Stability of SnSe-Based Thermoelectric Compounds
Abstract
1. Introduction
2. Experimental Methods
2.1. Sample Preparation
2.2. Structural Characterisation
2.3. Transport Property Characterisation
2.4. Thermal Analysis
3. Results and Discussion
3.1. Phase and Microstructure
3.2. Thermoelectric Properties
3.3. Thermal Analysis Results
3.4. The Effects of Annealing
Synthesis Parameter | Intermediate Step | Measurement | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dopants | T (K) | t (h) | Cooling | T (K) | t (h) | Tmax (K) | TZTmax (K) | ZTmax | Heating / cooling | Ref. |
Br | 1223 | 10 | - | - | - | 873 | 873 | 1.04 | yes | This work |
Er, Ho, Sm, Pr, Yb | 1223 | 8 | - | - | - | 900 | 873 | 2.1 | no | [16] |
Te | 1223 | 24 | Down to 1123 K in 0.2 K/min | - | - | 900 | 875 | 1.6 | no | [56] |
Na | 1193 | 1 | - | - | - | 830 | 780 | 0.9 | no | [23] |
Na, Pb | 1223 | 12 | - | 613 | 6 h under Ar/H2, after ball milling | 773 | 773 | 2.5 | no | [17] |
Pb, Br | 1223 | 6 | - | - | - | 773 | 773 | 1.2 | no | [59] |
CeCl3 | 1273 | 1 | - | - | - | 773 | 773 | 1.17 | no | [60] |
Na | 1223 | 12 | - | 773 | 48 h, 613 K, 6 h, Ar/H2 | 783 | 783 | 3.1 | no | [12] |
Ag | 1200 | 12 | - | 800 | 72 h | 750 | 750 | 0.6 | yes | [36] |
S, I | 1193 | 6 | To 873 K in 100 K/h, kept for 70 h at 873 K | - | - | 773 | 773 | 1 | yes | [61] |
MoCl5 | 1223 | 10 | - | - | - | 798 | 798 | 2 | yes | [15] |
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, J. Global warming. J. Rep. Prog. Phys. 2005, 68, 1343. [Google Scholar] [CrossRef]
- Jackson, R.B.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Korsbakken, J.I.; Liu, Z.; Peters, G.P.; Zheng, B. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 2018, 13, 120401. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 2009, 48, 8616. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Hong, M.; Shi, X.; Li, M.; Sun, Q.; Chen, Q.; Dargusch, M.; Zou, J.; Chen, Z.-G. Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion. Energy Environ. Sci. 2020, 13, 3480. [Google Scholar] [CrossRef]
- Burnete, N.V.; Mariasiu, F.; Depcik, C.; Barabas, I.; Moldovanu, D. Review of thermoelectric generation for internal combustion engine waste heat recovery. Prog. Energy Combust. Sci. 2022, 91, 101009. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Rezania, A.; Rosendahl, L.J. Power optimization and economic evaluation of thermoelectric waste heat recovery system around a rotary cement kiln. Clean. Prod. 2019, 232, 1321. [Google Scholar] [CrossRef]
- He, R.; Schierning, G.; Nielsch, K. Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. Adv. Mater. Technol. 2018, 3, 1870016. [Google Scholar] [CrossRef]
- Russ, B.; Glaudell, A.; Urban, J.J.; Chabinyc, M.L.; Segalman, R.A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Wang, J.; Zhang, M.; Jia, M.; Wang, Q. Man-portable cooling garment with cold liquid circulation based on thermoelectric refrigeration. Appl. Therm. Eng. 2022, 200, 117730. [Google Scholar] [CrossRef]
- Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.-F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y.; et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778. [Google Scholar] [CrossRef]
- Abbas, A.; Xu, Z.; Nisar, M.; Li, D.; Li, F.; Zheng, Z.; Liang, G.; Fan, P.; Chen, Y.-X. Achieving weak anisotropy in N-type I-doped SnSe polycrystalline thermoelectric materials. Eur. Ceram. Soc. 2022, 42, 7027. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, Y.K.; Yu, Y.; Byun, S.; Luo, Z.-Z.; Lee, H.; Ge, B.; Lee, Y.-L.; Chen, X.; Lee, J.Y.; et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 2021, 20, 1378. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.-C.; Bhattacharya, S.; He, J.; Neeleshwar, S.; Podila, R.; Chen, Y.Y.; Rao, A.M. The intrinsic thermal conductivity of SnSe. Nature 2016, 539, E1–E2. [Google Scholar] [CrossRef]
- Isotta, E.; Toriyama, M.Y.; Adekoya, A.H.; Shupp, R.; Snyder, G.J.; Zevalkink, A. Effect of Sn oxides on the thermal conductivity of polycrystalline SnSe. Mater. Today Phys. 2023, 31, 100967. [Google Scholar] [CrossRef]
- Chandra, S.; Bhat, U.; Dutta, P.; Bhardwaj, A.; Datta, R.; Biswas, K. Modular Nanostructures Facilitate Low Thermal Conductivity and Ultra-High Thermoelectric Performance in n-Type SnSe. Adv. Mater. 2022, 34, e2203725. [Google Scholar] [CrossRef]
- Su, B.; Han, Z.; Jiang, Y.; Zhuang, H.-L.; Yu, J.; Pei, J.; Hu, H.; Li, J.-W.; He, Y.-X.; Zhang, B.-P.; et al. Re-Doped p -Type Thermoelectric SnSe Polycrystals with Enhanced Power Factor and High ZT > 2. Adv. Funct. Mater. 2023, 33, 2301971. [Google Scholar] [CrossRef]
- Lee, Y.K.; Luo, Z.; Cho, S.P.; Kanatzidis, M.G.; Chung, I. Surface Oxide Removal for Polycrystalline SnSe Reveals Near-Single-Crystal Thermoelectric Performance. Joule 2019, 3, 719. [Google Scholar] [CrossRef]
- Wei, W.; Chang, C.; Yang, T.; Liu, J.; Tang, H.; Zhang, J.; Li, Y.; Xu, F.; Zhang, Z.; Li, J.-F.; et al. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies. Am. Chem. Soc. 2018, 140, 499. [Google Scholar] [CrossRef]
- Chandra, S.; Dutta, P.; Biswas, K. High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures. ACS Nano 2022, 16, 7. [Google Scholar] [CrossRef]
- Lou, X.; Li, S.; Chen, X.; Zhang, Q.; Deng, H.; Zhang, J.; Li, D.; Zhang, X.; Zhang, Y.; Zeng, H.; et al. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe. ACS Nano 2021, 15, 8204. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, S.; Hou, Y.; Li, S.; Wang, C.; Xiong, W.; Zhang, Q.; Miao, X.; Liu, J.; Cao, Y.; et al. Enhanced Density of States Facilitates High Thermoelectric Performance in Solution-Grown Ge- and In-Codoped SnSe Nanoplates. ACS Nano 2023, 17, 801. [Google Scholar] [CrossRef]
- Sun, H.; Tan, C.; Tan, X.; Wang, H.; Yin, Y.; Song, Y.; Liu, G.-Q.; Noudem, J.G.; Jiang, Q.; Zhang, J.; et al. Boosted carrier mobility and enhanced thermoelectric properties of polycrystalline Na 0.03 Sn 0.97 Se by liquid-phase hot deformation. Mater. Adv. 2020, 1, 1092. [Google Scholar] [CrossRef]
- Li, S.; Lou, X.; Li, X.; Zhang, J.; Li, D.; Deng, H.; Liu, J.; Tang, G. Realization of High Thermoelectric Performance in Polycrystalline Tin Selenide through Schottky Vacancies and Endotaxial Nanostructuring. Chem. Mater. 2020, 32, 9761. [Google Scholar] [CrossRef]
- Chandra, S.; Biswas, K. Realization of High Thermoelectric Figure of Merit in Solution Synthesized 2D SnSe Nanoplates via Ge Alloying. J. Am. Chem. Soc. 2019, 141, 6141. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Wei, W.; Zhang, J.; Li, Y.; Wang, X.; Xu, G.; Chang, C.; Wang, Z.; Du, Y.; Zhao, L.-D. Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn1-xPbxSe. J. Am. Chem. Soc. 2016, 138, 13647. [Google Scholar] [CrossRef]
- Chattopadhyay, T.; Pannetier, J.; von Schnering, H.G. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 1986, 47, 879. [Google Scholar] [CrossRef]
- Serrano-Sánchez, F.; Nemes, N.M.; Dura, O.J.; Fernandez-Diaz, M.T.; Martínez, J.L.; Alonso, J.A. Structural phase transition in polycrystalline SnSe: A neutron diffraction study in correlation with thermoelectric properties. J. Appl. Cryst. 2016, 49, 2138. [Google Scholar] [CrossRef]
- Lee, Y.K.; Ahn, K.; Cha, J.; Zhou, C.; Kim, H.S.; Choi, G.; Chae, S.I.; Park, J.-H.; Cho, S.-P.; Park, S.H.; et al. Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. J. Am. Chem. Soc. 2017, 139, 10887. [Google Scholar] [CrossRef]
- Lefebvre, I.; Szymanski, M.A.; Olivier-Fourcade, J.; Jumas, J.C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Zhao et al. reply. Nature 2016, 539, E2–E3. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Chang, C.; Tan, G.; Kanatzidis, M.G. SnSe: A remarkable new thermoelectric material. Energy Environ. Sci. 2016, 9, 3044. [Google Scholar] [CrossRef]
- Wu, P.; Ishikawa, Y.; Hagihala, M.; Lee, S.; Peng, K.; Wang, G.; Torii, S.; Kamiyama, T. Crystal structure of high-performance thermoelectric materials by high resolution neutron powder diffraction. Phys. B Condens. Matter. 2018, 551, 64. [Google Scholar] [CrossRef]
- Sist, M.; Zhang, J.; Iversen, B.B. Crystal structure and phase transition of thermoelectric SnSe. Acta Cryst. B 2016, 72, 310. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Chen, C.; Li, X.; Xue, W.; Wang, X.; Zhang, Z.; Cao, F.; Sui, J.; Liu, X.; et al. Heavy Doping by Bromine to Improve the Thermoelectric Properties of n-type Polycrystalline SnSe. Adv. Sci. 2018, 5, 1800598. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Wang, H.; Chen, Y.-Y.; Day, T.; Snyder, G.J. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2014, 2, 11171. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Qin, B.-C.; Wang, D.-Y.; Hong, T.; Gao, X.; Zhao, L.-D. Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Met. 2021, 40, 2819. [Google Scholar] [CrossRef]
- Zhao, Q.; Qin, B.; Wang, D.; Qiu, Y.; Zhao, L.-D. Realizing High Thermoelectric Performance in Polycrystalline SnSe via Silver Doping and Germanium Alloying. ACS Appl. Energy Mater. 2020, 3, 2049. [Google Scholar] [CrossRef]
- Yang, G.; Sang, L.; Li, M.; Islam, S.M.K.N.; Yue, Z.; Liu, L.; Li, J.; Mitchell, D.R.G.; Ye, N.; Wang, X. Enhancing the Thermoelectric Performance of Polycrystalline SnSe by Decoupling Electrical and Thermal Transport through Carbon Fiber Incorporation. ACS Appl. Mater. Interfaces 2020, 12, 12910. [Google Scholar] [CrossRef]
- Lin, C.-C.; Ginting, D.; Kim, G.; Ahn, K.; Rhyee, J.-S. High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds. Curr. Appl. Phys. 2018, 18, 1534. [Google Scholar] [CrossRef]
- Chu, F.; Zhang, Q.; Zhou, Z.; Hou, D.; Wang, L.; Jiang, W. Enhanced thermoelectric and mechanical properties of Na-doped polycrystalline SnSe thermoelectric materials via CNTs dispersion. J. Alloys Compd. 2018, 741, 756. [Google Scholar] [CrossRef]
- Mi, H.-X.; Cao, S.; Huang, Z.-Y.; Han, L.; Xu, G.-Y.; Xu, J. Improved thermoelectric properties of Ag-doped polycrystalline SnSe with facile electroless plating. Mater. Res. Express 2019, 6, 126302. [Google Scholar] [CrossRef]
- Ma, C.; Bai, X.; Ren, Q.; Liu, H.; Gu, Y.; Cui, H. From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe. J. Mater. Sci. Technol. 2020, 58, 10. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, W.; Han, L.; Sun, H.; Wang, Y.; Zhang, Y.; Wu, H. Thermoelectric properties of polycrystalline (SnSe)1-x(AgSnSe2)x/2 alloys. Prog. Nat. Sci. Mater. Int. 2022, 32, 242. [Google Scholar] [CrossRef]
- Cha, J.; Zhou, C.; Lee, Y.K.; Cho, S.-P.; Chung, I. High Thermoelectric Performance in n-Type Polycrystalline SnSe via Dual Incorporation of Cl and PbSe and Dense Nanostructures. ACS Appl. Mater. Interfaces 2019, 11, 21645. [Google Scholar] [CrossRef] [PubMed]
- Xin, N.; Li, Y.; Tang, G.; Shen, L. Enhancing thermoelectric performance of K-doped polycrystalline SnSe through band engineering tuning and hydrogen reduction. J. Alloys Compd. 2022, 899, 163358. [Google Scholar] [CrossRef]
- Xin, N.; Tang, G.; Li, Y.; Shen, H.; Nie, Y.; Zhang, M.; Zhao, X. Realizing High Thermoelectric Performance of Ag/Al Co-Doped Polycrystalline SnSe through Band Structure Modification and Hydrogen Reduction. Adv. Electron. Mater. 2022, 8, 2200577. [Google Scholar] [CrossRef]
- Wei, T.-R.; Tan, G.; Wu, C.-F.; Chang, C.; Zhao, L.-D.; Li, J.-F.; Snyder, G.J.; Kanatzidis, M.G. Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe. Appl. Phys. Lett. 2017, 110, 53901. [Google Scholar] [CrossRef]
- Leng, H.; Zhou, M.; Zhao, J.; Han, Y.; Li, L. Optimization of Thermoelectric Performance of Anisotropic Ag x Sn1−x Se Compounds. J. Electron. Mater. 2016, 45, 527. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, J.; Liu, G.-Q.; Yang, J.; Tan, X.; Liu, Z.; Qin, H.; Shao, H.; Jiang, H.; Liang, B.; et al. Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation. J. Mater. Chem. C 2016, 4, 1201. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, H.; Mao, T.; Zhang, L.; Di, J.; Xu, G. The effect of Sm doping on the transport and thermoelectric properties of SnSe. Mater. Res. Bull. 2017, 93, 366. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, J.; Liu, G.-Q.; Tan, X.; Liu, Z.; Wang, X.; Shao, H.; Jiang, H.; Liang, B.; Jiang, J.; et al. Study on Thermoelectric Properties of Polycrystalline SnSe by Ge Doping. J. Electron. Mater. 2017, 46, 3182. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Wang, H.; Liu, G.-Q.; Tan, X.; Shao, H.; Hu, H.; Jiang, J. Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping. J. Mater. Sci. Mater. Electron. 2018, 29, 18727. [Google Scholar] [CrossRef]
- Li, J.C.; Li, D.; Xu, W.; Qin, X.Y.; Li, Y.Y.; Zhang, J. Enhanced thermoelectric performance of SnSe based composites with carbon black nanoinclusions. Appl. Phys. Lett. 2016, 109, 173902. [Google Scholar] [CrossRef]
- Li, D.; Li, J.C.; Qin, X.Y.; Zhang, J.; Xin, H.X.; Song, C.J.; Wang, L. Enhanced thermoelectric performance in SnSe based composites with PbTe nanoinclusions. Energy 2016, 116, 861. [Google Scholar] [CrossRef]
- Guo, H.; Xin, H.; Qin, X.; Zhang, J.; Li, D.; Li, Y.; Song, C.; Li, C. Enhanced thermoelectric performance of highly oriented polycrystalline SnSe based composites incorporated with SnTe nanoinclusions. J. Alloys Compd. 2016, 689, 87. [Google Scholar] [CrossRef]
- Lo, C.-W.T.; Song, S.; Tseng, Y.-C.; Tritt, T.M.; Bogdan, J.; Mozharivskyj, Y. Microstructural Instability and Its Effects on Thermoelectric Properties of SnSe and Na-Doped SnSe. ACS Appl. Mater. Interfaces 2024, 16, 49442. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Si, J.; Su, Q.; Wu, H. Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene. Mater. Lett. 2017, 193, 146. [Google Scholar] [CrossRef]
- Chang, C.; Tan, Q.; Pei, Y.; Xiao, Y.; Zhang, X.; Chen, Y.-X.; Zheng, L.; Gong, S.; Li, J.-F.; He, J.; et al. Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Adv. 2016, 6, 98216. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Zhang, Y.; Zong, S.; Li, W.; Zhu, C.; Luo, F.; Wang, J.; Sun, Z. Study on the Thermoelectric Properties of n-Type Polycrystalline SnSe by CeCl 3 Doping. ACS Appl. Energy Mater. 2022, 5, 15093. [Google Scholar] [CrossRef]
- Zhang, Q.; Chere, E.K.; Sun, J.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. Studies on Thermoelectric Properties of n-type Polycrystalline SnSe 1- x S x by Iodine Doping. Adv. Energy Mater. 2015, 5, 1500360. [Google Scholar] [CrossRef]
Sample Name | Real Composition | Density (g/cm3) |
---|---|---|
SnSe 573 K | Sn0.92(6)Se1.07(4) | 6.01 (0) |
SnSe 673 K | Sn0.91(9)Se1.08(1) | 6.11 (8) |
SnSe 773 K | Sn0.92(3)Se1.07(7) | 6.11 (5) |
SnSe 873 K | Sn0.92(1)Se1.07(9) | 6.08 (9) |
SnSeBr 573 K | Sn0.91(9)Se1.04(2)Br0.03(9) | 6.08 (5) |
SnSeBr 673 K | Sn0.93(0)Se1.02(8)Br0.04(2) | 6.05 (3) |
SnSeBr 753 K | Sn0.93(1)Se1.02(2)Br0.04(7) | 6.08 (3) |
SnSeBr 873 K | Sn0.91(3)Se1.05(4)Br0.03(2) | 6.07 (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiem, M.; Emmerich, A.-K.; Radulov, I.; Weidenkaff, A.; Xie, W. Stability of SnSe-Based Thermoelectric Compounds. Materials 2025, 18, 4228. https://doi.org/10.3390/ma18184228
Thiem M, Emmerich A-K, Radulov I, Weidenkaff A, Xie W. Stability of SnSe-Based Thermoelectric Compounds. Materials. 2025; 18(18):4228. https://doi.org/10.3390/ma18184228
Chicago/Turabian StyleThiem, Moritz, Ann-Katrin Emmerich, Iliya Radulov, Anke Weidenkaff, and Wenjie Xie. 2025. "Stability of SnSe-Based Thermoelectric Compounds" Materials 18, no. 18: 4228. https://doi.org/10.3390/ma18184228
APA StyleThiem, M., Emmerich, A.-K., Radulov, I., Weidenkaff, A., & Xie, W. (2025). Stability of SnSe-Based Thermoelectric Compounds. Materials, 18(18), 4228. https://doi.org/10.3390/ma18184228