
- Ni (70%)_PEG_PVP (1.5%);
- Ni (70%)_PEG (stabilizer-free PEG 400-based nanopaste).
3.2. Evaluation of the Shear Strength of Joining Samples
3.3. Evaluation of the Microstructure of the Joints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, P.; Liu, L.; Gerlich, A.P.; Hu, A.; Zhou, Y.N. Self-Oriented Nanojoining of Silver Nanowires via Surface Selective Activation. Part. Part. Syst. Charact. 2013, 30, 420–426. [Google Scholar]
- Delogu, F. Thermodynamics on the Nanoscale. J. Phys. Chem. B 2005, 109, 21938–21941. [Google Scholar] [PubMed]
- Nanda, K.K. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana 2009, 72, 617–628. [Google Scholar] [CrossRef]
- Siow, K.S. Mechanical properties of nano-silver joints as die attach materials. J. Alloys Compd. 2012, 514, 6–19. [Google Scholar] [CrossRef]
- Yamakawa, T.; Takemoto, T.; Shimoda, M.; Nishikawa, H.; Shiokawa, K.; Terada, N. Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-Temperature Bonding Using Cu Nanoparticle Paste. J. Electron. Mater. 2013, 42, 1260–1267. [Google Scholar] [CrossRef]
- Hausner, S.; Weis, S.; Wielage, B.; Wagner, G. Low temperature joining of copper by Ag nanopaste: Correlation of mechanical properties and process parameters. Weld. World 2016, 60, 1277–1286. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Ji, H.; Li, M. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 33289–33298. [Google Scholar] [CrossRef]
- Hausner, S. Potential von Nanosuspensionen zum Fügen bei Niedrigen Temperaturen. Ph.D. Thesis, Schriftenreihe Werkstoffe und Werkstofftechnische Anwendungen 56, Eigenverlag, Chemnitz, Germany, 2015. [Google Scholar]
- Kielbasinski, K.; Szalapak, J.; Mlozniak, A.; Teodorczyk, M.; Pawlowski, R.; Krzeminski, J.; Jakubowska, M. Sintered nanosilver joints on rigid and flexible substrates. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 325–331. [Google Scholar]
- Kim, K.-S.; Bang, J.-O.; Choa, Y.-H.; Jung, S.-B. The characteristics of Cu nanopaste sintered by atmospheric-pressure plasma. Microelectron. Eng. 2013, 107, 121–124. [Google Scholar] [CrossRef]
- Ishizaki, T.; Usui, M.; Yamada, Y. Thermal cycle reliability of Cu-nanoparticle joint. Microelectron. Reliab. 2015, 55, 1861–1866. [Google Scholar] [CrossRef]
- Amato, K.N.; Gaytan, S.M.; Murr, L.E.; Martinez, E.; Shindo, P.W.; Hernandez, J.; Collins, S.; Medina, F. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012, 60, 2229–2239. [Google Scholar]
- Binesh, B. Diffusion brazing of IN718/AISI 316L dissimilar joint: Microstructure evolution and mechanical properties. J. Manuf. Process. 2020, 57, 196–208. [Google Scholar]
- Arhami, F.; Mirsalehi, S.E.; Sadeghian, A.; Johar, M.H. The joint properties of a high-chromium Ni-based superalloy made by diffusion brazing: Microstructural evolution, corrosion resistance and mechanical behavior. J. Manuf. Process. 2019, 37, 203–211. [Google Scholar]
- Bridges, D.; Xu, R.; Hu, A. Microstructure and mechanical properties of Ni nanoparticle-bonded Inconel 718. Mater. Des. 2019, 174, 107784. [Google Scholar] [CrossRef]
- Awayes, J.; Reinkensmeier, I.; Wagner, G.; Hausner, S. Nanojoining with Ni Nanoparticles for Turbine Applications. J. Mater. Eng. Perform. 2021, 30, 3178–3186. [Google Scholar]
- Sattler, B.; Hausner, S.; Wagner, G. Investigation of Shear Strength and Microstructure Formation of Joined Ni Superalloys Using Ni Nanopastes. Nanomaterials 2022, 12, 3204. [Google Scholar] [CrossRef]
- Lee, S.; Paik, U.; Yoon, S.-M.; Choi, J.-Y. Dispersant-Ethyl Cellulose Binder Interactions at the Ni Particle-Dihydroterpineol Interface. J. Am. Ceram. Soc. 2006, 89, 3050–3055. [Google Scholar]
- Akbarzadeh, R.; Dehghani, H. Sodium-dodecyl-sulphate-assisted synthesis of Ni nanoparticles: Electrochemical properties. Bull. Mater. Sci. 2017, 40, 1361–1369. [Google Scholar]
- Seifert, H.U.; Borelli, S.; Düngemann, H.; Seifert, B. Dermatologischer Noxen-Katalog: Krankheiten der Haut und Schleimhaut durch Kontakte in Beruf und Umwelt; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Cheng, G.; Puntes, V.F.; Guo, T. Synthesis and self-assembled ring structures of Ni nanocrystals. J. Colloid Interface Sci. 2006, 293, 430–436. [Google Scholar]
- Neiva, E.G.C.; Bergamini, M.F.; Oliveira, M.; Marcolino, L.H.; Zarbin, A.J.G. PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sens. Actuators B Chem. 2014, 196, 574–581. [Google Scholar]
- Abu-Much, R.; Gedanken, A. Sonochemical Synthesis under a Magnetic Field: Fabrication of Nickel and Cobalt Particles and Variation of Their Physical Properties. Chem.—Eur. J. 2008, 14, 10115–10122. [Google Scholar]
- Staples, C.A.; Williams, J.B.; Craig, G.R.; Roberts, K.M. Fate, effects and potential environmental risks of ethylene glycol: A review. Chemosphere 2001, 43, 377–383. [Google Scholar] [PubMed]
- Haque, K.M.A.; Shandhi, S.P. Effect of PVP, SDS and their concentration on the synthesis aggregated nano-nickel particles by hydrazine reduction. Int. J. Res. Eng. Sci. 2021, 9, 78–83. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR); International Institute for Research in Science and Technology. Toxicological Profile for Hydrazines; U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1997.
- Sun, S.; Zeng, H.; Robinson, D.B.; Raoux, S.; Rice, P.M.; Wang, S.X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279. [Google Scholar]
- Pascu, O.; Caicedo, J.M.; Fontcuberta, J.; Herranz, G.; Roig, A. Magneto-Optical Characterization of Colloidal Dispersions. Application to Nickel Nanoparticles. Langmuir 2010, 26, 12548–12552. [Google Scholar]
- Yu, C.; Fu, J.; Muzzio, M.; Shen, T.; Su, D.; Zhu, J.; Sun, S. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds. Chem. Mater. 2017, 29, 1413–1418. [Google Scholar]
- Guo, T.; Zhang, H.; Chen, G.; Long, B.; Xie, L.; Cheng, Z.; Xie, X.; Liu, G.; Li, W. A green synthesis of CISe nanocrystal ink and preparation of quantum dot sensitized solar cells. Funct. Mater. Lett. 2020, 13, 2050028. [Google Scholar]
- Hezaveh, H.; Fazlali, A.; Noshadi, I. Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids. J. Taiwan Inst. Chem. Eng. 2012, 43, 159–164. [Google Scholar]
- Maher, H.; Rocky, K.A.; Bassiouny, R.; Saha, B.B. Synthesis and thermal characterization of paraffin-based nanocomposites for thermal energy storage applications. Therm. Sci. Eng. Prog. 2021, 22, 100797. [Google Scholar]
- Saydam, V.; Duan, X. Dispersing different nanoparticles in paraffin wax as enhanced phase change materials. J. Therm. Anal. Calorim. 2019, 135, 1135–1144. [Google Scholar]
- Lai, X.; Zhang, X.; Li, S.; Zhang, J.; Lin, W.; Wang, L. Polyethyleneimine-Oleic Acid Micelles-Stabilized Palladium Nanoparticles as Highly Efficient Catalyst to Treat Pollutants with Enhanced Performance. Polymers 2021, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- Aravindan, L.; Bicknell, K.A.; Brooks, G.; Khutoryanskiy, V.V.; Williams, A.C. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Int. J. Pharm. 2009, 378, 201–210. [Google Scholar] [PubMed]
- Jana, N.R.; Chen, Y.; Peng, X. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater. 2004, 16, 3931–3935. [Google Scholar]
- Wu, Z.; He, C.; Han, W.; Song, J.; Li, H.; Zhang, Y.; Jing, X.; Wu, W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. Environ. Res. 2020, 187, 109531. [Google Scholar]
- Schecter, A.; Colacino, J.A.; Harris, T.R.; Shah, N.; Brummitt, S.I. A Newly Recognized Occupational Hazard for US Electronic Recycling Facility Workers: Polybrominated Diphenyl Ethers. J. Occup. Environ. Med. 2009, 51, 435–440. [Google Scholar]
- Tseng, W.J.; Chen, C.-N. Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 2006, 41, 1213–1219. [Google Scholar]
- Bridges, D.; Lang, S.; Hill, C.; Hu, A. Fabrication and Performance of NiCuCoFeMn High Entropy Alloy Nanopastes for Brazing Inconel 718. In Proceedings of the National Space & Missile Materials Joint Symposium (NSMMS 2019), Henderson, NV, USA, 24–27 June 2019. [Google Scholar]
- Bradley, J.S.; Tesche, B.; Busser, W.; Maase, M.; Reetz, M.T. Surface Spectroscopic Study of the Stabilization Mechanism for Shape-Selectively Synthesized Nanostructured Transition Metal Colloids. J. Am. Chem. Soc. 2000, 122, 4631–4636. [Google Scholar]
- Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Zacharaki, E.; Beato, P.; Tiruvalam, R.R.; Andersson, K.J.; Fjellvåg, H.; Sjåstad, A.O. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al2O3 Model Catalysts. Langmuir 2017, 33, 9836–9843. [Google Scholar]
- Dong, C.; Zhang, X.; Cai, H.; Cao, C.; Zhou, K.; Wang, X.; Xiao, X. Synthesis of stearic acid-stabilized silver nanoparticles in aqueous solution. Adv. Powder Technol. 2016, 27, 2416–2423. [Google Scholar]
- Sigma-Aldrich Co., LLC. Sicherheitsdatenblatt gemäß Verordnung (EG) Nr. 1907/2006; Sigma-Aldrich: St. Louis, MO, USA, 2023. [Google Scholar]
- Kawasaki, H. Surfactant-free solution-based synthesis of metallic nanoparticles toward efficient use of the nanoparticles’ surfaces and their application in catalysis and chemo-/biosensing. Nanotechnol. Rev. 2013, 2, 5–25. [Google Scholar]
- Kaur, N.; Singh, J.; Kaur, G.; Kumar, S.; Kukkar, D.; Rawat, M. CTAB assisted co-precipitation synthesis of NiO nanoparticles and their efficient potential towards the removal of industrial dyes. Micro Nano Lett. 2019, 14, 856–859. [Google Scholar]
- Mafuné, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T.; Sawabe, H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 2000, 104, 9111–9117. [Google Scholar]
- Pekkari, A.; Wen, X.; Orrego-Hernández, J.; da Silva, R.R.; Kondo, S.; Olsson, E.; Härelind, H.; Moth-Poulsen, K. Synthesis of highly monodisperse Pd nanoparticles using a binary surfactant combination and sodium oleate as a reductant. Nanoscale Adv. 2021, 3, 2481–2487. [Google Scholar]
- Tzitzios, V.; Basina, G.; Gjoka, M.; Alexandrakis, V.; Georgakilas, V.; Niarchos, D.; Boukos, N.; Petridis, D. Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 2006, 17, 3750. [Google Scholar]
- Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. J. Am. Chem. Soc. 2010, 132, 1468–1469. [Google Scholar]
- Bala, T.; Gunning, R.D.; Venkatesan, M.; Godsell, J.F.; Roy, S.; Ryan, K.M. Sep Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium. Nanotechnology 2009, 20, 415603. [Google Scholar]
- Yang, G.; Zhang, Z.; Zhang, S.; Yu, L.; Zhang, P.; Hou, Y. Preparation and characterization of copper nanoparticles surface-capped by alkanethiols. Surf. Interface Anal. 2013, 45, 1695–1701. [Google Scholar]
- Kumar, M.; Wangoo, N.; Gondil, V.S.; Pandey, S.K.; Lalhall, A.; Sharma, R.K.; Chhibber, S. Glycolic acid functionalized silver nanoparticles: A novel approach towards generation of effective antibacterial agent against skin infections. J. Drug Deliv. Sci. Technol. 2020, 60, 102074. [Google Scholar]
- Deng, D.; Jin, Y.; Cheng, Y.; Qi, T.; Xiao, F. May Copper Nanoparticles: Aqueous Phase Synthesis and Conductive Films Fabrication at Low Sintering Temperature. ACS Appl. Mater. Interfaces 2013, 5, 3839–3846. [Google Scholar]
- Liu, J.; Li, X.; Zeng, X. Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. J. Alloys Compd. 2010, 494, 84–87. [Google Scholar]
- Yen, C.H.; Wei, H.-H.; Lin, H.-W.; Tan, C.-S. Synthesis and application of palladium stearates as precursors for the preparation of palladium nanoparticles. Appl. Organomet. Chem. 2012, 26, 736–742. [Google Scholar]
- Chirea, M.; Freitas, A.; Vasile, B.S.; Ghitulica, C.; Pereira, C.M.; Silva, F. Apr Gold Nanowire Networks: Synthesis, Characterization, and Catalytic Activity. Langmuir 2011, 27, 3906–3913. [Google Scholar]
- Venkata Narayanan, N.S.; Sampath, S. Amide-based Room Temperature Molten Salt as Solvent cum Stabilizer for Metallic Nanochains. J. Clust. Sci. 2009, 20, 375–387. [Google Scholar]
- Zhao, S.-Y.; Chen, S.-H.; Li, D.-G.; Yang, X.-G.; Ma, H.-Y. A convenient phase transfer route for Ag nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 2004, 23, 92–96. [Google Scholar]
- Shon, Y.-S. Metal nanoparticles protected with monolayers: Synthetic methods. In Dekker Encyclopedia of Nanoscience and Nanotechnology; Marcel Dekker: New York, NY, USA, 2004; pp. 1–11. [Google Scholar]
- National Industrial Chemicals Norification and Assessment Scheme (Australia). Sodium Ethyl Xanthate: Full Public Report; Australian Government Publishing Service: Canberra, Australia, 1995.
- Sattler, B.; Hausner, S.; Wagner, G. Properties of Ni nanopastes for structural joining as an alternative to conventionalbraze fillers. In Proceedings of the High Temperature Brazing and Diffusion Bonding—LÖT 2022, Aachen, Germany, 21–23 June 2022; pp. 44–49. [Google Scholar]
- Li, Y.; Liu, X.; Luo, F.; Yue, J. Effects of surfactant on properties of MIM feedstock. Trans. Nonferrous Met. Soc. China 2007, 17, 1–8. [Google Scholar]
Solvent Used for Nanopaste | Temperature (°C) | Holding Time (s) |
---|---|---|
Water | (ultimately not used for nanopastes, see Section 3.1.1) | |
Dioctyl ether | 180 | 90 |
Paraffin (paraffin wax) | 140 | 210 |
Terpineol, pure | 140 | 90 |
PEG 400 | 200 | 90 |
Solvent Stabilizer | Dioctyl Ether (DiOE) | Paraffin (Pf) | Terpineol (T), Pure | PEG 400 (PEG) |
---|---|---|---|---|
Oleic acid (OA) liquid | Easily soluble, 1:1 ratio possible 1 | Easily soluble when heated, 1:1 ratio possible | (not considered 2) | (not considered) |
Stearic acid (SA) liquid | Soluble only when heated above melting point of SA, when cooled down it separates again | (not considered) | (not considered) | |
Glycolic acid (GA) solid | No visible solubility even at low concentration and heated | Soluble when heated, but GA precipitates form when only slightly cooled | Easily soluble when heated, 1:1 ratio not possible (GA precipitates) | Easily soluble when heated, 1:1 ratio possible |
Polyvinyl- pyrrolidon (PVP) solid | No visible solubility even at low concentration and heated | No visible solubility even at low concentration and heated, PVP forms a crust | Easily soluble when heated, but highly viscous/adhesive at 1:1 ratio | Easily soluble when heated, 1:1 ratio not possible (mushy mixture) |
Hypermer KD4 liquid | (not considered) | (not considered) | Easily soluble (only low concentration is intended) | (not considered) |
Nanopaste Description | Achieved Shear Strength in MPa | ||
---|---|---|---|
Sample #1 | Sample #2 | Avg. #1–2 | |
Ni (70%)_DiOE_OA (15%) | 66.9 | 73.0 | 70.0 |
Ni (70%)_DiOE_OA (1.5%) | 52.3 | 53.4 | 52.9 |
Ni (70%)_DiOE_SA (15%) | 30.0 | 29.5 | 29.7 |
Ni (70%)_DiOE_SA (1.5%) | 47.3 | 17.0 | 32.1 |
Ni (70%)_Pf_OA (15%) | 60.7 | 64.1 | 62.4 |
Ni (70%)_Pf_OA (1.5%) | 46.6 | 41.2 | 43.8 |
Ni (70%)_T_GA (1.5%) | 43.7 | 48.3 | 46.0 |
Ni (70%)_T_PVP (1.5%) | 56.9 | 57.9 | 57.4 |
Ni (70%)_T_KD4 (0.7%) | 97.6 | 99.4 | 98.5 |
Ni (70%)_T | (0) | 63.2 | (31.6) |
Ni (70%)_PEG_GA (1.5%) | 47.3 | 56.7 | 52.0 |
Ni (70%)_PEG_PVP (1.5%) | 36.2 | 33.2 | 34.7 |
Ni (70%)_PEG | 47.2 | 54.1 | 50.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattler, B.; Hausner, S.; Wagner, G. Study on Various Chemical Systems for the Preparation and Application of Nickel Nanopastes for Joining Processes. Materials 2025, 18, 1411. https://doi.org/10.3390/ma18071411
Sattler B, Hausner S, Wagner G. Study on Various Chemical Systems for the Preparation and Application of Nickel Nanopastes for Joining Processes. Materials. 2025; 18(7):1411. https://doi.org/10.3390/ma18071411
Chicago/Turabian StyleSattler, Benjamin, Susann Hausner, and Guntram Wagner. 2025. "Study on Various Chemical Systems for the Preparation and Application of Nickel Nanopastes for Joining Processes" Materials 18, no. 7: 1411. https://doi.org/10.3390/ma18071411
APA StyleSattler, B., Hausner, S., & Wagner, G. (2025). Study on Various Chemical Systems for the Preparation and Application of Nickel Nanopastes for Joining Processes. Materials, 18(7), 1411. https://doi.org/10.3390/ma18071411